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ABSTRACT 

The design optimization of deepdrawing process in 
manufacturing is proposed to control the final shape of 
the workpiece after elastic springback.  The manufac-
turing process design problem is formulated to mini-
mize the difference between the shape of the desired 
workpiece geometry and the final analysis result after 
elastic springback.  Nonlinear structural problem that 
includes elastoplasticity with frictional contact is solved 
using a meshfree method where the structural domain is 
discretized by a set of particle points.  Continuum-
based design sensitivity analysis (DSA) is carried out to 
efficiently obtain the gradient information for the opti-
mization.  The shape of the workpiece and the geometry 
of the rigid die are treated as design variables.  The ac-
curacy of the sensitivity result is compared with the fi-
nite difference result with excellent agreement.  The op-
timum stamping process improves the quality of the fi-
nal product significantly. 

 

1. INTRODUCTION 

In spite of the significant developments of analysis and 
design capabilities in modern technology, there still re-
mains gap between the simulation-based design and 
manufacturing process.  Two major reasons are lack of 
efficient and accurate numerical methods for the design 
process.  First, accurate numerical method has to be 
used to simulate manufacturing processes that include 
large deformation, complicate constitutive relation, and 
sliding contact between the workpiece and die.  Second, 
efficient numerical methods have to be used to make 
the stamping optimization process practical.  It is the 
purpose of this paper to demonstrate that these two ob-
stacles can be resolved by using accurate numerical 
methods and efficient DSA. 

In this paper, the design optimization of a deepdrawing 
process in manufacturing is proposed to control the fi-
nal shape of the workpiece after elastic springback.  
The manufacturing process design problem is formu-
lated to minimize the difference between the shape of 
the desired workpiece geometry and final analysis re-
sult after elastic springback.  The amount of plastic 
strain and the reduction of workpiece thickness are de-
sign constraints so that the material separation and dis-
tortion can be prevented.  The design parameters can be 
chosen from the thickness of the workpiece, the geome-
try of the die and punch, the frictional coefficient be-
tween contact surfaces, and the binder force to effec-
tively control the output of the manufacturing process.  
Accurate sensitivity information of the cost and con-
straint functions with respects to design parameters play 
a critical role in effective design optimization.  An im-
portant feature of this paper is to calculate the design 
sensitivity information accurately and efficiently when 
the workpiece experiences finite elasto-plastic deforma-
tion with complicate frictional contact constraints. 

A continuum-based shape design sensitivity formula-
tion is proposed for finite deformation elasto-plasticity 
with frictional contact.  For response analysis, the 
multiplicative decomposition of the deformation gradi-
ent into elastic and plastic parts is used for the hypere-
lastic based plasticity constitutive model with respect to 
the intermediate configuration.  The classical return-
mapping algorithm of the small deformation plasticity 
theory is preserved and the tangent operator has the 
same form as the algorithmic tangent operator of the 
infinitesimal theory by using the principal space of the 
Kirchhoff stress and logarithmic strain tensors.  For 
shape design sensitivity, the shape variation is taken 
with respect to the undeformed geometry of the work-
piece, die, and punch.  For sizing design sensitivity, 
variations with respect to the binder force and frictional 
coefficient are taken.  The path-dependency of the sen-
sitivity formulation comes from the evolution of the in-
termediate configuration and the internal plasticity vari-
ables as well as the frictional effect in contact con-
straint.  Numerical examples show the accuracy and 
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efficiency of the computation of design sensitivity in-
formation, compared with the finite difference results. 

When a structure experiences a finite deformation, the 
conventional finite element method may have a diffi-
culty in response analysis due to mesh distortion.  The 
mesh regeneration may not be an effective approach to 
resolve this difficulty.  In addition, for shape design 
problems, mesh distortion is a major concern due to 
large shape design perturbations.  An effective numeri-
cal method, which can handle finite deformation, is 
highly desirable for both nonlinear analysis and shape 
optimization.  The meshfree method is an ideal choice 
since, unlike the conventional finite element method, 
the solution is much less sensitive to mesh distortion.  
In the meshfree method, the structural domain is discre-
tized with a finite number of particles whereas, in the 
finite element method, it is discretized with elements.  
The shape function at a point of discretized domain is 
constructed based on a set of scatter particles around 
the point and using modified kernel functions that are 
constructed by enforcing the reproducing conditions so 
that the kernel estimates of displacement variables ex-
actly reproduces certain class of polynomials.  In this 
paper, meshfree analysis is used to solve the nonlinear 
response problem and, thus design sensitivity analysis 
and manufacturing process optimization. 

 

2. DEEPDRAWING ANALYSIS 

The deepdrawing process involves a large amount of 
plastic deformations and rigid body rotations as well as 
complicate contact between the workpiece and die.  
Many simplified approaches are proposed to simulate 
the metal forming process.  One major trend is ignoring 
the elastic deformation of the structure compared to the 
plastic part.  Antunez (1996), Maniatty (1996), Zhao 
(1997), Chung (1998), and Balagangadhar (1998) used 
rigid-plasticity formulation to solve the metal forming 
design problems.  This approach is meaningful for bulk 
metal forging type problems.  As shown in Section 4, 
however, the elastic spring-back at the end of deep-
drawing process plays a key role to the quality of the 
final products.  Thus, the constitutive relation that 
counts the elastic and plastic properties together has to 
be used in practice. 

 

Elastoplasticity in Finite Deformation 

The classical theory of elasto-plasticity assumes the ad-
ditive decomposition of the elastic and plastic strains.  
However, small deformation and small rigid body rota-
tion is behind this theory.  Even if many researches on 
the objective rate were carried out, the question remains 
about the numerical integration methods for the objec-

tive rate, which satisfy all the physical requirements.  
The difficulty of obtaining an exact tangent stiffness 
operator causes error in DSA and this error is accumu-
lating as the analysis progresses.  In this paper, kine-
matics proposed by Lee (1969) is used where the de-
formation gradient F(X) = ∂x/∂X is decomposed multi-
plicatively into elastic and plastic parts. 

 ( ) ( ) ( )e p=F X F X F X  (1) 

where Fp(X) denotes the deformation through the in-
termediate configuration, which is related to the internal 
variables, and Fe−1(X) defines the local, stress-free, un-
loaded process.  The stress-strain relation is given as a 
hyper-elasticity between the intermediate and the cur-
rent configurations.  The computational framework of 
this theory is proposed by Simo (1992), that preserves 
the conventional return-mapping algorithm in the prin-
cipal stress space. 

By using the principle of virtual work, the structural 
problem is formulated in a weak form to find the dis-
placement z that satisfies 

 ( , ) ( ),a ZΩ Ω= ∀ ∈z z z z�  (2) 

where Z is the space of the kinematically admissible 
displacements, that satisfies the essential boundary 
conditions.  Equation (2) contains finite deformation 
including elasto-plasticity and rigid body rotation.  In 
Eq. (2), ( , )aΩ z z  and ( )Ω z�  are the structural energy 

and load forms, respectively, defined as 

 ( , ) ( )ij ija dτ εΩ Ω
= Ω∫∫z z z  (3) 

 ( )
h

T b T hd dΩ Ω Γ
= Ω + Γ∫∫ ∫z z f z f�  (4) 

where τij is the Kirchhoff stress tensor, εij the engineer-
ing strain at the current configuration, fb the body force 
per unit volume, and fh the surface traction on the trac-
tion boundary Γh.  The computation of τij in Eq. (3) in-
volves hyper-elasticity using Fe in Eq. (1) and return-
mapping algorithm in the principal stress space.  The 
dependence of ( , )aΩ z z  on z is nonlinear from the 

elasto-plastic constitutive relation and nonlinear kine-
matics.  The nonlinear variational Eq. (2) can be solved 
for displacement z iteratively using the Newton-
Raphson method, which requires the linearization (Ja-
cobian) of the structural energy form in Eq. (3) with 
respect to displacement increment ∆z as 

 
* lg( ; , ) ( ) ( )

( , )

a
ij ijkl kl

ij ij

a C d

d

ε ε

τ η

Ω Ω

Ω

∆ = ∆ Ω

+ ∆ Ω

∫∫

∫∫

z z z z z

z z

 (5) 

where alg
ijklC  is the 4th-order consistent tangent stiffness 

tensor (see Simo, 1992) and τijηij is the initial stiffness 
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term.  Note that * ( ; , )aΩ ∆z z z  is linear with respect to its 
arguments.  Let the current time be tn and the iteration 
counter be k+1, then the linearized incremental problem 
of Eq. (2) is 

 
* 1( ; , )

( ) ( , ),

n k k

n k

a

a Z

+
Ω

Ω Ω

∆

= − ∀ ∈

z z z

z z z z�

 (6) 

The linear variational Eq. (6) is solved util the right side 
(residual force) vanishes, which means that the original 
nonlinear Eq. (2) is satisfied at tn.  After the solution is 
converged in Eq. (6), the plastic internal variables (back 
stress and effective plastic strain) are updated to the 
current configuration as well as Fp in Eq. (1). 

 

Frictional Contact 

A contact analysis is critical in simulation of the deep-
drawing process that includes interactions between the 
workpiece and punch/die.  Among the many contact 
formulations, the penalty regularization method is used 
in this paper, where a small penetration is allowed be-
tween the workpiece and rigid surface.  Let ΓC be the 
region where the workpiece is penetrating the rigid sur-
face.  Then this region is penalized by proportional to 
the amount of the penetration (gn).  The contact varia-
tional form is defined as 

 

( )

,

sgn( ) ,

C

C

C

T
n n n

T
t t t t t n n

T
n t n t

b g d

g d if g g

g g d otherwise

ω

ω ν ω µω

µω ν

Γ Γ

Γ

Γ

= Γ

+ Γ ≤
+

− Γ


∫

∫

∫

z,z z e

z e

z e

 (7) 

where ωn and ωt are the normal and tangential penalty 
parameters, en and et are the unit normal and tangent 
vector at the contact point, gn and gt are the normal gap 
and tangential slip, and µ is the frictional coefficient of 
Coulomb law.  Note that Eq. (7) includes two condi-
tions: the stick condition (

t t n ng gω µω≤ ) where a mi-

croscopic-elastic motion exists between contact sur-
faces and the slip condition where a macroscopic-
permanent motion exists.  Using the stick condition, 
this is a regularized Coulomb friction model as shown 
in Fig. 1. 

Fig. 1 Regularized Coulomb Friction Model 

The contact variational form in Eq. (7) is nonlinear in 
displacement since variables gn, gt, en, and et depend on 
the displacement implicitly and the contact region itself 
is not known in priori.  The same linearization as the 
structural energy form in Eq. (5) can be carried out us-
ing the Newton-Raphson method.  The linearized varia-
tional equation, including the frictional contact con-
straint, is 

 
* 1 * 1( ; , ) ( ; , )

( ) ( , ) ( , ),

n k k n k k

n k n k

a b

a b Z

+ +
Ω Γ

Ω Ω Γ

∆ + ∆

= − − ∀ ∈

z z z z z z

z z z z z z�

 (8) 

where * ( ; , )bΓ ∆z z z  is the linearized contact variational 

form obtained by linearization of Eq. (7).  Detailed ex-
pression of * ( ; , )bΓ ∆z z z  can be found in Kim et al (1999) 

where two separate expressions of * ( ; , )bΓ ∆z z z  are de-
rived for stick and slip conditions, respectively. 

 

Meshfree Discretization and Nodal Integration 

The continuum-based formulation of the structural 
problem in Eq. (8) has to be discretized in numerical 
approximation.  The accuracy and stability of the solu-
tion critically depend on the numerical method em-
ployed.  In this paper, a meshfree method (Liu, 1995) is 
used where the structural domain is discretized by a set 
of particle points.  In the meshfree method, each parti-
cle point has a finite size of support that defines the 
domain of influence.  Among the total number of parti-
cles NP in the domain, let IP be the number of particle 
points whose supports cover the point X.  The state 
variable z is approximated as 

 
1

( ) ( )
IP

I I
I

z d
=

= Ψ∑X X  (9) 

where ΨI(X) is the meshfree shape function and dI is 
the coefficient of approximation.  ΨI(X) is constructed 
to satisfy the completeness condition that Eq. (9) ex-
actly approximates a certain order of polynomials.  In 
the meshfree method, the smoothness of approximation 
is easily controlled by the order of kernel function (p-
adaptivity).  Since particles are not employed for the 
connectivity of the finite element, the imposition of 
more particles to the structure is easy (h-adaptivity).  
Unlike the finite element approximation, however, 
ΨI(X) in Eq. (9) is a function of the global material 
point x and dI is not the value of the displacement at 
node I in general, which requires more computational 
efforts than FEA. 

The numerical integration of Eq. (8) is carried out using 
a nodal integration method (Chen et al, 2000) where the 
instability problem that exists in early development is 
resolved using a strain smoothening algorithm.  Figure 
2 shows a typical example of the domain partitioning 

ωtgt 

−µωngn 
ωt 
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using the Voronoi diagram and the nodal volume (area) 
is used as a weight for the domain integration. 

 

 

Fig. 2 Voronoi Diagram of the Scattered Particle Set 

 

Using the approximation in Eq. (9) and numerical inte-
gration as explained in Fig. 1, the discretized variational 
equation is obtained, for given the Hilbert space H1(Ω), 
as 

 1,T T H= ∀ ∈d K d d F d  (10) 

where K and F are the global tangent stiffness matrix 
and residual force vector, respectively.  Since the varia-
tion of the generalized displacement d = [d1,d2,…,dNP]T 
is not nodal displacement, the imposition of the essen-
tial boundary condition is non-trivial in Eq. (10).  
Among the many proposed algorithms, the mixed 
boundary transformation method (Chen and Wang, 
1999) is used in this paper to improve the efficiency of 
analysis while maintaining the accuracy of the solution. 

 

3. DESIGN SENSITIVITY ANALYSIS 

The DSA is to obtain derivative of the cost or perform-
ance measures with respect to design variables.  In spite 
of some attractive features of the adjoint variable 
method in linear problems (Haug et al, 1986), it is very 
complicate and expensive to apply the adjoint variable 
method to the nonlinear path-dependent problems.  
Only the direct differentiation method, which is used in 
this paper, is applicable for general path dependent 
nonlinear problems. 

The shape design is usually more effective than the siz-
ing design.  Since the design is the structural domain, 
each material point moves along the design direction.  
The material derivative concept in continuum mechan-
ics is used to represent variation of the shape. 

 

Shape Design of Elasto-plasticity 

The classical theory of the shape DSA in linear problem 
is formally applied to nonlinear problems, since no 
mathematical proofs of the existence and uniqueness of 
design sensitivity are available.  Since the configuration 
of the nonlinear problem is changed as analysis pro-
gresses, it is required to transform the current configu-
ration to the initial geometry, where a design velocity 
field is defined, before taking material derivative with 
respect to the design. 

The material derivative of the displacement vector can 
be expressed as a sum of the partial derivative and con-
vective terms as 

 ′= + ∇z z zV�  (11) 

where ∇ = ∂/∂X is the gradient operator at the initial 
configuration and V is the design velocity vector, which 
represents the direction of design change.  The direct 
differentiation method computes z�  in Eq. (11) for 
given design velocity vector V as following.  The mate-
rial derivative of the variational equation Eq. (2) at the 
perturbed design can be taken, using Eq. (11), to obtain 

 * ( ; , ) ( ) ( , ),a a ZΩ ′ ′= − ∀ ∈V Vz z z z z z z� �
 (12) 

where 

( )
( )

lg

lg

( , ) ( , )

( , )

a V V
ij ijkl kl ij ij ij ij

a p p fic
ij ijkl kl ij ij ij ij

a C div d

C d

ε ε τ η τ ε

ε ε τ η ε τ
Ω

Ω

′ = + + Ω

+ + + Ω

∫∫

∫∫

V z z z z V

z z

 (13) 

 
( ) ( )

( ) )
h

T b T b

T h T h
n

div d

V dκ
Ω

Γ

′  ≡ ∇ + Ω 

 + ∇ + Γ 

∫∫

∫

V z z f V z f V

z f V z f

�
 (14) 

are the structural and external load fictitious load forms, 
respectively.  In Eq. (14), the applied load is assumed 
independent of deformation, i.e. conservative load and 
κ is the curvature of the traction boundary with normal 
component of design velocity Vn.  The structural ficti-
tious load in Eq. (13) contains explicitly dependent 
terms on design in the first integral and path dependent 
terms in the second integral.  The path dependent terms 
include material derivatives of the internal plastic vari-
ables and intermediate configuration defined in Eq. (1).   

Note that Eq. (12) has the same left side as the response 
analysis Eq. (6) if z�  substituted by ∆z.  Thus, the same 
tangent stiffness matrix K, which is already factorized, 
can be used for very efficient sensitivity computation.  
After solving the sensitivity Eq. (11) for z�  up to the 
final configuration, the sensitivity of the performance 
measures can be calculated using the chain rule of dif-
ferentiation. 

 

xL 

ΩL 

Γ  
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Die Shape Design 

The die shape DSA is to investigate the change of the 
response when the shape of the punch/die is changed.  
An optimized die shape design is very important for the 
manufacturing process, where usually a simple geome-
try of the workpiece is used to obtain a complicate final 
product using the punch/die shape.  The shape of the 
die can be changed in a similar procedure as the shape 
design perturbation using the design velocity field on 
the punch/die geometry.  The shape perturbation of the 
die affects the performance of the workpiece through 
the contact variational form in Eq. (7).  By taking the 
material derivative of Eq. (7) and combining with the 
structural sensitivity Eq. (12), a linear variational equa-
tion is obtained as 

 
* *( ; , ) ( ; , )

( ) ( , ) ( , ),

a b

a b Z
Ω Γ+

′ ′ ′= − − ∀ ∈V V V

z z z z z z

z z z z z z

� �

�

 (15) 

where contact contribution of the fictitious load is de-
noted by ( , )b′V z z .  It is shown by Kim et al (1999) that 

the contact fictitious load ( , )b′V z z  is path-independent 

for the frictionless contact problem and path-dependent 
for the fictional contact problem.  Note that the design 
sensitivity Eq. (15) is linear although response analysis 
is nonlinear. 

 

Meshfree Implementation 

A major difference between finite element and mesh-
free methods is that the shape function of the meshfree 
approach depends on the coordinate of material points.  
Thus, for the material derivative of z, 

 
1 1

( ) ( ) ( )
IP IP

I I I I
I I= =

= Ψ + Ψ∑ ∑z X X d X d� �

�

 (16) 

The second term on the right of Eq. (16) a contribution 
from the dependence of the meshfree shape function on 
the shape design and can be obtained explicitly in terms 
of the design velocity vector V.  Thus, for the structural 
fictitious load in Eq. (13), contributions from this sec-
ond term needs to be accounted. 

After following the same assembly procedure as struc-
tural analysis, the discretized design sensitivity equa-
tion is obtained as 

 T T
a b( )= − −

�

�d Kd d F F F  (17) 

which can be solved for the material derivative of the 
generalized displacement.  In Eq. (17), F�, Fa and Fb are 

fictitious loads contributed from the applied force, 
structural energy, and contact constraints, respectively.  
The sensitivity of the displacement can be obtained 
from Eq. (16).  After solving Eq. (17) at the current 

time step, path-dependent variables have to be updated 
for the sensitivity computation at the next time step.  
The internal variables include the plastic evolution 
variables (effective plastic strain and back stress), the 
intermediate configuration that is defined by Fp in Eq. 
(1), and the displacement at the contact surface because 
of friction.  After solving the design sensitivity equation 
up to the final configuration time, the sensitivity of the 
performance measure can be obtained using the chain 
rule of differentiation.  Possible list of performance 
measures are the area of the workpiece, displacement, 
stress, back stress, effective plastic strain, contact force, 
drawing force through punch, and the shape difference 
between the desired and final geometry after spring-
back. 

 

4. DESIGN OPTIMIZATION 

The design optimization of the deepdrawing process 
includes the parameterization of design, nonlinear 
meshfree analysis, shape DSA, and optimization algo-
rithm.  MSC/PATRAN is used as a tool of geometric 
modeling that uses a parametric representation.  An ef-
ficient method of design velocity computation in the 
parametric space was proposed by Choi and Chang 
(1994).  Very accurate and efficient sensitivity results 
are obtained to improve the convergence of optimiza-
tion iteration. 

 

Design Parameterization 

Figure 3 shows analysis setting and design parameteri-
zation of the deepdrawing process.  Only half of the 
model is solved using symmetric condition in the plane 
strain problem.  The blank is modeled using 303 mesh-
free particles.  The von Mises yield criterion is used 
with an isotropic hardening model.  A constant friction 
coefficient is used in the modified Coulomb law.  The 
draw die is fixed during punch motion stage while the 
blank holder exerts force against any motion of the 
blank.  After maximum stroke of punch (30 mm), the 
punch, die, and blank holder are removed to calculate 
the amount of spring-back. 

The first two parameters control the position of punch 
horizontally and vertically.  Horizontal movement is 
very important since it controls the gap between punch 
and draw die.  The third and fourth parameters are 
round radii of corners of the punch and draw die.  A 
sharp corner may increase the plastic strain while re-
ducing the amount of spring-back.  The fifth parameter 
changes the thickness of the blank, which involves the 
shape change of the workpiece.  The sixth parameter 
controls the gap between blank holder and die such that 
the frictional force on the blank can be changed. 
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Fig. 3 Design Parameterization of Deepdrawing Process 

 

Meshfree Nonlinear Analysis 

Nonlinear meshfree analysis is carried out to simulate 
sping-back of the deepdrawing process.  Rigid bodies 
are assumed for the punch, drawing die, and blank 
holder.  Thus, numerical integration is involved only for 
the workpiece material.  A displacement driven method 
is used such that the position of punch is given at each 
time step and converged configuration is found using 
the Newton-Raphson method.  For the stress 
computation, an elastic predictor followed by a plastic 
return-mapping is used in the principal Kirchhoff stress.  
After finding a converged configuration, the factorized 
tangent stiffness matrix is stored to be used for DSA 
later.  

A slave-master concept is used for the contact problem 
to impose the penalty regularization.  The rigid surfaces 
(punch, draw die, and blank holder) are modeled as 
piecewise linear master segments.  Using the linear 

discretization, a very simple expression of ( , )bΓ z z  
can be obtained since the unit normal and tangential 
vectors on the contact surface remain constant.  
However, there exists a possibility of the convergence 
problem at the kinked corner of adjacent linear master 
segmenets.  A line search algorithm is used when that 
difficulty happens.  The contact search is carried out for 
particles on the domain boundary.  If a penetration into 
the rigid surface is detected, then a penalty is imposed 
using  ( , )bΓ z z  in Eq. (7).  The stick/slip conditions are 
determined by measuring the amount of relative motion 
between two adjacent configurations. 

Figure 4 shows the deformation history of the 
workpiece along with punch movement.  Figure 5 
shows the results of nonlinear analysis at the maximum 
deformation and after spring-back.  Significant amount 
of material sliding is observed between the workpiece 
and draw die inspite of the existence of the friction.  

The spring-back occurs when the punch, draw die, and 
blank holder are removed.  Although the amount of 
elastic spring-back is small at each part of the blank, the 
total displacement at the edge becomes significant 
because of the rotational effect. 

 

Fig. 4 Deformation History of the Workpiece 

 

 

Fig. 5 Deepdrawing Analysis with Spring-Back 

 

Figure 6 shows the contour plot of the effective plastic 
strain at the final configuration.  High plastic strain 
distribution is observed around the vertical region.  A 
design constraint is imposed for the maximum 
allowable plastic strain to prevent material failure due 
to excessive plastic deformation.  In this paper the 
maximum allowable effective plastic strain is assumed 
to be 0.2. 



7 
American Institute of Aeronautics and Astronautics 

 

Fig. 6 Effective Plastic Strain Distribution 

 

Sensitivity Analysis 

Since there are six design parameters, design sensitivity 
Eq. (15) is solved six times at each converged load step.  
Thus, an efficient solver for the linear system of equa-
tions is very important for the computational cost.  The 
performance measures are chosen for the effective plas-
tic strain ep and the shape difference G between the 
maximum deformation and after spring-back.  Since the 
effective plastic strain is path-dependent variable and 
its sensitivity is updated at each configuration, no addi-
tional computation is required to compute sensitivity of 
ep.  The shape difference G is a function of material 
points at the final configuration.  Thus, the sensitivity 
of G can be calculated using z�  and the chain rule of 
differentiation as 

 [ ]
0

( ) ( )
Td G

G
d ττ =

∂= +
∂

x V z
x

�

 (18) 

The accuracy of DSA can be compared with the finite 
difference result by perturbing the design a small 
amount and solving the structural problem again.  The 
finite difference method compute the sensitivity of the 
performance measure ψ by 

 
( ) ( )ψ τ ψψ

τ
+ ∆ −∆ ≈

∆
x V x

 (19) 

for small ∆τ, which strongly depends on the accuracy of 
structural analysis and machine operation error. 

The continuum-based design sensitivity method pro-
posed in this paper yields very accurate and efficient 
results.  Table 1 compares the accuracy of the proposed 
sensitivity ψ′ of various performance measures and ∆ψ 
with excellent agreements.  A very small perturbation 
∆τ = 10−6 is used for the finite difference results. 

 

Table 1 Accuracy of Sensitivity Results 
 ψ         ∆ψ           ψ′    ∆ψ/ψ′×100 
u1 
ep41  1.48092E-08  1.48111E-08   99.99 
ep45  1.39025E-09  1.38995E-09  100.02 
ep50  8.73928E-09  8.73917E-09  100.00 
ep55  2.92573E-08  2.92558E-08  100.01 
ep142  6.42704E-09  6.42645E-09  100.01 
ep147  8.75082E-09  8.75167E-09   99.99 
ep152 -4.88503E-08 -4.88486E-08  100.00 
ep157 -2.08880E-08 -2.08875E-08  100.00 
G -4.31897E-05 -4.37835E-05   98.64 
u2 
ep41 -7.51065E-10 -8.28304E-10   90.68 
ep45 -8.63393E-09 -8.77018E-09   98.45 
ep50 -9.46012E-09 -9.42600E-09  100.36 
ep55 -3.46566E-08 -3.32805E-08  104.13 
ep142 -1.02204E-08 -1.02214E-08   99.99 
ep147  2.30561E-09  2.27053E-09  101.55 
ep152  5.58534E-08  5.58827E-08   99.95 
ep157  2.49171E-08  2.41362E-08  103.24 
G     2.51654E-05  2.57379E-05   97.78 
u3 
ep41 -1.81265E-09 -1.81292E-09   99.99 
ep45 -8.32899E-10 -8.33645E-10   99.91 
ep50 -4.11725E-09 -4.11707E-09  100.00 
ep55 -1.60858E-08 -1.60891E-08   99.98 
ep142 -4.17814E-09 -4.17970E-09   99.96 
ep147 -8.43008E-10 -8.43061E-10   99.99 
ep152  2.65440E-08  2.65487E-08   99.98 
ep157  1.14224E-08  1.14229E-08   99.99 
G     1.50596E-05  1.55745E-05   96.69 
u4 
ep41 -1.64206E-08 -1.64212E-08  100.00 
ep45 -1.78461E-08 -1.78462E-08  100.00 
ep50 -1.44561E-08 -1.44563E-08  100.00 
ep55 -2.06306E-08 -2.06324E-08   99.99 
ep142  5.10648E-09  5.10589E-09  100.01 
ep147 -9.75899E-09 -9.75881E-09  100.00 
ep152 -1.46721E-08 -1.46709E-08  100.01 
ep157 -1.65305E-08 -1.65318E-08   99.99 
G     5.16216E-05  5.47740E-05   94.24 
u5 
ep41  6.32293E-07  6.33335E-07   99.84 
ep45 -3.42150E-07 -3.41924E-07  100.07 
ep50 -1.48786E-07 -1.48986E-07   99.87 
ep55  1.01051E-06  1.01077E-06   99.97 
ep142  4.27720E-07  4.28280E-07   99.87 
ep147 -6.64596E-07 -6.64791E-07   99.97 
ep152 -2.43935E-06 -2.43989E-06   99.98 
ep157 -1.54750E-06 -1.54754E-06  100.00 
G    -8.01735E-04 -8.51401E-04   94.17 
u6 
ep41  5.21628E-07  5.22109E-07   99.91 
ep45 -2.04683E-07 -2.05656E-07   99.53 
ep50  4.05362E-08  3.54155E-08  114.46 
ep55  1.20942E-06  1.20331E-06  100.51 
ep142  4.41449E-07  4.42033E-07   99.87 
ep147 -5.38989E-07 -5.39373E-07   99.93 
ep152 -2.39527E-06 -2.39169E-06  100.15 
ep157 -1.42736E-06 -1.42780E-06   99.97 
G    -1.19663E-03 -1.25937E-03   95.02 
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In Table 1, the design sensitivity of the performance G 
does not agree as much as other performance measures.  
The reason is that the magnitude of the performance 
change is larger compared to other performance meas-
ures.  For example, G is changed 103 times larger than 
other performance measures for u6.  Thus, the finite dif-
ference approximation in Eq. (19) contains an error in 
approximation.  This will be improved if the magnitude 
of the design perturbation is decreased, which may 
cause inaccuracy of other performance measures caused 
by numerical errors.  Thus, it is very difficult to choose 
an appropriate perturbation size for the finite difference 
method. 

The cost of nonlinear meshfree analysis to solve the 
deepdrawing problem in Fig. 5 is 8,082 sec in HP ex-
emplar workstation, whereas DSA requires 1,843 sec 
for six design parameters, which is corresponding to 
3.8% of the analysis cost per design parameter.  This 
efficiency is expected since sensitivity analysis uses 
already factorized tangent stiffness matrix and no itera-
tion is required for sensitivity computation. 

 

 

Fig. 7 Shape Difference Between Deformed Geometry 
and Desired Geometry 

 

Design Optimization 

The design optimization problem is formulated to 
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 (20) 

where P(x) is the orthogonally projected position of the 
particle point x onto the desired final shape of the 

workpiece.  Figure 7 shows the difference between the 
desired geometry and deformed geometry after spring-
back.  The design constraints are imposed to limit the 
magnitude of the effective plastic strain, which may 
cause material failure or severe necking.  In addition, 
the minimum thickness of the each section is limited.  
Limits on ui are established based on the geometry of 
the problem and kinematics.  Since ui’s represent the 
relative movements of the geometry, the initial values 
set to zero. 

The design optimization problem is solved using the 
sequential quadratic programming method in DOT 
(Vanderplaats, 1997) by supplying meshfree analysis 
results and design sensitivity information.  At each it-
eration, the initial geometry of the problem is updated. 

 

 

(a) Cost Function History 

 

(b) Design Parameter History 

Fig. 8 Deepdrawing Optimization History 

 

The design optimization problem is converged in four 
iterations, which is quite fast convergence considering 
nonlinearity involved in structural analysis.  Figure 8(a) 
shows the history of cost function G during optimiza-
tion.  The cost function, which is the spring-back 

Desired Geometry 
Deformed Geometry 
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amount, is reduced up to 24% of the initial design.  All 
constraints are satisfied with no active constraint at the 
optimum design.  Fig. 8(b) shows the history of design 
parameters.  The corner radius (u4) of rigid die is in-
creased significantly to reduce over-deflection of work-
piece at the binder part.  The corner radius (u3) of punch 
is decreased to make the workpiece vertical.  It is inter-
esting to note that the binder force, which is controlled 
by u6, is decreased from the initial design, which in turn 
reduces the frictional force. 

The deformed shapes of the initial and optimum designs 
are shown in Figure 9.  Over-deflection of the initial 
design around blank holder area is improved signifi-
cantly to match the desired shape shown in Fig. 7.  The 
vertical slope is also improved compared to the initial 
design.  However, it turns out that making 90 degree 
vertical slop is very difficult based on the current manu-
facturing process unless a spring-forward method is 
used, which is not possible for this deepdrawing proc-
ess.  Note that the radius of bottom corner is increased 
in the optimum design.  However, an effort to fit this 
region will cause bigger deviation from the desired 
shape in other regions. 

 

 

Fig. 9 Final Deformed Shapes of Initial and  
Optimum Designs After Spring-Back 

 

Figure 10 compares the distributions of effective plastic 
strains of the initial and optimum designs.  The maxi-
mum value of effective plastic strain at optimum design 
is reduced about 12% from that of the initial design.  It 
is interesting to note that the amount of spring-back is 
reduced while the plastic deformation is decreased. 

In the deepdrawing process, a necking phenomenon is 
an important criterion to determine the quality of the 
product and necking amount is proportional to the 
plastic deformation.  In this paper, necking is measured 
by the thickness reduction along the edge of the blank.  
Figure 11 shows the thickness reductions of the initial 
and optimum designs.  It is clear that the optimum 
design shows less plastic deformation compared to the 

initial design, which is consistent with effective plastic 
strain distribution in Fig.10.  Since the plastic 
deformation is volume conserving, the area of the graph 
is transformed into the increase of cord length of the 
blank.  The area of initial design in Fig. 11 is 1.18mm2 
and 0.716 mm2 for the optimum design.  

 

(a) Initial Design 

 

(b) Optimum Design 

Fig. 10 Effective Plastic Strain Distributions 

 

Initial cord length 75mm of the blank is stretched dur-
ing simulation to 76.46mm, while the total cord length 
is 75.87mm at optimum design, which is consistent 
with the reduction of plastic deformation at the opti-
mum design.  These amounts of stretches show consis-
tent results of the areas in Fig. 11. 

 

5. CONCLUSION 

Very efficient and accurate methods of numerical simu-
lation and design sensitivity analysis methods for a 
metal stamping manufacturing process design are pro-
posed using meshfree nonlinear analysis and material 
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derivative approach.  The design optimum result shows 
the feasibility of the proposed method for a difficult 
deepdrawing process. 

In this paper, the shapes of the workpiece and rigid sur-
faces, and binding force are considered for design pa-
rameters. 

 

 

Fig. 11 Thickness Reduction of Workpiece 
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