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Information on damage size and growth obtained using structural health monitoring can 

be used to estimate remaining useful life (RUL). Damage growth information may also be 

used to improve the characterization of the material properties that govern damage 

propagation for the structure being monitored, turning aircraft into flying fatigue 

laboratories. These properties are often widely distributed between nominally identical 

structures because of differences in manufacturing processes and aging effects. The 

improved accuracy in damage growth characteristics allows more accurate prediction of the 

RUL of the monitored structural component. It can also help in anticipating damage growth 

on other similar components. Bayesian inference has been used for progressively reducing 

the uncertainty in structure-specific damage growth parameters in spite of noise and bias in 

sensor measurements. However, Bayesian updating is computationally intensive and may 

not be feasible to use with an extremely large number of measurements. Least squares fitting 

of the damage growth parameters, on the other hand is efficient, but does not provide good 

statistical information on the uncertainty in their estimates and in RUL estimates. In this 

paper we propose combining the two approaches by using the least-squares approach to 

filter data for the Bayesian updating.. The approach is applied to crack growth in fuselage 

panels due to cycles of pressurization and depressurization. It is shown that the proposed 

method rapidly converges to the accurate damage parameters when the initial damage size is 

20mm. Fairly accurate damage parameters can be obtained also with measurement errors of 

5mm. Using the identified damage parameters, it is shown that the 95% conservative RUL 

converges to the true RUL from the conservative side.  

Nomenclature 

aN = Damage growth at N
th

 inspection 

Δ𝑎𝑁
𝑚𝑒𝑎𝑠  = Measured damage growth at N

th
 inspection 

K = Range of stress intensity factor 

 = Range of applied stress 

p = Pressure differential 

a =  Half damage size 

aC = Critical crack size 

ai = Initial crack size 

aN = Crack size at N
th

 inspection 

𝑎𝑁
𝑚𝑒𝑎𝑠  = Measure crack size at N

th
 inspection 

𝑎𝑁
𝑡𝑟𝑢𝑒  = Modeled crack size at N

th
 inspection 

b = Bias in measurements 

C = Paris law parameter 

KIC = Fracture toughness 

m = Paris law exponent 
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N  = Number of cycles 

Nf = Remaining useful number of cycles 

r = Fuselage radius 

t = Panel thickness 

v = Noise in measurements 

V = Amplitude of noise in measurements 

I. Introduction 

TRUCTURAL health monitoring (SHM) will have significant impact on increasing safety as well as reducing 

operating and maintenance costs by providing an accurate quantification of degradation and damage at an early 

stage to reduce or eliminate malfunctions. Furthermore, SHM will allow predictions of the structure’s health status 

and remaining useful life (RUL) without intrusive and time consuming inspections. Continual on-line SHM is based 

on dynamic processes through the diagnosis of early damage detection, then prognosis of health status and 

remaining life.  

Once the damages reach detectable size, various SHM techniques can be employed to evaluate the current state 

of structural health by measuring the size of damages
1
. In the physics-based prognosis techniques, it is necessary to 

incorporate the measured data into a damage growth model to predict the future behavior of the damage. 

Prognosis techniques can be categorized based on the usage of information: (1) physics-based, (2) data-driven, 

and (3) hybrid methods. A physics-based method, or model-based method
2
, assumes that a model of system 

behavior is available and combine this model with measure data to identify system characteristic and predict future 

behavior. Dynamic stochastic equation, lumped-parameter model
3
, and functional models

4
 correspond to this 

category. In the case of SHM, crack growth model
3, 5, 6

) or spall growth models are often used for micro-level 

damage, and first principle models
7
  are used for macro-level damage.  

A data-driven method
8
 uses information from collected data to predict future status of the system but does not 

use any particular physical model. It includes least-square regression
9,
 

10
, Gaussian process regression

11, 12
, neural 

network
7, 11, 12

, and relevance vector machine
11, 13

. This type of method has advantages when the system is so 

complex that no simple physical model is available. The hybrid method
14

 combines the abovementioned two 

methods, and includes particle filters
15

 and Bayesian techniques
16, 17

. It is generally accepted that managing 

uncertainty is the most challenging part for prognosis
17, 18

. Sources of uncertainty are initial state estimation, current 

state estimation, failure threshold, measurement, future load, future environment, and models. In order to manage 

the uncertainty, various methods have been proposed, such as confidence intervals
19

, relevance vector machine
11

, 

Gaussian process regression
11, 12

, and particle filers
15, 20

. Since structural damage grows slowly and the physics 

governing its behavior is relatively well-known, the physics-based method is used in this paper. 

The current technology of diagnosis and prognosis using SHM anticipates difficulties associated with 

uncertainties in sensor data, damage growth models, and material and geometric properties. The first is related to 

identifying the current health status, while the others are related to predicting the health status in the future. 

Uncertainties in sensor data can be classified in two categories: systematic departure due to bias and random 

variability due to noise. The former is caused by calibration error and device error, while the latter is caused by 

measurement environment.  

Compared to manual inspections, the accuracy of SHM is still poor. The minimum size of detectable damages of 

SHM is much larger than that of manual inspection methods. In addition, the measured data have the 

abovementioned noise and bias. Thus, the major challenge in SHM-based prognosis is how to accurately predict the 

damage growth when the measured data include both noise and bias. However, unlike manual inspection, SHM may 

provide frequent measurement of damage, allowing us to follow damage growth. This in turn, should allow us to 

reduce the uncertainty in the material properties that govern damage growth. As illustrated in Figure 1 the 

uncertainty in these properties is normally large because of variability in manufacturing and ageing of the monitored 

structured
21

.  

S 
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Figure 1. Illustration of Paris law parameter in a log-log plot of crack growth rate 

The main objective of this paper is to demonstrate the reduction in uncertainty that may be achieved with SHM 

data combining Bayesian inference with least square fit identification. A probabilistic approach using Bayesian 

statistics is first employed to progressively improve the accuracy of predicting damage parameters under noise and 

bias of sensor measurements. That method encounters difficulties when it comes to large sets of data and biased 

data. It is then compared to the least square fit identification method, which is good to identify deterministic 

parameters rather than distributions. The two methods are then combined for a final goal of identifying the damage 

parameter distribution with enough accuracy to give us a conservative estimate of the remaining useful life of the 

structure.  

The approach is demonstrated for a through-thickness crack in an aircraft fuselage panel which grows through 

cycles of pressurization and de-pressurization. A simple damage growth model, Paris law, with two damage 

parameters is utilized. However, more advanced damage growth models can also be used, which usually comes with 

more parameters. Using this simple model we aim to demonstrate that SHM can be used to identify the damage 

parameters of a particular panel. This process can be viewed as turning every aircraft into a flying fatigue laboratory. 

Reducing uncertainty in damage growth parameters can reduce in turn the uncertainty in predicting remaining useful 

life (RUL); i.e., in prognosis. 

The paper is organized as follows. In Section 2, a simple damage growth model based on Paris model is 

presented. The current paper is based on data for the fatigue crack growth in a fuselage panel of 7075-T651 

aluminum alloy. In Section 3 the results are given for least square fit method, on the identification of the damage 

parameters and the estimate on remaining useful life. In Section 4 the corresponding results are given for Bayesian 

updating. In section 5, comparable results are presented obtained using a least-square-based Bayesian method. 

Conclusions are presented in Section 6 along with future plans. 

II. Damage growth and measurement uncertainty models 

A. Damage growth model 

Damage in a structure starts at the microstructure level, such as dislocations and gradually grows to the level of 

detectable macro-cracks through nucleation and growth. Damage in the micro-structure level grows slowly, is often 

difficult to detect, and is not dangerous for structural safety. Thus, SHM often focuses on macro-cracks, which grow 

relatively quickly under fatigue loadings.  

In this paper, we consider a fatigue crack growth in a fuselage panel with initial crack size ai subjected to fatigue 

loads with constant amplitude due to pressurization. The hoop stress varies between a maximum value of σ to a 

minimum value of zero in one flight. One cycle of fatigue loading represents one flight. Like many other 

researchers
22, 23

, we use the damage growth model
24

 as   

 ( )m
da

C K
dN

 (1) 

where a is the half crack size in meter, N the number of cycles (flights), da/dN the crack growth rate in meter/cycle, 

and ΔK the range of stress intensity factor in 𝑀𝑃𝑎 𝑚𝑒𝑡𝑒𝑟. The above model has two damage growth parameters, C 

and m. The plot of log(da/dN) versus log(ΔK) becomes a straight line with m being the slope and log(C) being the y-

intercept at log(ΔK) = 1. 
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 The range ΔK of stress intensity factor for a center-cracked panel is calculated as a function of the stress Δσ 

and the half crack length a in Eq. (2), and the hoop stress due to the pressure differential Δp is given by Eq. (3)   

 K a  (2) 

 
( )p r

t
 (3) 

where r is the fuselage radius, and t is the panel thickness. Equation (2) does not include a geometric correction 

factor due to the finite size of the panel, and Eq. (3) does not include corrections due to the complexity of the 

fuselage construction, so that they are both approximate. 

The number of cycles N of fatigue loading that grows a crack from the initial half crack size ai to the current half 

crack size aN  can be obtained by integrating Eq. (1).  

 
1 /2 1 /2

(1 / 2)( )

N

i

m
a

i

ma

m

N
a ada

N
C mC a

 (4) 

Alternatively, the half crack size aN after N cycles of fatigue loading can be obtained by solving Eq. (4) for aN.  

 

2

2
1 /2

2
1

mm
m

N i
a NC a

m
 (5) 

It is assumed that the panel fails when aN reaches a critical half crack size, aC. Here we assume that this critical 

crack size is when the stress intensity factor exceeds the plane-strain fracture toughness KIC. This leads to the 

following expression for the critical crack size (again neglecting finite panel effects) 

 

2

IC
C

K
a  (6) 

Figure 2. Through the thickness crack illustration 

Typical material properties for 7075-T651 aluminum alloy are presented in Table 1. The applied fuselage 

pressure differential is 0.06 MPa, obtained from Niu
25

 and the stress is given by Eq. (3). Paris parameters m and C 

are obtained using a crack growth rate plot published by Newman, et al.
26

. Note that due to scatter in the data, the 

exponent m and log(C) are assumed to be uniformly distributed between the lower- and upper-bounds. Although it is 

well known that the two Paris parameters are correlated
27

, this effect is not considered in this paper because we try 

to identify one parameter assuming the other parameter is known. In the future work, we will address identifying 

both parameters simultaneously. 
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Table 1. Geometry, loading and fracture parameters of 7075-T651 Aluminum alloy 

Property 
Pressure

*
 

Δp (MPa) 

Fracture 

toughness 

KIC (𝑀𝑃𝑎 𝑚) 

Fuselage radius 

r (meters) 

Paris law 

exponent 

m 

Damage parameter 

log(C) 

Distribution 

type 

Lognormal 

(0.06, 0.003) 

Deterministic 

30 

Deterministic 

3.25 

Uniform 

(3.3, 4.3) 

Uniform 

(log(5E-11), log(5E-

10)) 

*Modeled as constant in simulations. 

B. Measurement uncertainty model 

In general, cracks in fuselage panels grow according to the repeated pressurizations. Then, the structural health 

monitoring (SHM) system that is composed of sensors and actuators may detect these cracks. The fundamental 

function of SHM is to detect these cracks before they become unstable and dangerous. The main objective of this 

paper is to show that the measured data can be used to identify crack growth parameters, and then, to predict the 

future behavior of the cracks. 

Since no airplanes are equipped with SHM systems yet, we simulate the measured crack sizes from SHM. In 

general, the measured damage includes the effect of bias and noise of the sensor measurement. The former is 

deterministic and represents a calibration error, while the latter is random and represents a white noise. The synthetic 

measurement data are generated by (1) assuming that the true parameters, mtrue and Ctrue, are known, (2) calculating 

the true crack growth according to Eq. (5) for a given N, and (3) adding a deterministic bias and random noise. Let 

aN be the true half crack size, b the bias, and v the noise. The measured half crack size, 𝑎𝑁
𝑚𝑒𝑎𝑠 , is then given as 

 2 2meas

N N
ba a v  (7) 

For subsequent measurements, the bias b remains constant, while the noise v is assumed to vary uniformly with 

maximum range V. Let the measurement interval be ΔN. Then, the measured damage sizes can be used to define the 

damage growth between consecutive inspections as follows 

 meas meas meas

N N N N N N
a a a a v  (8) 

If the measured crack sizes are uniformly distributed due to the noise, then the measured crack growths are 

triangularly distributed with mean at the true crack growth. Thus, the respective distributions of the measured crack 

size and crack growth can be found below:  

 
/ 2 / 2; ; / 2 / 2

; ;

meas

N N N N
meas

N N N N

a

a

U a b V a a b V

a V a aT V
 (9) 

The objective is to identify the true crack growth parameters using the measured crack size and its growth in Eq. 

(9). Once these parameters are identified, they can be used to predict the remaining useful life. Since we simulate 

what we called measured data because of the lack of actual data, we repeat this process multiple times to simulate 

the actual data statistically. Accordingly, the results will also be presented in terms of probabilistic distribution. 

III. Characterization of damage properties using Bayesian updating  

Depending on manufacturing and assembly processes, the actual damage parameters for individual aircraft can 

be different. For a specific panel, we assume that there exists a true value of deterministic damage parameters. In the 

following numerical simulation, the true damage will grow according to the true value of damage parameters. On the 

other hand, the measured damage size will have bias and random noise in the measurements. As a first approach to 

the problem we consider the distributions of m and C separately, which means that when we consider one variable as 

being uncertain, we assume that the other one is known.  

From a preliminary damage growth analysis, it was found that the effect of noise in pressure p has negligible 

effect on damage growth because the effect of randomness is averaged out. This is true for fuselage pressurization 

because the variation is small. Thus, in the following analysis, the applied pressure is assumed to be deterministic, 

0.06 MPa, the mean value of the distribution obtained from Niu
25

.  

In general, the minimum size of detectable damage using SHM is much larger than that of the manual inspection. 

Although different SHM techniques may have different minimum detectable size, we choose an initial half crack 

size a0 = 10 mm, which is large enough to be detected by most SHM methods.  In addition, this size of damage will 

provide significant crack growth data between the two consecutive inspections. 
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The damage growth parameter m is a critical factor to determine the growth of damage. This parameter is 

normally measured using fatigue tests under controlled laboratory tests. However, uncertainty in this parameter is 

normally large not only at a material level because of variability in manufacturing and aging of the specific panel, 

but also on a specimen level because of variability related to testing process. It is possible to curve fit the data and 

obtain estimates of this parameter for the individual panel. However, curve fits do not take into account prior 

information on the distribution of these parameters or statistical information on the measurement uncertainty. In this 

paper, we use Bayesian inference to identify these parameters, which can take into account both effects. 

As can be seen in Figure 1, the exponent m is the slope of the curve in the log-log scale. As a first step in 

developing a prognosis methodology, we assumed that the accurate value of C is known, while that of m is 

uncertain. Since the range of the exponent m is generally known from literature or material handbooks, we assume 

that the exponent is uniformly distributed between the lower- and upper-bounds. Then, the goal is to narrow the 

distribution of the exponent using the Bayesian statistics with measured damage sizes. The data used for the 

updating of material properties are crack growth calculated from two measurements as defined in Eq.(8) with 

uncertainty defined in Eq. (9). 

Bayesian inference is based on the Bayes’ theorem on conditional probability. It is used to obtain the updated 

(also called posterior) probability of a random variable by using new information. In this paper, since the probability 

distribution of m given Δa is of interest, we used the following form of Bayes’ theorem
28

:  

 
|

|

ini

updt

ini

l a m

l

f m
f m

f m dma m
 (10) 

where, fini the assumed (or prior) probability density function (PDF) of m, fupdt the updated (or posterior) PDF of m 

and l(Δa|m) is called the likelihood function, which is the probability of obtaining the measured damage growth, Δa, 

for a given value of m.  

The likelihood function is designed to integrate the information obtained from SHM measurement to the 

knowledge we have about the distribution of m. The details of the derivation and calculation of the likelihood 

function can be found in Appendix A. Instead of assuming an analytical form of the likelihood function, we 

propagate uncertainty in measured crack sizes and estimated using the Monte Carlo simulation (MCS). Although 

this process computationally expensive, it will provide accurate information for the posterior distribution (refer to 

Appendix A).   

Once the distribution of m has been identified at cycle N, it can be used to predict the remaining useful life 

(RUL). The distribution of RUL is calculated at every SHM measurement cycle N using MCS as well but with a 

larger sample than the one used to calculate the likelihood function, 50,000 true crack sizes are estimated using the 

following distribution in Eq. (11) and the RUL is estimated using Eq. (12) derived from Paris’ law. This allows us to 

estimate the distribution and from there obtain the 5
th

 percentile.  

 ? / 2; / 2true meas meas

N N N
a aU a V V  (11) 

 

1 /2
1 /2)

1
2

m
m true

C N

f

a a

m
N

C

 (12) 

Once the PDF of 𝑚 is obtained, it can be used to predict the RUL of the monitored panel. Since the PDF is 

updated at every SHM measurement, the predicted RUL will vary at every measurement interval Δ𝑁. In predicting 

RUL, 50,000 samples of 𝑚, 𝑎𝑁
𝑡𝑟𝑢𝑒 , and 𝜎 are generated, and Eq. (12) is used to calculate samples of 𝑁𝑓 . In order to 

have a safe prediction of RUL, 5th percentile of 𝑁𝑓  samples is used as a conservative estimate of RUL. Since we 

used synthetic data by adding random noise, the result may vary with different sets of data. Thus, the above process 

is repeated with 100 sets of measurement data and mean ± one standard deviation intervals are plotted. In order to 

show the value of our method we compare RUL calculated using the actual value of m, mtrue, and the distribution 

(mean ± one standard deviation) of the 5
th

 percentile of the distribution of RUL obtained using the updated 

distribution of m at each inspection, for the case of negative bias, -2mm and a noise of amplitude 1mm, this is shown 

in Figure 3. It can be observed that Bayesian updating allows us to improve the estimation of RUL compared to the 

RUL obtained using the handbook distribution, that estimation converges to the true RUL from the conservative side 

but it is sensitive to error in the data.  
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Figure 3. Distribution (mean ± one standard deviation) of the 5

th
 percentile of RUL for b = -2mm and 

V = 1mm, using Bayesian updating 

One of the major advantages of SHM is that measurements can be performed frequently. Thus, the update in Eq. 

(10) can be performed as frequently as needed. However, since the damage grows slowly and the bias and noise of 

measurements are in general large, too frequent measurements may not help to narrow down the distribution of 

damage parameters because Bayesian inference does not give good results with large samples of data. 

 

IV. Characterization of damage properties using least square fit  

In the previous section, Bayesian inference is used to identify a single damage growth parameter, either 𝑚 or 𝐶, 

and assumed the other parameter is already known. In practice, when both parameters are unknown, Bayesian 

inference needs to update the joint PDF of both parameters. In general, this can be achieved by dividing the ranges 

of uncertain parameters into a grid and calculate the joint PDF value at each grid point. If the range is divided by 

100 × 100 grid, the updating process includes 10,000 times calculation of likelihood, requires uncertainty 

propagation for given parameter values. Thus, the updating process easily becomes computationally impractical. In 

addition, in the previous section, the bias and initial true crack size are considered uncertain because their value is 

unknown. In theory, they can also be treated similarly to damage growth parameters and be identified through 

Bayesian inference. Then, the four-dimensional joint PDF needs to be updated, which is computationally 

impractical. Before we present a new method of addressing this computational issue, we will present a conventional 

method of identifying unknown parameters in this section, along with its advantages and disadvantages. 

Least square fit is the easiest and most commonly used way of identifying model parameters by minimizing the 

difference between measured data and predicted data from the physics model. In our application, the Paris model is 

used with the following unknown parameters: initial crack size, a0, damage growth parameter, m, and bias, b. The 

parameter 𝐶 is till assumed to be known in order to compare with the results in the previous section. The least square 

fit problem can be formulated as  

 
0

2

22 1
2

0
, ,

 with 1
2min

m mm
meas

i i i
ia m b

m
b a Na aa C  (13) 

 

In order to have the same configuration with Bayesian inference, the initial range of parameter 𝑚 is used as 

lower- and upper-bounds. The bounds of bias are chosen between -2 and 2mm as we assume that this is reasonable 

estimate of the bias. Since the initial crack size is within the combined ranges of bias and noise from the measured 

initial crack size, its lower- and upper-bounds are selected accordingly. The least square fit is performed using 

lsqnonlin function in MATLAB. At measurement cycle 𝑁, all previous measurement data are used in the least 

square fit. Thus, more and more data are used in least square fit as the number of cycles increases. Although 
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Bayesian inference is performed at every Δ𝑁 = 100 interval, the least-square-fit is performed at every cycle because 

the accuracy of fitting is better with more data. 

Similar to Bayesian inference, the identified parameters depend on synthetic measurement data. Thus, 1,000 sets 

of measurement data are produced by adding deterministic bias and random noise to the true crack sizes. Thus, at 

every measurement cycle, there exist 1,000 number of identified parameters. In order to show how these parameters 

are distributed, Figure 4 shows intervals of mean ± one standard deviation for two different combinations of noise 

and bias: (1) 𝑏 = 2mm and 𝑉 = 3mm and (2) 𝑏 = 2mm and 𝑉 = 1mm. These combinations are chosen because 

they represent extreme cases; similar results can be observed if a negative bias is used. It can be observed that the 

parameters from the least square fit converge to their true values. Unlike Bayesian inference, the effect of bias and 

noise is insignificant because as can be seen in Figure 4, the standard deviation is about the same for small and large 

noise after 1,500 cycles. However, the dark shades in Figure 4 show that there is a non negligible effect of noise 

when the maximum amplitude of the noise is larger than the bias. The convergence is slow when the crack size is 

small, and it is fast when the crack size is large. This happens because a larger crack has faster crack growth, which 

can also be observed in Bayesian inference.  

 
(a) Distribution of indentified ai 

(b) 

(b) Distribution of identified m                                    (c) Distribution of identifies b/2 

Figure 4. . Distribution (mean ± one standard deviation obtained using 1,000 sets of measurements) 

of fitted results of (a) a0, (b) m and (c) b/2 

The main interest of prognosis is to predict the remaining useful life at inspection. In order to show the value of 

our method we compare RUL calculated using the actual value of m, mtrue, and the critical value for both the initial 

and the updated distributions. Figure 5 shows the mean ± one standard deviation of the 95% confidence of the 

distribution of remaining useful life for a bias of -2mm and a noise of maximum amplitude 1mm. The distribution 

took into account only uncertainty in measurements, and not the uncertainty in the identified parameters, thus 

leading to a very narrow distribution. It can be observed that least square fit leads to a very good identification of 

deterministic parameters and extrapolation of RUL but it does not give a very good estimation of the distribution of 

RUL and this leads to slightly unconservative results even for the 5
th

 percentile. The estimated distribution of RUL 



9 

American Institute of Aeronautics and Astronautics 

 

is narrow that if the mean is overestimated the 5
th

 percentile might be as well. We have to note that the uncertainty in 

RUL results in this case only from the uncertainty in damage size estimation, it might be larger if the uncertainty in 

the estimated variables was included. 

 
Figure 5. Distribution (mean ± one standard deviation) 5

th
 percentile of RUL for b = -2mm and V = 1mm, 

using least square fit 

Least-square-filtered Bayesian (LSFB) method for Characterizing Damage Growth Parameters 

As described in the previous section, both Bayesian updating and least square fit present advantages and 

limitations, but they appear to be complementary. Least square fit ability to identify the bias and reduce the noise 

makes it a useful tool to process the data in order to identify the distribution of RUL using Bayesian updating. 

In order to combine the advantages of the two methods, we propose to process information collected at every 

cycle by least square fit in order to reduce the noise, and identify the bias. . The filtered data is then used in Bayesian 

updating in order to narrow down the distribution of m and obtain a more accurate prognosis.  

Figure 6 illustrate one case showing the true crack size as the dashed line compared to the measurements at every 

inspection (stars) and the damage sizes obtained using least square fit (dots). The dots represent the data that in this 

method are used with Bayesian updating to update the distribution of m and estimate the distribution of RUL. Note 

that least square fit uses more data than the one illustrated in that figure, it uses data from every cycle. 

 
Figure 6. Comparison of the true, measured and fitted damage sizes for b = -2mm and V = 1mm Illustration 

with one simulated set of measurements.  
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Figure 6 illustrates the behavior of the crack over the entire life of the panel. Due to bias the general trend of the 

crack size is shifted down from the true crack size, and due to noise the crack growth is not consistent; in some 

cases, the measured crack size is reduced from the previous measurement. On the other hand, the estimated crack 

sizes using parameters from the least-square fit are close to the true crack sizes and show much more consistent 

behavior. Although SHM measurements are performed every cycle, data are shown at every 100th cycle in order to 

make consistent comparison with that of Bayesian inference. (b) on the other hand shows the behavior over two 

inspection intervals at the beginning and toward the end of life. It shows how the least square fit improves as the 

crack grows, as we have more information. But in both cases it can be observed that the fitted data are closer to the 

true values than the measured ones. This confirms the fact that least square fit reduces the effect of bias and noise. 

 
(a)                                                                              (b) 

Figure 7. Fitted (dots) and measured (stars) damage at early and late stage in  damage growth 

compared to the actual damage size (dotted line 

Figure 8 shows the results for the LSFB method, the 5
th

 percentile of remaining useful life obtained for data with 

a bias of -2 mm and a noise amplitude of 1 mm. It actually shows the mean of the percentile ± one standard 

deviation obtained as for the previous methods using 100 sets of measurements. It can be observed that combining 

both methods gives better results than either of them separately. The estimation converges faster than with Bayesian 

updating but remains on the conservative side end is less sensitive to the errors in measurements. 

 
Figure 8. Distribution (mean ± one standard deviation) 5

th
 percentile of RUL for b = -2mm and V = 

1mm, using the combined method 

Figure 9 compares the three methods presented in this paper. It can be observed that the LSFB method is a good 

compromise between least square fit and Bayesian inference and it is much less sensitive to the noise in the data, the 
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variability in the distribution is much smaller. The conservative estimate of the RUL converges faster to the actual 

RUL than with Bayesian updating, but it remains always on the conservative side unlike with least square fit. 

 
Figure 9. Comparison of the Distribution (mean ± one standard deviation) 5

th
 percentile of RUL using the 

three methods 

V. Conclusions  

We presented here prognosis results for three methods: Bayesian updating, least square fit, and a combination of 

both. Those results show that even though the first two methods are very good at identifying the damage growth 

parameters or estimating the remaining useful life, they both have limitations, they cannot do both. But they are 

complementary, such that they can be combined and by using the advantages of both methods we come up to a third 

one giving and estimation of RUL that converges to the actual RUL faster than Bayesian updating while remaining 

on the conservative side, unlike with least square fit. Another advantage of the combined method is that it is less 

sensitive to the errors in measurements. These conclusions can be best observed in Figure 9, it shows also that the 

combined method is much less sensitive to the error in the data. 

Note that even though the results and conclusions presented in this paper are for a specific case of bias/noise 

combination similar results and conclusions can be obtained for other cases. 

Appendix A – Derivation of the likelihood for Bayesian inference 

The idea is to identify the damage parameters m or C from the measured half crack size that is contaminated by 

measurement errors. In order to do that, we compare the measurements to the simulated crack size defined above. In 

order to use the information in Bayes law, we need to estimate the likelihood 𝑙 Δ𝑎 𝑚  that for a given set of 

material properties m or C, Δ𝑎𝑁
𝑚𝑒𝑎 𝑠 = Δ𝑎𝑁

𝑠𝑖𝑚  or in other words:  

 0sim meas

N N
d a a  (14) 

If we have analytical expressions for the PDFs of 𝑎𝑁
𝑚𝑒𝑎𝑠  and 𝑎𝑁

𝑠𝑖𝑚 , and we use them to obtain the PDF of d, then 

the value of this PDF at 𝑑 = 0 is the likelihood function. Since this rarely happens, we will use MCS, and we will 

use as likelihood function  

 | da ml P  (15) 

Note that the integration over  is just a normalizing constant that is taken care of by the normalization in the 

Bayesian formulation. 

If we calculate 𝑙 Δ𝑎 𝑚  purely by sampling 𝑎𝑁
𝑚𝑒𝑎𝑠  and 𝑎𝑁

𝑠𝑖𝑚 , then the tolerance 𝜖 needs to be large enough to 

include enough sample points to reduce the sampling error to acceptable levels. On the other hand if 𝜖 is large, we 

will incur errors due to nonlinearity in the likelihood function. 
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We will assume now that the measurement error that controls 𝑎𝑁
𝑚𝑒𝑎𝑠  is independent of the modeling errors that 

control 𝑎𝑁
𝑠𝑖𝑚 . In that case, separable sampling can be performed by comparing all possible combinations of two 

individual samples. 

The PDF of 𝑎𝑁
𝑠𝑖𝑚  is not available analytically, because it is obtained from propagation of uncertainties through an 

analysis code. On the other hand, the measurement errors are assumed rather than propagated, and they are here 

assumed to be uniform in a bounded region. We will now investigate how we can take advantage of the given 

distribution of 𝑎𝑁
𝑚𝑒𝑎𝑠  in order to improve the efficiency or accuracy of the sampling. In this case 𝑎𝑁

𝑚𝑒𝑎𝑠 and 𝑎𝑁
𝑠𝑖𝑚  are 

scalar, such that 

 | 1 0 0l P d Pa m d P P  (16) 

Using conditional expectation on the second term on the right-hand side we obtain 

 

0 0

0
sim
N

sim
N

sim meas

N N

sim meas sim sim

N N sim N Na

sim sim sim

meas N sim N Na

a a

a a a a

P d P

P f d

F f daa a

 (17) 

where 𝑓𝑠𝑖𝑚  𝑥  is the PDF of Δ𝑎𝑁
𝑠𝑖𝑚  and 𝐹𝑠𝑖𝑚  𝑥  is the CDF of Δ𝑎𝑁

𝑠𝑖𝑚 . The last relation is obtained from the 

definition of CDF; i.e., by considering Δ𝑎𝑁
𝑚𝑒𝑎𝑠  as the only random variable, 𝑃 Δ𝑎𝑁

𝑚𝑒𝑎𝑠 ≤ Δ𝑎𝑁
𝑠𝑖𝑚 − 𝜖 =

𝐹𝑚𝑒𝑎𝑠  Δ𝑎𝑁
𝑠𝑖𝑚 − 𝜖 . Similarly, the first term can be written as 

 
0 0

sim
N

sim
N

sim meas sim sim

N N sim N Na

sim sim sim

meas N sim N Na

P d P f d

F f d

a a a a

a a a
 (18) 

Thus, by combining Eqs. (17) and (18), the likelihood can be written as 

 
2

|
sim
N

sim
N

sim sim sim sim

meas N meas N sim N Na

sim sim sim

meas N sim N Na

a m a a a al F F f d

da a af f
 (19) 

where the central finite difference approximation is used in the second relation, which becomes exact when 

𝜖 → 0. As explained before, since the posterior PDF will be normalized, the coefficient 2𝜖 can be ignored. The 

above expression is in particular convenient for separable MCS because the analytical expression of 𝑓𝑚𝑒𝑎𝑠  𝑥  is 

known, and 𝑓𝑠𝑖𝑚  𝑥  can be evaluated by propagating uncertainty through numerical simulation. Let M be the 

number of samples in MCS, the likelihood can then be calculated by  

 

     

 ,

1

|

1

sim
N

sim sim sim

meas N sim N N
a

sim

meas N i

M

i

l fa m a a af d

M
f a




   

 

 


 (20) 

In the literature
29

, Gaussian function is often assumed for the likelihood function. In addition, the expression of 

this function remains unchanged throughout the entire process. However, Figure 10 shows that the likelihood 

function is quite different from the Gaussian function and it varies at different crack sizes. Since the uncertainty 

structure of the posterior distribution strongly depends on the likelihood function in Bayesian inference, the error in 

the likelihood calculation directly affects the accuracy of the posterior distribution. 



13 

American Institute of Aeronautics and Astronautics 

 

 
Figure 10.Likelihood function for one set of measurements at various number of cycles 

In the case presented here 𝑓𝑚𝑒𝑎𝑠 (𝑎𝑁−Δ𝑁,𝑖
𝑠𝑖𝑚 ) is the PDF corresponding to the triangular distribution defined in Eq. 

(9). We give below the detailed algorithm of the Bayesian procedure at the N
th

 inspection 

 

Input data: 𝑎𝑁−2Δ𝑁
𝑚𝑒𝑎𝑠 , Δ𝑎𝑁

𝑚𝑒𝑎𝑠  

 

                       Discretize m 

 

For every mi: 

M samples of: 𝑎𝑁−2Δ𝑁
𝑠𝑖𝑚 = 𝑎𝑁−2Δ𝑁

𝑚𝑒𝑎𝑠 + 𝑣𝑖  
With 𝑣𝑖~𝑈(−𝑉,𝑉) 

𝑎𝑁
𝑠𝑖𝑚 =  Δ𝑁𝐶  1 −

𝑚𝑖

2
  𝜎 𝜋 

𝑚 𝑖
+  𝑎𝑁−Δ𝑁

𝑠𝑖𝑚  
1−

𝑚 𝑖
2  

2
2−𝑚 𝑖

 

𝑙 Δ𝑎 𝑚𝑖 =
1

𝑀
 𝑓𝑚𝑒𝑎𝑠 (Δ𝑎𝑁,𝑖

𝑠𝑖𝑚 )

𝑀

𝑖=1
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