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Traditional optimization changes variables that are available in the design stage to optimize 

objectives, such as aircraft structural reliability. However, there are many post-design 

measures, such as tests and structural health monitoring that reduce uncertainty andfurther 

improve the reliability. In this paper, a new reliability-based design framework that can 

include post-design uncertainty reduction variables is proposed. Among many post-design 

variables, this paper focuses on the number of coupon tests and the number of structural 

element tests. Uncertainty in the failure stress prediction, variability due to the finite 

number of coupon tests, and uncertainties in geometry and service conditions are studied in 

detail. The Bayesian technique is used to update the failure stress distribution based on 

results of the element tests. Tradeoff plots of the number of tests, weight and probability of 

failure in certification and in service are generated, and finally reliability-based design of 

future tests together with aircraft structure is performed for minimum lifecycle cost.  

Nomenclature 

A = load carrying area (width times thickness) of a small part of the overall structure 

beef = bound of associated with failure criterion used while predicting failure in the structural element tests 

bt = bound of error in the design thickness, et 

bw = bound of error in the design width, ew 

eef = error associated with failure criterion used while predicting failure in the structural element tests 

ef = error in predicting failure of the entire structure in certification or proof testec 

ep = error in load calculation 

eσ = error in stress calculation 

et = error in the design thickness due to construction errors 

ew = error in the design width due to construction errors 

DOC = direct operating cost 

E( ) = expected value (i.e., mean value) 

kd = knockdown factor at coupon level due to use of conservative (B-basis) material properties 

kf = additional knockdown factor at the structural level (nominal value is taken as 0.95) 

nc = number of coupon tests (nominal value is taken as 50) 
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ne = number of element tests (nominal value is taken as 3) 

Na = number of aircraft in a fleet (taken as 1,000) 

Nmat = number of materials for which coupon testing is done (taken as 80) 

Nelem = number of different types of structural elements tested (taken as 100) 

p = cost saving by reducing the structural weight by one unit 

Pcalc = calculated design load  

Pd = true design load based on the FAA specifications (e.g., gust load specification) 

Pf = probability of failure 

PFCT = probability of failing certification test 

σca = allowable stress (B-basis) from coupon testing 

σea = allowable stress (B-basis) from element testing 

σa = allowable stress (B-basis) of the entire structure 

σcf = failure stress from coupon testing 

σef = failure stress of the structural element 

(σef)
test

 = element failure stress measured in tests 

(σef)calc = calculated (or predicted) element failure stress 

(σef)
upd

 = updated value of the calculated (or predicted) element failure stress 

σf = failure stress of the overall structure 

σ = stress in a small part of the overall structure 

SF = the FAA load safety factor of 1.5 

t = thickness of a small part of the overall structure 

vt = effect of variability on the built thickness 

vw = effect of variability on the built width 

w = width of a small part of the overall structure 

 

Subscripts 

built-av = average built value that differs from the design value due to errors in construction 

built-var = actual built value that differs from the average built value due to variability in construction 

calc = calculated (or predicted) value that differs from the design value due to errors in design 

design = design value 

true = true value (error free value) 

I. Introduction 

HE safety of aircraft structures can be achieved by designing the structure against uncertainty and by taking 

steps to reduce the uncertainty. Safety factors and knockdown factors are examples of measures used to 

compensate for uncertainty during the design process. Uncertainty reduction measures (URMs), on the other hand, 

may be employed during the design process or later on throughout the operational lifetime. Examples of URMs for 

aircraft structural systems include structural testing, quality control, inspection, health monitoring, maintenance, and 

improved structural analysis and failure modeling. 

 

In traditional reliability-based optimization, all uncertainties that are available at the design stage are considered 

in calculating the reliability of the structure (e.g., Refs. [1-15]). However, the actual aircraft is much safer, because 

after design it is customary to engage in vigorous uncertainty reduction activities using various URMs. It would be 

therefore beneficial to include the effects of these planned URMs in the design process [16-19]. It may be even 

advantageous to design the URMs together with the structure; for example, trading off the cost of more weight 

against the cost of additional tests. It is challenging, though, to model the effect of future URMs in the design 

process. In this study, we focus on the structural tests as an example of URMs. 

 

There are few papers in the literature that address the effect of tests on structural safety. Jiao and Moan [20] 

investigated the effect of proof tests on structural safety using Bayesian updating. They showed that the proof testing 

reduces the uncertainty in the strength of a structure, thereby leading to substantial reduction in probability of 

failure. Jiao and Eide [21] explored the effects of testing, inspection and repair on the reliability of offshore 

structures. Beck and Katafygiotis [22] addressed the problem of updating a probabilistic structural model using 

dynamic test data from structure by utilizing Bayesian updating. Similarly, Papadimitriou et al. [23] used Bayesian 

updating within a probabilistic structural analysis tool to compute the updated reliability of a structure using test 
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data. They found that the reliabilities computed before and after updating were significantly different. In a previous 

paper [24], we aimed to extend the work of these earlier authors in simulating all possible outcomes of future tests, 

which would allow the designer to design the tests together with the structure.  

 

In [24] we focused on the effects of structural tests on aircraft safety. We investigated in particular the effect of 

the number of coupon and structural element tests on the final distribution of the failure stress. We assumed that the 

mean value of the failure stress (mean over a large number of aircraft) is obtained from a failure criterion (e.g., Tsai-

Wu theory [25]) using the results of coupon tests. The initial uncertainty in this mean failure stress reflects the 

confidence of the analytical model in this prediction as well as possible error in finite number of coupon tests. The 

Bayesian technique is then used to update the mean failure stress distribution considering all possible outcomes of 

future element tests. In addition, there is the variability of the failure stress from one aircraft to another or from one 

structural component to another. We assumed that this variability is the same as the variability in coupon tests, 

which holds only for very large number of coupon tests. In the present paper we take into account the error 

associated with obtaining material properties from a finite number of coupon tests. 

 

The objective of the present paper is to perform reliability-based design of aircraft structure together with the 

future aircraft structural tests. We assume that besides satisfying a constraint on the probability of failure, the 

designer needs to satisfy the FAA regulations for deterministic design. In order to reconcile the two requirements, 

we take advantage of the fact that companies often apply additional knockdown factors to design allowables beyond 

the FAA requirements. We use thus use a company knockdown factor as a design variable that modulates the 

tradeoff between cost and safety. We illustrate the generation of response surface plots of the number of tests, 

weight and probability of failure in certification and in service. The paper is organized as follows. The next section 

provides the motivation for design of aircraft structures together with future tests. Section III discusses the safety 

measures taken during aircraft structural design. Section IV presents a simple uncertainty classification that 

distinguishes uncertainties that affect an entire fleet (errors) from the uncertainties that vary from one aircraft to 

another in the same fleet (variability). Section V discusses modeling of errors and variability throughout the design 

and testing of an aircraft, and probability of failure calculation. Finally, the reliability-based optimization results and 

the concluding remarks are given in the last two sections of the paper, respectively.  

II. Design of Aircraft Structures Together with Future Tests 

According to current practices, determination of the number of structural tests is based on past experience. 

However, since structural tests are expensive, there is an incentive to reduce the expenditures for tests without 

jeopardizing safety. Intuitively, the number of expensive tests such as component tests and element tests can be 

reduced and the number of inexpensive tests such as coupon tests can be increased. However, before making such 

decisions, the effects of these tests on aircraft safety need to be assessed.  

 

In this paper, the effect of tests on structural safety is assessed by using Monte Carlo simulation (MCS). It is 

assumed that the mean value of the failure stress is obtained from a failure criterion using the results of coupon tests. 

To reflect our level of confidence in the prediction of the failure criterion, an initial uncertainty in the mean failure 

stress is assumed. Then, Bayesian technique is used to update the mean failure stress distribution considering all 

possible outcomes of future element tests. In addition, the variability of the failure stress from one airplane to 

another or from one structural component to another is modeled in the simulations. The uncertainty in the failure 

stress variability due to the finite number of coupon tests is also modeled in the MCS. 

 

After assessing the effects of tests on safety, simultaneous design of aircraft structures and the number of future 

tests will be performed for minimum lifecycle cost. The design variables are chosen as the company knockdown 

factor and the number of coupon and element tests. Response surface models are constructed to relate the design 

variables to structural weight and structural safety. The response surface models are used to compute the lifecycle 

cost (the objective function) and the probability of failure (the constraint). These types of models can also be used 

by structural designers as well as company managers for tradeoff analyses and decision making.  

III. Safety Measures 

As noted earlier, the safety of aircraft structures is achieved by designing these structures to operate well in the 

presence of uncertainties and taking steps to reduce the uncertainties. The following gives brief description of these 

safety measures. 
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Figure 1. Simplified three-level tests  

A. Safety measures for designing structures under uncertainties 

 

Load Safety Factor: In transport aircraft design, FAA regulations mandate the use of a load safety factor of 1.5 

(FAR-25.303 [26]). That is, aircraft structures are designed to withstand 1.5 times the limit load without failure. 

 

Conservative Material Properties: In order to account for uncertainty in material properties, FAA regulations 

mandate the use of conservative material properties (FAR-25.613 [27]). The conservative material properties are 

characterized as A-basis and/or B-basis material property values. Detailed information on these values is provided in 

Volume 1, Chapter 8 of the Composite Materials Handbook [28]. In this paper, we use B-basis values. The B-basis 

value is determined by calculating the value of a material property exceeded by 90% of the population with 95% 

confidence. The basis values are determined by testing a number of coupons selected randomly from a material 

batch. In this paper, the nominal number of coupon tests is taken as 50. 

 

Other measures such as redundancy are not discussed in this paper. 

B. Safety measures for reducing uncertainties 

Improvements in accuracy of structural analysis and failure prediction of aircraft structures reduce errors and 

enhance the level of safety. These improvements may be due to better modeling techniques developed by 

researchers, more detailed finite element models made possible by faster computers, or more accurate failure 

theories. Similarly, the variability in material properties can be reduced through quality control and improved 

manufacturing processes. Variability reduction in damage and ageing effects is accomplished through inspections 

and structural health monitoring. The reader is referred to the papers by Qu et al. [16] for effects of variability 

reduction, Acar et al. [17] for effects of error reduction, and Acar et al. [18] for effects of reduction of both error and 

variability. 

 

In this paper, we focus on error reduction through aircraft structural tests, while the other uncertainty reduction 

measures are left out for future studies. Structural tests are conducted in a building block procedure (Volume I, 

Chapter 2 of Ref. [28]). First, individual coupons are tested to estimate the mean and variability in failure stress. The 

mean structural failure is estimated based on failure criteria (such as Tsai-Wu) and this estimate is further improved 

using element tests. Then a sub-assembly is tested, followed by a full-scale test of the entire structure. In this paper, 

we use the simplified three-level test procedure depicted in Figure 1. The coupon tests, structural element tests and 

the final certification test are included. 

 

The first level is the coupon tests, where coupons (i.e., material samples) are tested to estimate failure stress. The 

FAA regulation FAR 25-613 requires aircraft companies to perform “enough” tests to establish design values of 

material strength properties (A-basis or B-basis value). As the number of coupon tests increases, the errors in the 

assessment of the material properties are reduced. However, 

since testing is costly, the number of coupon tests is limited to 

about 100 to 300 for A-basis calculation and at least 30 for B-

basis value calculation. In this paper, B-basis values are used and 

the nominal number of coupon tests is taken as 50. 

 

At the second level of testing, structural elements are tested. 

The main target of element tests is to reduce errors related to 

failure theories (e.g., Tsai-Wu) used in assessing the failure load 

of the structural elements. In this paper, the nominal number of 

structural element tests is taken as 3. 

 

At the uppermost level, certification (or proof) testing of the 

overall structure is conducted (FAR 25-307 [29]). This final 

certification or proof testing is intended to reduce the chance of 

failure in flight due to errors in the structural analysis of the 

overall structure (e.g., errors in finite element analysis, errors in 

failure mode prediction). While failure in flight often has fatal 

consequences, certification failure often has serious financial 

implications. So we measure the success of the URMs in terms of 
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their effect on probability of failure in flight and in terms of their effect on probability of certification failure. 

IV. Structural Uncertainties 

A good analysis of different sources of uncertainty in engineering simulations is provided by Oberkampf et al. 

[30, 31]. To simplify the analysis, we use a classification that distinguishes between errors (uncertainties that apply 

equally to the entire fleet of an aircraft model) and variability (uncertainties that vary for the individual aircraft) as 

we used in our earlier studies [32, 33]. The distinction, presented in Table 1, is important because safety measures 

usually target either errors or variability. While variabilities are random uncertainties that can be readily modeled 

probabilistically, errors are fixed for a given aircraft model (e.g., Boeing 737-400) but they are largely unknown. 

Since errors are epistemic, they are often modeled using fuzzy numbers or possibility analysis [34, 35]. We model 

errors probabilistically by using uniform distributions because these distributions correspond to minimum 

knowledge or maximum entropy.  

 

Table 1. Uncertainty Classification 

Type of 

Uncertainty 
Spread Cause Remedies 

Error 

(mostly 

epistemic) 

Departure of the average 

fleet of an aircraft model 

(e.g. Boeing 737-400) from 

an ideal 

Errors in predicting 

structural failure, 

construction errors, 

deliberate changes 

Testing and simulation to 

improve the mathematical  

model and the solution 

Variability 

(aleatory) 

Departure of an individual 

aircraft from fleet level 

average 

Variability in tooling, 

manufacturing process, 

and flying environment 

Improvement of tooling 

and construction. Quality 

control 

 

Errors are uncertain at the time of the design but they are the same for all copies of a structural component on 

different airplanes of the same model, while the variabilities vary for nominally identical copies of structural 

components. To model errors, we assume that we have a large number of nominally identical aircraft being designed 

(e.g., by Airbus, Boeing, Embraer, Bombardier, etc.), with the errors being fixed for each aircraft. 

V. Uncertainty Modeling and Probability of Failure Calculation 

We use a simple example of point stress design for yield to illustrate our methodology. The loading is assumed to 

follow Type I extreme distribution since we consider the maximum load over lifetime. The failure stress is assumed 

to follow lognormal distribution.  

 

To model uncertainties, it is required to simulate the coupon tests, the element tests and the certification test. At 

the coupon-level, we have errors in estimating material strength properties from coupon tests, due to limited number 

of coupon tests. At the element-level, we have errors in structural element strength predictions due to the inaccuracy 

of the failure criterion used. At the full scale structural-level, we have errors in structural strength predictions, error 

in load calculation and error in construction. Similarly, we have variability in loading, geometry and failure stress. 

After all the errors and variability are carefully introduced, the probability of failure can be computed using MCS. 

Details of the overall uncertainty modeling are provided in detail in Appendix A. Within this uncertainty modeling 

framework, the effects of structural element tests are considered by using Bayesian updating as discussed in 

Appendix B. 

 

The simulation of error and variability can be easily implemented through a two-level Monte Carlo simulation 

[33]. At the upper level different aircraft companies can be simulated by assigning random errors to each, and at the 

lower level we simulated variability in dimensions, material properties, and loads related to manufacturing 

variability and variability in service conditions can be simulated. The details of the separable MCS are provided in 

Appendix C. 

 

The effect of element tests on failure stress distribution is modeled using Bayesian updating. If Bayesian 

updating were used directly within an MCS loop of probability of failure calculation, the computational cost would 

be very high. Therefore, Bayesian updating is performed aside in a separate MCS (a brief description of the 

procedure is given in Table 2), before starting with the main MCS loop (a brief sketch of the procedure is provided 

in Table 3). Since the failure stress distribution may have a general shape, we used Johnson distribution to model it, 
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which can be represented using four quantiles. The procedure followed for Bayesian updating can be described 

briefly as follows. First, the four quantiles of the mean failure stress are modeled as normal distributions. Then, 

these quantiles are used to fit a Johnson distribution to the mean failure stress. That is, the mean failure stress is 

represented as a Johnson distribution, whose parameters are themselves distributions that depend on the number of 

element tests as well as the error in failure stress prediction of the elements, eef. Finally, Bayesian updating is used to 

update the mean failure stress distribution as in our earlier work [36]. 

 

Table 2. Monte Carlo procedure for the separate Bayesian code (computing statistical properties of quantiles) 

1. Calculate the apparent values of the mean and standard deviation of the failure stress from finite number of 

coupon tests 

2. Simulate the element tests (generate random numbers using the true values of the mean and standard deviation 

of the failure stress) 

3. Assume very large bounds for the prior distribution of the mean failure stress and perform Bayesian updating 

using the results of element tests 

4. Compute the quantiles of the updated distribution 

5. Perform steps 1-4 for 20,000 times and compute the mean and standard deviation as well as the correlation 

coefficient between the quantiles 

 

Table 3. Monte Carlo procedure for the main code (computing probability of failure) 

1. Compute the allowable stress based on the results of coupon tests 

2. Calculate the built average load carrying area using the results of coupon tests (See Appendix A) 

3. Generate random numbers for the quantiles of the updated mean failure stress (Updating was performed in a 

separate Bayesian updating code) 

4. Calculate the allowable stress using the quantiles (see Appendix B) 

5. Revise the built average load carrying area based on the values of the allowable stress calculated from the 

coupon tests (step1), and element tests (step 4). See Appendix A for revised area calculation procedure. 

6. Using the revised area, compute the probability of failure in service (Pf), and in certification (PFCT).  

       See Appendix C for Pf and PFCT calculation. 

 

VI. Optimization for minimum lifecycle cost 

As noted earlier, the main objective of the paper is to perform reliability-based structural design of aircraft 

together with future tests. The design variables of the optimization problem are chosen as the company knockdown 

factor kf (see Appendix A, Section C), the number of coupon tests nc, and the number of element tests ne. The 

reliability-based design of an aircraft structure for minimum direct operating cost (DOC) can be performed by 

solving the following optimization problem: 

 

 Find   , ,f c ek n n  (1.1) 

 Min    DOC , ,f c ek n n  (1.2) 

 S.t.       , ,f f c e f nom
P k n n P  (1.3) 

 0.9 1.0, 30 80, 1 5f c ek n n       (1.4) 

 

The  f nom
P  term in the constraint is taken as the value of Pf when the design variables take their nominal values 

(i.e., kf =0.95, nc=50, and ne=3). The direct operating cost DOC is related to the design variables as described in the 

followings. 

 

The cost model used in this study is based on the paper by Kaufmann et al. [37], which suggested that an 

optimum cost-effective design finds the proper tradeoff between the minimum weight and minimum manufacturing 

cost solution. The direct operating cost (DOC) of the aircraft structure can be defined as 

 

 0manDOC = C  + Wp  (2) 

 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

where Cman is the manufacturing cost, p0 is the cost penalty due to excessive structural weight, W. In our study, we 

modify this cost formulation to take into account the cost of the uncertainty reduction measures (Curm) including 

tests, quality control, health monitoring, etc. In addition, we dump the manufacturing cost into the cost of excess 

weight. That is, the DOC is reformulated as 

 

 urmDOC = W + Cp  (3) 

 

Here, p is the total cost saving attained by reducing the structural weight by one pound. In this study, amongst 

uncertainty reduction measures (URMs) noted earlier, we focus on tests. Hence, Curm is divided into two elements as  

 

 urm test urm-otherC  = C  + C  (4) 

 

where Ctest is the cost of tests, and Curm-other is the total cost of URMs other than tests. In this study, we focus mainly 

on two types of tests: the coupon tests and the element tests. Thus, Ctest can be re-written as 

 

 test coupon elem test-otherC   = C  + C  + C  (5) 

 

where Ccoupon is the cost of coupon tests, Celem is the cost of element tests, and Ctest-other is the cost of other tests such 

as component tests, assembly tests, certification test, etc. 

 

Equations (2-4) can be combined to yield 

 

  coupon elem otherDOC = W + C  + C  + Cp  (6)  

 

where  

 

 other urm-other test-other laborC  = C  + C  + C  (7) 

 

The direct operation cost can be re-written so as to show its dependence on the knockdown factor kf, the number of 

coupon tests nc, and the number of element tests ne as 

 

          elem otherDOC , ,  = W , ,  + C  + C  + Cf c e f c e coupon c ek n n p k n n n n  (8)Here, W is the structural weight, p is 

the weight penalty, Cc is the cost of coupon tests, Ce is the cost of element tests, and Cother refers to the costs that are 

not affected by the choice of design variables. Since DOC is used within an optimization framework, Cother term can 

be dropped. Details of each term in the cost equation are provided below. 

 

Weight penalty p 

Curran et al. [38] proposed that the economical value of weight saving is 300 $/kg. Similarly, Kim et al. [39] 

referred to a recent report by the US National Materials Advisory Board [40] that estimated that a 1 lb weight 

reduction amounts to a total saving of $200 for a civil transport aircraft. In our study, we vary the weight penalty 

between $200/lb and $1000/lb and see its effect on the optimum values of the design variables.  

 

The structural weight 

We take the structural weight of a typical civil transport aircraft as 50,000 lbs. Since the test costs can be attributed 

to fleet of aircraft rather than a single one, total structural weight of the fleet is considered. Therefore, the weight 

term in Eq. (8) can be written as 

  
 , ,

W , , 50,000
cert f c e

f c e a

nom

A k n n
k n n N

A
    (9) 

 

Here Acert is the certified load carrying area, and Anom is the value of Acert when the design variables take their 

nominal values. We assume that a typical airliner has a production line of 1,000 aircraft before it is discontinued or 

substantially redesigned, so Na=1,000. 
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Test costs 

The costs for the coupon tests and element tests are based on personal communications with structural engineers in 

Turkish Aerospace Industries, Boeing, and NASA. They are taken as $300 for each coupon in a coupon test, and 

$150,000 for each element tests. Accordingly the respective costs are given as 

 

 Ccoupon (nc) = 300×Nmat×nc   (in $) (10) 

 

 Celem (ne) = 150,000×Nelem×ne   (in $) (11) 

 

where the Nmat is the number of different materials tested for a single aircraft model, and Nelem is the number 

different types of structural elements tested. In this study, these values are taken as Nmat=80, and Nelem=100, 

respectively. 

 

If the design variables take their nominal values, and p=$200/lb, the DOC is 

 

   6
 DOC = 200 1,000 50,000 + 300 80 50 + 150,000 100 3= 10,000+1.2+45 10        dollars (12) 

 

According to Eq. (12), even for the lowest weigh penalty, the contribution of weight to the cost dominates the cost 

of tests. So if we can reduce the weight by more than 0.15% by performing an additional element test, then we 

should choose to do that. This reflects the large number of airplanes (assumed to be 1,000 here) that benefit from the 

results of the test. We will investigate these tradeoffs in detail in the Results section. 

 

VII. Results 

In this section, first the effects of the number of coupon tests and the number of element tests on the weight and 

probability of failure will be investigated. Then, the reliability-based design of aircraft will be performed for 

minimum direct operating cost. 

A. Response surface generation for weight and reliability index in terms of the design variables 

Response surface models (quadratic polynomial with all terms included) are constructed to relate the number of 

structural tests, and company knock down factors to structural weight, and structural safety for use in the 

optimization. The input variables of the response surface models and their bounds are provided in Table 4. Latin 

hypercube design of experiments is used to generate thirty training points within the bounds given in Table 4. The 

built average load carrying area (surrogate for the structural weight) and the probability of failure are computed 

using Monte Carlo simulations. The accuracies of the constructed response surface models are evaluated by using 

leave-one-out cross-validation errors. Response surface models are constructed 30 times, each time leaving out one 

of the training points. The difference between the exact response at the omitted point and that predicted by each 

variant response surface model defines the cross-validation error. Table 5 provides the root mean square error 

(RMSE), the maximum absolute error (MAE), the maximum absolute error (MAXE) as well as the mean of the 

response. Comparison of the error metrics to the mean of response reveals that the constructed response surfaces are 

quite accurate. 

 

Table 4. Input variables of the response surface models and their bounds 

Variable kf nc ne 

Lower bound 0.90 30 1 

Upper bound 1.00 80 5 

 

Table 5. Evaluating accuracies of response surface models using leave-one-out cross validation errors 

Response Mean of response RMSE
(a)

 MAE
(b)

 MAXE
(c)

 

Acert 1.24 0.0015 0.0011 0.0041 

Rel. Index, β 5.24 0.009 0.008 0.018 
(a)

 RMSE: root mean square error; 
(b)

 MAE: mean absolute error; 
(c)

 MAXE: maximum absolute error 
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 Since there are three variables, we fix one variable and plot the variation of the response with respect to other 

two variables to provide a graphical depiction of the constructed response surfaces. The response surface plots for 

Acert and reliability index β are given in Figs. 2 and 3. The figures show that as kf reduces, both Acert and β increases. 

As the number of tests increases, the load carrying area reduces. As the number of coupon tests increases, the 

reliability index reduces since the B-basis value increases. As the number of element tests increases, the reliability 

index increases since the error in failure prediction reduces. 

 

   

(a) nc is fixed to 50 (b) ne is fixed to 3 (c) kf is fixed to 0.95 

Figure 2. Constructed response surfaces for the average certified load carrying area 

 

   

(a) nc is fixed to 50 (b) ne is fixed to 3 (c) kf is fixed to 0.95 

Figure 3. Constructed response surfaces for the reliability index 

 

B. The weight and the number of coupon tests tradeoffs 

The change of Acert (surrogate for structural weight) with the number of coupon tests for the same Pf is shown in 

Table 6. The number of element tests is fixed at three, and the value of kf is adjusted to maintain the same Pf. If the 

number of coupon tests is reduced from 50 to 30, the built average load carrying area is increased by 0.28%. On the 

other hand, if the number of coupon tests is increased from 50 to 80, the built average load carrying area decreases 

by 0.24%. The last column of Table shows that when Pf. is maintained at its nominal value, the probability of failure 

in certification test changes only slightly. 

 

Increasing the number of tests from 50 to 80 brings a cost penalty of ΔC = 300×80×Δnc = $720 k, while 0.24% 

weight saving leads to a cost saving of ΔC = – (0.24%×1,000×50,000)×200 = $-24 M when p=200$/lb. So, it is 

expected that the RBDO will lead to the setting of nc=80. 

 

Table 6. Effects of the number of coupon tests for the same probability of failure (kf = 0.95, ne =3). Note that 

the kf values are all smaller than 1.0, so the FAA deterministic design regulations are not violated. 

nc kf Acert %ΔAcert Pf   (×10
-7

) PFCT* 

30 0.9587 1.2402 0.28 0.796 0.0416 

50 0.9500 1.2368 --- 0.796 0.0401 

80 0.9446 1.2338 -0.24 0.796 0.0420 

* PFCT: Probability of failing in certification test 
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C. The weight and the number of element tests tradeoffs 

To analyze the tradeoffs of the weight and the number of element tests, Pf can be fixed and the variation of Acert 

with ne can be explored. The number of coupon tests is fixed at fifty, and the value of kf is adjusted to maintain the 

same Pf. Table 7 shows that if we want to perform only a single element test, then we will need to put 1.43% extra 

weight to achieve to the same Pf. The cost saving by eliminating two element tests is ΔC = –150,000×100×2 = $30 

M, while the cost penalty due to adding 1.43% extra weight is $-163 M when p=200$/lb. So, this is not a good route. 

 

On the other hand, if we increase the number of element tests from three to four, we can save 0.34 percent 

weight, yielding a cost saving of $-34 M even when the weight penalty is at its minimum value of p=200 $/lb. The 

cost penalty due to an additional element test is $15 M, so it is advantageous to perform four tests. However, 

increasing the number of element tests from four to five brings only additional weight saving of 0.11%, leading to 

cost saving of $11 M. Recalling that an additional element test costs $15 M, it is not worthy to perform five tests. If 

the penalty parameter is taken as p=1000 $/lb, on the other hand, the weight cost saving will be $30 M, so it is now 

worthy to perform five tests. 

 

Table 7. Effects of the number of element tests for the same probability of failure when the bound of error in 

failure prediction of elements is 10% (kf = 0.95, nc =50). Note that the kf values are all smaller than 1.0, so the 

FAA deterministic design regulations are not violated. 

ne kf Acert %ΔAcert Pf  (×10
-7

) PFCT 

1 0.9403 1.2545 1.43 0.796 0.0410 

2 0.9460 1.2441 0.59 0.796 0.0402 

3 0.9500 1.2368 --- 0.796 0.0401 

4 0.9525 1.2325 -0.34 0.796 0.0405 

5 0.9535 1.2313 -0.45 0.796 0.0415 

 

The effect of reducing the error in failure stress prediction of structural elements is investigated next. Table 8 

shows the variation of Acert with the number of coupon tests for the same Pf when the bound of error in failure stress 

prediction of structural elements is reduced from 10% to 5%. It is seen that as the error in failure stress predictions 

are reduced, the tests becomes less effective so smaller weight can be saved. But still, increasing the number of 

element tests to four yields 0.24% weight saving, leading to a cost saving of $24 M when p=200$/lb. Recalling that 

an additional element test costs $15 M, we choose to perform the forth test. Increasing the number of tests from four 

to five yields only $9 M weight cost saving, so we choose not to perform the forth test.  

 

The variation of the load carrying area with the number of coupon and element tests for 5% and 10% bounds of 

error in failure prediction of elements are provided in Fig. 4. It is seen that the tests become more effective when the 

error bound is large (as expected). Performing five element tests instead of three leads to a weight saving of 0.45% 

when error bound is 10%, while the weight saving reduces to 0.33% when error bound is 5%, These tradeoff plots 

accompanied with cost information provide very valuable information to a structural engineer. 

 

Table 8. Effects of the number of element tests for the same probability of failure when the bound of error in 

failure prediction of elements is reduced to 5% (kf = 0.95, nc =50). Note that the kf values are all smaller than 1.0, 

so the FAA deterministic design regulations are not violated. 

ne kf Acert %ΔAcert Pf  (×10
-7

) PFCT 

1 0.9440 1.2479 0.93 0.779 0.0398 

2 0.9476 1.2413 0.39 0.779 0.0412 

3 0.9500 1.2365 --- 0.779 0.0423 

4 0.9513 1.2336 -0.24 0.779 0.0430 

5 0.9514 1.2324 -0.33 0.779 0.0435 
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(a) Coupon tests (b) Element tests 

Figure 4. Weight (or load carrying area) and number of test tradeoffs when the bounds of error are 5% 

and 10%. 

D. RBDO for minimum cost 

Using the response surface models constructed, the RBDO problem stated in Eq. (1) is solved by using fmincon 

function of MATLAB®  based on the sequential quadratic programming algorithm. The solution of the optimization 

problem yields real numbers for the number of tests, but should be integer numbers. To resolve this issue, the 

following approach is followed. After the optimum solution is obtained as real numbers, the nearest two integers for 

both the number of coupon tests and the number of element tests are considered, which yields four combinations. 

For instance, if the optimum numbers of coupon and element tests are found as nc=50.71 and ne=3.26, respectively, 

then the following four (nc, ne) combinations are considered: (50, 3), (51, 3), (50, 4) and (51, 4). Then, four each of 

these combinations, the optimization problem in Eq. (1) is reduced to a single variable optimization problem (in 

terms of kf only), and the optimum value of kf is calculated. Finally, the combination with the best performance (i.e., 

with minimum lifecycle cost) is declared as the optimum. 

 

The results of the optimization for minimum cost, when the bound of error in failure prediction of elements is 

taken 10%, are provided in Table 9. It is seen from Table 9 that the optimum number of coupon tests is 80 regardless 

the number value of penalty parameter p for excess weight, since the coupon tests are very inexpensive. It is also 

found that the optimum values of the number of element tests ne and the knockdown factor kf depends on the penalty 

parameter for excess weight. If the penalty parameter is taken as p = 200 $/lb or p = 500 $/lb, the optimum number 

of element tests is four. However, if the penalty parameter is taken as p = 1000 $/lb (or larger), the optimum number 

of element tests is five, since each pound of weight saving is very valuable. 

 

Table 9. RBDO results for minimum cost for various values of the penalty parameter p when the bound of 

error in failure prediction of elements is 10%.(Pf=7.96e-8) 

 kf nc ne Acert p W 

($M) 

Cc 

($M) 

Ce 

($M) 

DOC 

($M) 

p = 200 $/lb 

Nominal 0.9500 50 3 1.2368 10,000 1.2 45 10,046 

Optimum 0.9466 80 4 1.2304 99,487 1.9 60 10,011 

p = 500 $/lb 

Nominal 0.9500 50 3 1.2368 25,000 1.2 45 25,046 

Optimum 0.9466 80 4 1.2304 24,872 1.9 60 24,935 

p = 1000 $/lb 

Nominal 0.9500 50 3 1.2368 50,000 1.2 45 50,046 

Optimum 0.9472 80 5 1.2301 49,728 1.9 75 49,805 

 

Table 10 shows the results of the optimization for minimum cost, when the bound of error in failure prediction of 

elements is taken 5%. Table 10 shows that the optimum number of coupon tests is 80 regardless the number value of 

penalty parameter p. If the penalty parameter is taken as p = 200 $/lb, the optimum number of element tests is four. 
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However, if the penalty parameter is increased to p = 500 $/lb, then the weight saving becomes more important, so 

the optimum number of element tests is increased to five. 

 

Table 10. RBDO results for minimum cost for various values of the penalty parameter p when the bound 

of error in failure prediction of elements is 5%.(Pf=7.79e-8) 

 kf nc ne Acert p W 

($M) 

Cc 

($M) 

Ce 

($M) 

DOC 

($M) 

p = 200 $/lb 

Nominal 0.9500 50 3 1.2346 10,000 1.2 45 10,046 

Optimum 0.9451 80 4 1.2312 9,957 1.9 60 10,019 

p = 500 $/lb 

Nominal 0.9500 50 3 1.2346 25,000 1.2 45 25,046 

Optimum 0.9460 80 5 1.2294 24,856 1.9 75 24,933 

p = 1000 $/lb 

Nominal 0.9500 50 3 1.2346 50,000 1.2 45 50,046 

Optimum 0.9460 80 5 1.2294 49,713 1.9 75 49,790 

 

VIII. Concluding remarks 

Most probabilistic structural design studies assume that the uncertainties are given and resources are used to 

compensate for them by making the structure strong enough. Instead, the resources can be allocated for uncertainty 

reduction measures, URMs, for reducing uncertainties, which would in turn increase the safety. Similarly, the 

increased safety can be traded off for reducing direct operating cost. It would be therefore beneficial to include the 

effects of these planned URMs in the design process under uncertainty. This paper proposed probabilistic design of 

aircraft structures together with future structural tests using probabilistic methods.  

 

The effects of structural tests on safety of aircraft structures were investigated and, it was found when the bound 

of error for failure prediction of structural elements was 10% that  

o if the number of coupon tests was increased from 50 to 80 maintaining the same probability of failure, the 

structural weight could be reduced by 0.24%. 

o if the number of element tests was increased from three to four (or five) maintaining the same probability of 

failure, the structural weight can be reduced by 0.34% (or 0.45%). 

o if the bounds of error in failure stress prediction of structural elements are reduced, then the tests becomes 

less effective and the weight saving reduces. 

 

Reliability-based optimization of aircraft structures was performed and it was found that the optimization results 

depend heavily on the penalty for excess weight (p) and the bound of error for failure prediction of structural 

elements. It was also found that the optimum number of coupon tests was 80 (maximum considered), regardless the 

penalty parameter p and the bound of error, since the coupon tests were very inexpensive. Through solving the 

RBDO problem, the followings were observed. 

o if the bound of error for failure prediction of structural elements was 10%, the optimum number of element 

tests was four when the penalty parameter was p = 500 $/lb (or smaller), and the optimum number of element 

tests was five when the penalty parameter is p = 1000 $/lb (or larger). 

o if the bound of error for failure prediction of structural elements was 5%, the optimum number of element 

tests was four when the penalty parameter was p = 200 $/lb (or smaller), and the optimum number of element 

tests was five when the penalty parameter is p = 500 $/lb (or larger). 

The results found for various bounds of error for failure prediction of structural elements basically indicated that 

if the aircraft companies support research activities that can improve the failure prediction theories, they can reduce 

the number of structural tests for the same safety and same lifetime cost. 
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Appendix A: Details of modeling errors and variability 

A. Errors in estimating material strength properties from coupon testing 

Coupon tests are conducted to obtain the statistical characterization of material strength properties, such as 

failure stress, and their corresponding design values (A-basis or B-basis). With a finite number nc of coupon tests, 

the statistical characterization involves errors. Therefore, the calculated values of the mean and the standard 

deviation of the failure stress will be uncertain. We assume that the failure stress follows normal distribution, so the 

calculated mean also follows normal distribution. In addition, when nc is larger than 25, the distribution of the 

calculated standard deviation tends to be normal. Then, the calculated failure stress can be expressed as 

 

      ;cf cf cfcalc calc calc
Normal Std   

 
 (A1) 

 

where calculated mean and the calculated apparent standard deviation can be expressed as 
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 (A3) 

where f  and ( )fStd   are, respectively, the true values of the mean and standard deviation of failure stress. Note 

that Eqs. (A1)–(A3) describe a random variable coming from a distribution (normal) whose parameters are also 

random. In this paper, this will be referred to as a distribution of distributions. 

 

http://www.nap.edu/catalog/10631.html
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The allowable stress at the coupon level, 
ca , is computed from the failure stress calculated at the coupon level, 

 cf calc
 , by using a knockdown factor, 

dk , as 

 

  ca d cf calc
k   (A4) 

 

The knockdown factor 
dk  is specified by the FAA regulations (FAR). For instance, for the B-basis value of the 

failure stress, 90% of the failure stresses (measured in coupon tests) must exceed the allowable stress with 95% 

confidence. The requirement of 90% probability and 95% confidence is responsible for the knockdown factor 
dk  in 

Eq. (A4). For normal distribution, the knockdown factor depends on the number coupon tests and the c.o.v. of the 

failure stress as 

 

  1d B cf calc
k k c   (A5) 

 

where  cf calc
c  is the c.o.v. of failure stress calculated from coupon tests, and kB is called tolerance limit factor [Ref. 

28]. The tolerance limit factor kB is a function of the number of coupon tests nc as given in Ref. [28] (Volume 1, 

Chapter 8, page 84) as  

 

 
3.19

1.282 exp 0.958 0.520ln( )B c

c

k n
n

 
    

 
 (A6) 

The variation of the tolerance coefficient with the number of coupon tests is depicted in Fig. A1. Note that Eq. (A6) 

is valid for normal distribution. 

 

 

Figure A1. Variation of the tolerance coefficient with the number of coupon tests 

 

B. Errors in structural element strength predictions 

The second level in the testing sequence is structural element testing, where structural elements are tested to 

validate the accuracy of the failure criterion used (e.g., Tsai-Wu). Here, we assume that structural element tests are 

conducted for a specified combination of loads corresponding to critical loading. For this load combination, the 

failure surface can be boiled down to a single failure stress ef  where the subscript „e‟ stands for structural element 

tests. The mean failure stress of the elements ef  can be predicted from the mean failure stress of the coupons cf  

through 

 

 2ef d cfk   (A7) 
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where 
2dk  is the ratio between the unidirectional failure stress and the failure stress of a ply in a laminate under 

combined loading. If the failure theory used to predict the failure was perfect, and we performed infinite number of 

coupon tests, then we could predict 
2dk  exactly, and the actual value would vary only due to material variability. 

However, neither the failure theory is perfect nor infinite tests are performed, so the calculated value of 
2dk  will be 

 

    2 21d ef dcalc
k e k   (A8) 

 

where eef is the error in the failure theory. Note that the sign in front of the error term is negative, since we 

consistently formulate the error expressions such that a positive error implies a conservative decision. Then, the 

calculated value of the mean failure stress at the element level can be related to the calculated value of the mean 

failure stress at the coupon level via 

 

          2 21ef d cf ef d cfcalccalc calc calc
k e k      (A9) 

 

Here, we take 
2dk = 1 for simplicity. So, we have  

 

     1ef ef cfcalc calc
e    (A10) 

 

The initial distribution of  ef calc
  is obtained by estimate of 

efe  and using the results of coupon tests  cf calc
 . The 

information from element tests is used by performing Bayesian procedure to update the failure stress distribution 

(see Appendix B for details). In practice, simpler procedures are often used, such as selecting the lowest failure 

stress from element tests. Therefore, our assumption will tend to overestimate the beneficial effect of element tests. 

 

If Bayesian updating were used directly within the main MCS loop for design load carrying area determination, 

the computational cost would be very high. Instead, Bayesian updating is performed outside from the MCS loop for 

a range of possible test results. It is important to note that the error definition used in the Bayesian updating code is 

different from the error definition used in the MCS code. In the Bayesian updating code, the error is measured from 

the calculated values of the failure stress,  ef calc
 , such that the true and the calculated values of the failure stress 

are related through     1ef eftrue calc
error   . In the MCS code, on the other hand, the error is measured from 

the true value of the failure stress such that the true and the calculated values of the failure stress are related through 

    1ef ef efcalc true
e   . Therefore, while the Bayesian updating is implemented, a random error fe  generated in 

the main MCS code is transferred to 
1

1
1 ef

error
e

 


 while running the Bayesian updating code. This 

complication reflects the fact that in the MCS loop we consider many possible element analysis and test results, 

while the engineer carrying the element tests has a unique set of computations and test results. 

 

The allowable stress based on the element test is calculated from 

 

  ea d ef calc
k   (A11) 

 

Here the updated value of the mean failure stress  
updated

ef calc
  is used, which corresponds to the most likely value of 

the mean failure stress (having the maximum PDF).  

 

 Combining Eqs. (A4), (A10) and (A11), we have  

 

  1ea ef cae    (A12) 
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C. Errors in structural strength predictions 

Due to the complexity of the overall structural system, there will be errors in failure prediction of the overall 

structure that we denote as 
fe . If we follow the formulation we used in expressing  ef calc

  in terms of  cf calc
 , 

the calculated mean failure stress of the overall structure,  f calc
 , can be expressed in terms of the calculated mean 

failure stress of the structural element,  ef calc
 , through  

 

     1f f efcalc calc
e    (A13) 

 

The allowable stress at the structural design level, 
a , can be related to the allowable stress computed at the 

element level, 
ea , through the following relation 

 

  1a f f eak e    (A14) 

 

where fk  is an additional knockdown factor used at the structural level as an extra precaution. Here fk is taken 

0.95. Combining Eqs. (A12) and (A14), we can obtain 

 

   1 1a ef f f ace e k     (A15) 

D. Errors in design 

As noted earlier, along with the errors in failure stress predictions, there also exist errors in design and 

construction. Before starting the structural design, aerodynamic analysis needs to be performed to determine the 

loads acting on the aircraft. However, the calculated design load value, Pcalc, differs from the actual design load Pd 

under conditions corresponding to FAA design specifications (e.g., gust-strength specifications). Since each 

company has different design practices, the error in load calculation, ep, is different from one company to another. 

The calculated design load Pcalc is expressed in terms of the true design load Pd as 

 

 (1 )calc P dP e P   (A16) 

 

Notice here that the sign in front of the load error term is positive while the sign in front of the failure stress error 

terms were negative. The reason for this choice, as we noted earlier, is that we consistently formulate the error 

expressions such that a positive error implies a conservative decision. 

 

Besides the error in load calculation, an aircraft company may also make errors in stress calculation. We 

consider a small region in a structural part, characterized by a thickness t and width w, that resists the load in that 

region. The value of the stress in a structural part calculated by the stress analysis team, σcalc, can be expressed in 

terms of the load values calculated by the load team Pcalc, the design width wdesign, and the thickness t of the 

structural part by introducing the term eσ representing error in the stress analysis 

 

 (1 ) calc

calc

design

P
e

w t
    (A17) 

 

In this paper, we assume that the aircraft companies have the capability of predicting the stresses very accurately so 

that the effect of e  is negligible and is taken as zero. The calculated stress value is then used by a structural 

designer to calculate the design thickness tdesign. That is, the design thickness can be formulated as 

 

 
 

  
1

1 1

PF calc F d

design

design a design f caf ef

eS P S P
t

w w ke e 


 

 
 (A18) 
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Then, the design value of the load carrying area can be expressed as 

 

 
 

  
1

1 1

P F d

design design design

f caf ef

e S P
A t w

ke e 


 

 
 (A19) 

E. Errors in construction 

 In addition to the above errors, there will also be construction errors in the geometric parameters. These 

construction errors represent the difference between the values of these parameters in an average airplane (fleet-

average) built by an aircraft company and the design values of these parameters. The error in width, 
we , represents 

the deviation of the design width of the structural part, 
designw , from the average value of the width of the structural 

part built by the company, 
built avw 

. Thus, 

 

  1built av w designw e w    (A20) 

 

Similarly, the built thickness value will differ from its design value such that 

 

  1built av t designt e t    (A21) 

 

Then, the built load carrying area 
built avA 

 can be expressed using the first equality of Eq. (21) as 

 

   1 1built av t w designA e e A     (A22) 

 

Table A1 presents nominal values for the errors assumed here. In the results section of the paper we will vary 

these error bounds and investigate the effects of these changes on the probability of failure. 

 

Table A1. Distribution of error terms and their bounds 

Error factors Distribution Type Mean Bounds 

Error in load calculation, eP Uniform 0.0 ± 10% 

Error in width, ew Uniform 0.0 ± 1% 

Error in thickness, et Uniform 0.0 ± 3% 

Error in failure prediction, ef Uniform 0.0 ± 10% 

Error in failure prediction, eef Uniform 0.0 ± 10% 

 

The errors here are modeled by uniform distributions, following the principle of maximum entropy. For instance, 

the error in the built thickness of a structural part (et) is defined in terms of the error bound  t built
b  using 

 

  0,t t built av
e U b


     (A23) 

 

Here „U’ indicates that the distribution is uniform, „0 (zero)‟ is the average value of et, and the error bound is 

 t built av
b


=0.03. Hence, the lower bound for the thickness value is the average value minus 3% of the average and 

the upper bound for the thickness value is the average value plus 3% of the average. Commonly available random 

number generators provide random numbers uniformly distributed between 0 and 1. Then, the error in the built 

thickness can be calculated using such random numbers r as 

 

   2 1t t built av
e r b


   (A24) 

F. Total error, etotal 

The expression for the built load carrying area of a structural part computed based on coupon test results, 

built av cA   , can be reformulated by combining Eqs. (A19) and (A22) as  
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  1 F d

built av c total

f ca

S P
A e

k 
     (A25) 

where 

 
   

  
1 1 1

1
1 1

P t w

total

f ef

e e e
e

e e

  
 

 
 (A26) 

 

Here etotal represents the cumulative effect of the individual errors on the load carrying capacity of the structural part. 

G. Redesign based on element tests 

Besides updating the failure stress distribution, element tests have an important role of leading to design changes 

if the design is unsafe or overly conservative. That is, if very large or very small failure stress values are obtained 

from the element tests, the company may want to increase or reduce the load carrying area of the elements. We did 

not find published data on redesign practices, and so we devised a common sense approach. We assumed that if the 

B-basis value obtained after element tests, 
ea , is more than 5% higher than the B-basis value obtained from coupon 

tests, 
ca , then the load carrying area is reduced by /ca ea   ratio. If the B-basis value obtained after element tests 

is more than 2% lower than the B-basis value obtained from coupon tests, the load carrying area is increased by 

/ca ea   amount. This lower tolerance reflects the need for safety. Otherwise, no redesign was performed. The built 

load carrying area can be revised by multiplying Eq. (27) by a redesign correction factor cr as 

 

  1 F d

built av r built av c total r

f ca

S P
A c A e c

k 
      (A27) 

where 

 1rc         (no redesign) 

 
1.01

. .
rc

C F
        (redesign) (A28) 

 

Since redesign requires new elements to be built and tested, it is costly. Therefore, we do not have a redesign 

over redesigned elements. In order to protect against uncertainties in the test of the redesigned element we have an 

additional 1% reduction in the calculated allowable value (see the term 1.01 in Eq. (A28)).  

H. Variability 

In the previous sections, we analyzed the different types of errors made in the design and construction stages, 

representing the differences between the fleet average values of geometry, material and loading parameters and their 

corresponding design values. For a given design, these parameters vary from one aircraft to another in the fleet due 

to variability in tooling, construction, flying environment, etc. For instance, the actual value of the thickness of a 

structural part, varbuiltt  , is defined in terms of its fleet average built value, built avt  , by 

 

  var 1built t built avt v t    (A29) 

 

We assume that 
tv  has a uniform distribution with 3% bounds (see Table A2). Then, the actual load carrying 

area 
varbuiltA 

 can be defined as 

 

   var var var 1 1built built built t w built avA t w v v A        (A30) 

 

where wv  represents effect of the variability on the fleet average built width.  

 

Table A2 presents the assumed distributions for variabilities. Note that the thickness error in Table A1 is 

uniformly distributed with bounds of ±3%. Thus the difference between all thicknesses over the fleets of all 

companies is up to ±6%. However, the combined effect of the uniformly distributed error and variability is not 

uniformly distributed.  
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The loading is assumed to follow Type I asymptotic distribution since we consider the maximum load over 

lifetime. We assume that one of the aircraft in the fleet will experience the limit load over its service life. We assume 

that a typical airliner has a production line of 1,000 aircraft. Thus, the distribution parameters of the loading are 

computed such that the probability of an aircraft experiencing limit load over its service life is equal to 1/1000, and 

the coefficient of variation of the loading is 10%. The limit load is equal to 1/SF=2/3 for our problem. The 

distribution parameters are found as a=28.73 and b=0.4263, when the CDF of the Type I asymptotic distribution is 

defined as 

     exp expXF x a x b       (A31) 

 

Table A2. Distribution of random variables having variability 

Variables Distribution type Mean Scatter 

Actual service load, Pact Type I asymptotic a=28.73 b=0.4263 

Actual built width, 
varbuiltw 

 Uniform built avw 
 1% bounds 

Actual built thickness, 
varbuiltt 

 Uniform built avt 
 3% bounds 

Failure stress, σf Normal 1.0 8% c.o.v.** 

wv  Uniform 0 1% bounds 

tv  Uniform 0 3% bounds 

* For the loading a and b are not the mean and scatter of the distribution 

**c.o.v.= coefficient of variation 

I. Certification test 

After a structural part has been built with random errors in stress, load, width, allowable stress and thickness, it 

may fail in certification testing part of the airplane. Recall that the structural part will not be manufactured with 

complete fidelity to the design due to variability in the geometric properties. That is, the actual values of these 

parameters 
varbuiltw 

 and 
varbuiltt 

will be different from their fleet-average values 
built avw 

 and 
built avt 

 due to 

variability. The structural part is then loaded with the design axial force of SF times Pcalc, and if the stress exceeds 

the failure stress of the structure σf, then the structure fails and the design is rejected; otherwise it is certified for use. 

That is, the structural part is certified if the following inequality is satisfied  

 

 
  

0
1 1

F calc

f f

t w built av

S P

v v A
  



   
 

 (A32) 

 

The details of the Monte Carlo procedure are provided in Table A3. 

 

Table A3. Monte Carlo simulation procedure for probability of failure calculation 

1. Compute the allowable stress based on coupon tests, 
ca  

2. Calculate the built average load carrying area using the results of coupon tests, 

1
(1 ) F d

built av c total

f design ca

S P
A e

k w 
     

3. Generate random numbers for the quantiles of the updated mean failure stress 

4. Calculate the B-basis value using the quantiles, ea  

a. Compute the bounds for mean failure stress 
 

1 2

1

ef f c

ef

be c n
lb

e

 



 and 

 
1 2

1

ef f c

ef

be c n
ub

e

 



 

b. Compute the PDF of the mean failure stress using Johnson distribution with quantiles computed in Step 3, 

and select the mean failure stress value with the highest PDF within the bounds as  
updated

ef calc
 . 
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c. Compute B-basis value,    1
updated

ea B cf efcalc calc
k c   

 
 

5. Compute a correction factor for the B-basis value, ea

ca

CF



 . Limit the value of CF to [0.9, 1.1].  

That is, if CF < 0.9, then CF = 0.9. If CF > 1.1, then CF = 1.1. 

6. Revise the built average load carrying area based on the value of CF.  

a. If 0.98CF  , then redesign is needed, we will increase the load carrying area by CF. Hence, the new load 

carrying area is 
1.01

built av built av cA A
CF

   . Here the factor 1.01 is used to avoid a second redesign of 

elements. 

b. If 0.98 1.05CF  , then no redesign is needed. So, the load carrying area is 
built av built av cA A   . 

c. If 1.05CF  , then redesign is needed, we will decrease the load carrying area by CF. Hence, the new load 

carrying area is 
1.01

built av built av cA A
CF

   . Here again the factor 1.01 is used to avoid a second redesign of 

elements. 

7. Using 
built avA 

, compute the probability of failure in service (Pf), and probability of failure in certification test 

(PFCT).  

 

Appendix B: Bayesian updating of the failure stress distribution from the results of element tests 

The initial distribution of the element failure stress is obtained by using a failure criterion (e.g., Tsai-Wu theory) 

using the results of coupon tests. There will be two sources of error in this prediction. First, since a finite number of 

coupon tests are performed, the mean and standard deviation of the failure stress obtained through the coupon tests 

will be different from the actual mean and standard deviation.  

 

We consider a typical situation relating to updating analytical predictions of strength based on tests. We assume 

that the analytical prediction of the failure stress of a structural element,  ef
calc

 , applies to the average failure 

stress  ef
true

 of an infinite number of nominally identical structural elements. The error eef  of our analytical 

prediction is defined by 

 

     1ef ef ef
true calc

e    (B1)  

 
Here we assume that the designer can estimate the bounds be (possibly conservative) on the magnitude of the error, 

and we further assume that the errors have a uniform distribution between the bounds. Note here that it is more 

convenient to define the error to be measured from the calculated values of the failure stress as shown in Fig B1. 

 

As in our earlier work [36], we neglect the effect of coupon tests and assumed the initial distribution of the mean 

failure stress  ini

eff   uniform within the bounds 
eb  as 

      
1

  if 1
2

0

ef

eini

ef e ef efcalc calc

b
f b

othewise



  


  

 



 (B2) 
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Figure B1: Error and variability in failure stress. The error is centered around the computed value, and is 

assumed to be uniformly distributed here. The variability distribution, on the other hand, is lognormal with mean 

equal to the true average failure stress. 

 

 

Then, the distribution of the mean failure stress is updated using the Bayesian updating with a given  
1,f test

 as 

  
   

   

1,

1,

ini

test ef efupd

ef

ini

test ef ef ef

f f
f

f f d

 


  








 (B3) 

where       1, 1,
; ,test ef ef f eftest

f Normal Std     is the likelihood function reflecting possible variability of the 

first test result  
1,ef test

 . Note that  1,test eff  is not a probability distribution in ef ; it is the conditional probability 

density of obtaining test result  
1,ef test

 , given that the mean value of the failure stress is ef . Subsequent tests are 

handled by the same equations, using the updated distribution, as the initial one.  

 

 If the Bayesian updating procedure defined above is used directly within an MCS loop for design load carrying 

area determination, the computational cost will be very high. In this paper, instead, the Bayesian updating is 

performed aside from the MCS loop. In this separate loop, we first simulate the coupon tests by drawing random 

samples for the mean and standard deviation of the calculated failure stress cf  and  cfStd  . Then, we simulate ne 

number of element tests,  ef test
 . The element test results along with the mean and the standard deviation are used 

to define the likelihood function as       1, 1,
; ,test ef ef cf cftest

f Normal Std     in Eq. (B3). The initial 

distribution  ini

eff   in Eq. (B3) is uniformly distributed within some bounds as given in Eq. (B4).  

  
1

  if 1
2

0

ef

eini

ef e cf cf

b
f b

othewise



  


 

 



 (B4) 

 

We found that applying the error bounds eb  before the Bayesian updating or after the updating do not matter. 

Applying the error bounds before Bayesian updating means calculating the initial distribution  ini

eff   from Eq. 

(B4) and then using Eq. (B3). To apply the error bounds after the Bayesian updating, however, we first assume very 

 f
true

  f
calc

    f f
test true

 

fv

fe

( )ff v

( )ff e

f

Probability density 



 

American Institute of Aeronautics and Astronautics 
 

 

23 

large error bounds 
eb , calculate the initial distribution  ini

eff   from Eq. (B4), and finally apply the error bounds 

eb  to the distribution obtained using Eq. (B3).  

 

Applying the error bounds after the Bayesian updating is more useful when we want to fit distributions (e.g., 

Johnson distribution) to the mean failure stress obtained through Bayesian updating. If we apply the error bounds at 

the beginning, the distribution after Eq. (B3) will be a truncated one and it will be difficult to fit a distribution with 

good fidelity. However, if we apply the error bounds at the end, the distribution after Eq. (B3) will be a continuous 

one and we will high likely fit a good distribution. 

 

So the overall procedure is as follows. Within an MCS loop, we generate random mean and standard deviation 

values for the failure stress to be obtained through coupon tests. Then, we assume large error bounds to be used in 

Eq. (B4), simulate element tests and use Eq. (B3) to obtain the distribution of the mean failure stress. Then, we 

compute the four quantiles of the mean failure stress distribution. Finally, we compute the mean and standard 

deviations of the quantiles and we model these quantiles as normal distributions. Note that the quantiles are the 

values of failure stress for CDF values of [0.067, 0.309, 0.691, 0.933]. 

 

The quantiles are functions of the number of coupon tests (nc), number of element tests (ne), and the error in 

failure stress prediction (eef). At first, we wanted to build response surface approximations (RSA) for the mean and 

standard deviation of the quantiles in terms of nc and eef after each element test. So we would have ten RSAs (five 

for the mean and five for the standard deviation) in terms of nc and eef. Our numerical analysis revealed, on the other 

hand, that nc do not have a noticeable effect on quantiles (see Tables B1 through B3 alongside Figure B2), and the 

effect of the error can be represented by just multiplying the quantiles with (1-eef) term (see Table B4).  

 

As noted earlier, the quantiles are assumed to have normal distributions. Figure B3 show the histograms of the 

first and second quantiles of the mean failure stress (for 50 coupon tests after the third element test when eef = 0) 

obtained through MCS with 20,000 samples. We see that the quantiles do not exactly follow normal distributions. 

 

 

Table B1. The mean and standard deviation of the quantiles of the mean failure stress after element tests 

if 30 coupon tests are performed. 

 Mean values of the quantiles (Q1-4) Standard deviation of the quantiles (Q1-4) 

 1Q  
2Q  

3Q  
4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.899 0.968 1.049 1.145 0.073 0.077 0.084 0.094 

test2 0.925 0.975 1.032 1.096 0.053 0.055 0.058 0.063 

test3 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.051 

test4 0.945 0.982 1.021 1.065 0.038 0.039 0.041 0.043 

test5 0.950 0.983 1.019 1.057 0.035 0.036 0.037 0.039 

 

 

Table B2. The mean and standard deviation of the quantiles of the mean failure stress after element tests 

if 50 coupon tests are performed. 

 Mean values of the quantiles (Q1-4) Standard deviation of the quantiles (Q1-4) 

 1Q  
2Q  

3Q  
4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.897 0.966 1.047 1.143 0.073 0.078 0.084 0.093 

test2 0.924 0.975 1.032 1.095 0.053 0.055 0.058 0.063 

test3 0.937 0.979 1.025 1.075 0.044 0.045 0.047 0.050 

test4 0.944 0.981 1.021 1.064 0.038 0.039 0.041 0.043 

test5 0.950 0.983 1.019 1.057 0.035 0.035 0.037 0.039 
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Table B3. The mean and standard deviation of the quantiles of the mean failure stress after element tests 

if 80 coupon tests are performed. 

 Mean values of the quantiles (Q1-4) Standard deviation of the quantiles (Q1-4) 

 1Q  
2Q  

3Q  
4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.898 0.967 1.049 1.144 0.071 0.076 0.083 0.091 

test2 0.924 0.975 1.032 1.096 0.052 0.055 0.058 0.062 

test3 0.937 0.979 1.025 1.076 0.043 0.045 0.047 0.050 

test4 0.944 0.982 1.021 1.065 0.038 0.039 0.040 0.042 

test5 0.950 0.983 1.019 1.057 0.034 0.035 0.036 0.038 

 

 

  
(a) mean value of the first quartile (a) standard deviation of the first quartile 

Figure B2. Variation of the mean and standard deviation of the first quartile of the mean failure stress 

with number of coupon tests (after the third element test) 

 

 

Table B4. The variation of the mean and standard deviation of the quantiles of the mean failure stress 

with the error in failure stress prediction, eef 

 Mean values of the quantiles (Q1-4) Standard deviation of the quantiles (Q1-4) 

fe  
1Q  

2Q  
3Q  

4Q   1std Q   2std Q   3std Q   4std Q  

-0.10 0.835 0.881 0.923 0.968 0.039 0.041 0.043 0.045 

-0.05 0.890 0.930 0.974 1.022 0.042 0.043 0.045 0.048 

0 0.937 0.979 1.025 1.076 0.044 0.045 0.047 0.050 

0.05 0.983 1.027 1.075 1.128 0.045 0.047 0.049 0.052 

0.10 1.031 1.077 1.128 1.183 0.048 0.050 0.052 0.055 

 

 

The results obtained in this separate MCS loop are used in the main MCS loop for determining the built average 

load carrying area. The mean and standard deviations of the quantiles are used to fit a Johnson distribution to the 

mean failure stress. The error bounds   are then applied to the Johnson distribution and random values from this 

distribution are drawn whenever element tests are simulated. Note also that the quantiles are strongly correlated to 

each other, so this correlation is also included in our analysis while random quantiles are generated in the main MCS 

loop using Gaussian copula. The reader is referred to the work of Noh et al. [41] for further details of reliability 

estimation of problems with correlated input variables using a Gaussian Copula. 
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(a) histogram of the first quartile (a) histogram of the second quartile 

Figure B3. Histograms of the first and the second quantiles of the mean failure stress (after the third 

element test). The continuous lines show the normal fits. 

 

 

Appendix C. Separable Monte Carlo simulations 

The prediction of probability of failure via conventional MCS requires trillions of simulations for level of 10
-7

 

failure probability. In order to address the computational burden, separable Monte Carlo procedure can be used. The 

reader is referred to Smarslok and Haftka [42] for more information on the separable Monte Carlo procedure. This 

procedure applies when the failure condition can be expressed as g1(x1)>g2(x2), where x1 and x2 are two disjoint sets 

of random variables. To take advantage of this procedure, we need to formulate the failure condition in a separable 

form, so that g1 will depend only on variabilities and g2 only on errors. The common formulation of the structural 

failure condition is in the form of a stress exceeding the material limit. This form, however, does not satisfy the 

separability requirement. For example, the stress depends on variability in material properties as well as design area, 

which reflects errors in the analysis process. To bring the failure condition to the right form, we instead formulate it 

as the required cross sectional area reqA  being larger than the built area 
built avA 

. So, the failure condition can be 

defined in terms of the built area and the required area as: 

 

 
  1 1

req

built av req

t w

A
A A

v v


 
 

 (C1) 

 

where reqA  is the cross-sectional area required to carry the actual loading conditions for a particular copy of an 

aircraft model, and reqA  is what the built area (fleet-average) needs to be in order for the particular copy to have the 

required area after allowing for variability in width and thickness. 

 

 req act fA P   (C2) 

 

The required area depends only on variability, while the built area depends only on errors. When certification 

testing is taken into account, the built area, built avA  , is replaced by the certified area, certA , which is the same as the 

built area for companies that pass certification. However, companies that fail are not included. That is, the failure 

condition is written as 

 

 failure without certification tests:     0built av reqA A
   (C3a) 

 failure with certification tests:     0cert reqA A   (C3b) 
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The separable Monte Carlo simulation procedure is summarized in Fig. C1. 

 

 
 

Figure C1. Flowchart for separable Monte Carlo simulations 
 


