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In fatigue life design of mechanical components, uncertainties arising from materials and 

manufacturing processes should be taken into account for ensuring reliability. A common 

practice is to apply a safety factor in conjunction with a physics model for evaluating the 

lifecycle, which most likely relies on the designer's experience. Due to conservative design, 

predictions are often in disagreement with field observations, which makes it difficult to 

schedule maintenance. In this paper, the Bayesian technique, which incorporates the field 

failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue 

life. The effects of prior knowledge, noise in data, and bias in measurements on the 

distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue 

life, its parameters are identified first, followed by estimating the distribution of fatigue life, 

which represents the degree of belief of the fatigue life conditional to the observed data. As 

more data are provided, the values will be updated to reduce the confidence interval. The 

results can be used in various needs such as a risk analysis, reliability based design 

optimization, maintenance scheduling, or validation of reliability analysis codes. In order to 

obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, 

which is a modern statistical computational method which effectively draws the samples of 

the given distribution. Field data of turbine components are exploited to illustrate our 

approach, which counts as a regular inspection of the number of failed blades in a turbine 

disk.  
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Nomenclature 

P(x) = Probability of random variable X = x 

P(x|y) = Conditional probability of X = x with a given Y = y 

fX(x) = Probability density function of random variable X 

fXY(x,y) = Joint probability density function of random variables X and Y 

fX(x|y) = Marginal probability density function 

Pf = Probability of failure 

,  = Parameters for normal distribution 

m,  = Parameters for Weibull distribution 

flife(t) = Distribution of fatigue life 
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I. Introduction 

ERFORMANCE of mechanical components undergoes a change by uncertainties such as environmental effects, 

dimensional tolerances, loading conditions, material properties and maintenance processes. Especially when the 

design criterion is fatigue life, it is significantly affected by system uncertainties. Even with today‟s modern 

computing systems, it is infeasible to include all the relevant uncertain variables into the analytical prediction, since 

many of the potential inputs are not characterized in the design phase. Approximation methods, such as the response 

surface method with Monte Carlo simulation (MCS)
1,2

, were often employed to overcome excessive computational 

cost in reliability assessment.  

To account for the unknown variables, common practices use so called “safety factors” or statistical minimum 

properties in conjunction with the analytical prediction when evaluating lifetimes. Due to these conservative 

estimations, analytical predictions are often in disagreement with field experience, and a gap exists in correlating the 

field data with the analytical predictions. Thus, there is an increasing need to improve the analytical predictions 

using field data, which collectively represents the real status of a particular machine. 

Field failure data can be helpful in predicting fatigue life that has uncertainties due to the unknown potential 

inputs. Recently, for more reliable life prediction, many studies using field data have been undertaken
3
. In non-

fatigue life prediction, Orchard et al.
4
 used particle filtering and learning strategies to predict the life of a defective 

component. Marahleh et al.
5
 predicted the creep life from test data, using the Larson-Miller parameter. Park et al.

6
 

used an energy-based approach to predict constant amplitude multiaxial fatigue life. Guo et al.
7
 performed reliability 

analysis for wind turbines using maximum likelihood function, incorporating test data. 

In this paper, the Bayesian technique is utilized to incorporate field failure data with prior knowledge to obtain 

the posterior distribution of the unknown parameters of the fatigue life
8
. The analytical predictions are obtained 

either from numerical models or laboratory tests. The field data, although noisy, invariably portray environmental 

factors, measurement errors, and loading conditions, or in short, reality. Since the predictions incorporate field 

experience, as time progresses and more data are available, the probabilistic prediction is continuously updated. This 

results in a continuous increase of confidence and accuracy of the prediction. In this paper, Markov Chain Monte 

Carlo (MCMC) technique is employed as an efficient means to draw samples of given distribution
9
. Consequently, 

the posterior distribution of the unknown parameters of the fatigue life is obtained in light of the field data collected 

from the inspection. Subsequently, fatigue life is predicted a posteriori based on the drawn samples. The resulting 

distributions can then be used directly in risk analysis, maintenance scheduling, and financial forecasting by both 

manufacturers and operators of heavy-duty gas turbines. This presents a quantification of the real time risk for direct 

comparison with the volatility of the power market. 

 The paper is organized as follows. In Section 2, the Bayesian technique is summarized, particularly with 

estimating the distribution of fatigue life through identifying the distribution of parameters. Section 3 discusses the 

effect of noise and bias on the accuracy of posterior distribution. In Section 4, five different cases are considered 

with varying priors and likelihoods, followed by conclusions in Section 5. 

II. BAYESIAN TECHNIQUE FOR LIFE PREDICTION 

In this section, Bayesian inference is explained in the view of updating distribution of fatigue life using test data. 

The Bayesian theorem is first presented in a general form, followed by a specific expression for estimating the 

distribution of fatigue life. 

A. Bayes' theorem 

Bayesian inference estimates the degree of belief in a hypothesis based on collected evidence. Bayes
10

 formulated 

the degree of belief using the identity in conditional probability: 

 ( ) ( | ) ( ) ( | ) ( )P x y P x y P y P y x P x  (1) 

where P(x|y) is the conditional probability of X = x given Y = y. In the case of estimating the probability of 

fatigue life using test data, the conditional probability of event X (i.e., fatigue life) when the probability of test Y is 

available can be written as 

 
( | ) ( )

( | )
( )

P y x P x
P x y

P y
 (2) 
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where P(x|y) is the posterior probability of fatigue life X for given test y, and P(y|x) is called the likelihood 

function or the probability of obtaining test Y for a given fatigue life x. In Bayesian inference, P(x) is called the 

prior probability, and P(y) is the marginal probability of Y and acts as a normalizing constant. The above equation 

can be used to improve the knowledge of P(x) when additional information P(y) is available.  

Bayes' theorem in Eq. (2) can be extended to the continuous probability distribution with probability density 

function (PDF), which is more appropriate for the purpose of the present paper. Let fX be a PDF of fatigue life X. If 

the test measures a fatigue life Y, it is also a random variable, whose PDF is denoted by fY. Then, the joint PDF of X 

and Y can be written in terms of fX and fY, as 

 ( , ) ( | ) ( ) ( | ) ( )
XY X Y Y X
f x y f x Y y f y f y X x f x  (3) 

When X and Y are independent, the joint PDF can be written as ( , ) ( ) ( )
XY X Y
f x y f x f y  and Bayesian inference 

cannot be used to improve the probabilistic distribution of fX(x). Using the above identity, the original Bayes' 

theorem can be extended to the PDF as
11

 

 
( | ) ( )

( | )
( )

Y X
X

Y

f y X x f x
f x Y y

f y
 (4) 

Note that it is trivial to show that the integral of fX(x|Y = y) is one by using the following property of marginal 

PDF: 

 ( ) ( | ) ( )d
Y Y X
f y f y X f  (5) 

Thus, the denominator in Eq. (4) can be considered as a normalizing constant. By comparing Eq. (4) with Eq. (2), 

( | )
X
f x Y y  is the posterior PDF of fatigue life X given test Y = y, and ( | )

Y
f y X x  is the likelihood function 

or the probability density value of test Y given fatigue life X = x. 

When the analytical expressions of the likelihood function, ( | )
Y
f y X x , and the prior PDF, fX(x), are 

available, the posterior PDF in Eq. (4) can be obtained through simple calculation. In practical applications, 

however, they may not be in the standard analytical form. In such a case, the Markov Chain Monte Carlo (MCMC) 

simulation method can be effectively used, which will be addressed in Section 2.3 in detail.  

When multiple, independent tests are available, Bayesian inference can be applied either iteratively or all at 

once. When N number of tests are available; i.e., y = {y1, y2, …, yN}, the Bayes' theorem in Eq. (4) can be 

modified to 

 
1

1
( | ) ( | ) ( )

N

X Y i X
i

f x Y f y X x f x
K

y  (6) 

where K is a normalizing constant. In the above expression, it is possible that the likelihood functions of individual 

tests are multiplied together to build the total likelihood function, which is then multiplied by the prior PDF 

followed by normalization to yield the posterior PDF. On the other hand, the one-by-one update formula for Bayes' 

theorem can be written in the recursive form as 

 ( ) ( 1)1
( | ) ( | ) ( ), 1, ,i i

X i Y i X

i

f x Y y f y X x f x i N
K

 (7) 

where Ki is a normalizing constant at i-th update and 
( 1)( )i

X
f x  is the PDF of X, updated using up to (i1)th tests. In 

the above update formula, 
(0)( )
X
f x  is the initial prior PDF, and the posterior PDF becomes a prior PDF for the next 

update. 

In the view of Eqs. (6) and (7), it is possible to have two interesting observations. Firstly, the Bayes' theorem 

becomes identical to the maximum likelihood estimate when there is no prior information; i.e., fX(x) = constant. 

Secondly, the prior PDF can be applied either first or last. For example, it is possible to update the posterior 

distribution without prior information and then to apply the prior PDF after the last update.  

An important advantage of Bayes' theorem over other parameter identification methods, such as the least square 

method and maximum likelihood estimate, is its capability to estimate the uncertainty structure of the identified 
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parameters. These uncertainty structures depend on that of the prior distribution and likelihood function. 

Accordingly, the accuracy of posterior distribution is directly related to that of likelihood and prior distribution. 

Thus, the uncertainty in posterior distribution must be interpreted in that context. 

B. Application to fatigue life estimation 

In deriving Bayes' theorem in the previous section, two sets of information are required: a prior PDF and a 

likelihood function. In estimating fatigue life, the prior distribution can be obtained from numerical models and 

laboratory tests. Since they can be performed multiple times with different input parameters that represent various 

uncertainties, it is possible to evaluate the distribution of fatigue life, which can be served as a prior PDF of fatigue 

life. 

On the other hand, the field data cannot be obtained in a laboratory environment. In this section, using field data 

in calculating the likelihood function is presented. When a gas turbine engine is built and installed in the field, the 

maintenance/repair reports include the history of the number of parts that were defective and replaced at specific 

operating cycles. Although these data are not obtained under a controlled laboratory environment, they represent 

reality with various effects of uncertainties in environmental factors, measurement errors, and loading conditions. 

Thus, it is desirable to use these data to update the fatigue life of the specific machine using Bayes' theorem. 

The standard approach to applying Bayes' theorem is to use the field data to build the likelihood function, which 

is basically the same as the PDF form with fatigue life. However, different from specimen-level tests, the field data 

cannot be repeated multiple times to construct a distribution. Only one data point exists for the specific operation 

cycles. Thus, the original formulation of Bayes' theorem needs to be modified. First, instead of updating the PDF of 

fatigue life, it is assumed that the distribution type of fatigue life is known in advance. This can be a big assumption, 

but it is possible that different types of distributions can be assumed and the most conservative type can be chosen. 

Once the distribution type is selected, then it is necessary to identify distribution parameters. For example, in the 

case of normal distribution, the mean () and standard deviation () need to be identified. In this paper, these 

distribution parameters are assumed to be uncertain and Bayes' theorem is used to update their distribution; i.e., the 

joint PDF of mean and standard deviation will be updated. In this case, the vector of random variables is defined as 

X = {, }, and the joint PDF fX is updated using Bayes' theorem. Initially, it is assumed that the mean and 

standard deviation are uncorrelated. 

A field data set consists of the number of hours of operation until inspection (Nf), and the number of defective 

blades (r) out of the total number of blades (n). Thus, the field data are represented by y = {Nf, n, r}, which are 

given in Table 1. Then, the likelihood function is the PDF fY for given X = {, }. Since the field data is given at 

fixed Nf and n, fY can be represented in terms of r. Unfortunately, the number of defective blades cannot be a 

continuous number because it is an integer. Thus, the likelihood function fY can be represented using the following 

probability mass function: 

 
!

y | { , } ( ) (1 )
!( )!

r n r

Y f f

n
f P P

r n r
X  (8) 

where Pf is the probability of defects at given Nf for given X = {, }. Since the distribution of fatigue life is given 

as a function of X, the probability of defects can be calculated by 

 
life

0

, ; ,
fN

f
P f t dt  (9) 

where, flife is the PDF of fatigue life distribution. The probability mass function in Eq. (8) is a binomial distribution, 

which models the probability distribution of having „r‟ defects out of „n‟ samples with defect probability of Pf. 

Figure 1 illustrates the relation in Eq. (9). The predictive distribution of life can be estimated using the mean and 

standard deviation obtained from the updated joint PDF as 

 
life

( ) ( , )f t N  (10) 

In this paper, since the distribution type of the fatigue life is unknown, two different types are assumed: normal and 

Weibull. The strategy is to select the one that can provide a more conservative estimate. In the case of the Weibull 

distribution, the scale and shape parameters (m, ) are used in the Bayesian technique. 
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As mentioned above, the predictive distribution of fatigue life depends on that of the prior distribution and 

likelihood function. The PDF of life flife(t|X) and the prior PDF f(X) are therefore assumed as the following cases: 

Case 1:  
life

|f t : normal dist. and ,f : non-informative prior (11) 

Case 2:  
life

|f t : normal dist. and , 1,0.5 0.154,0.077f N N  (12) 

Case 3:  
life

|f t : normal dist. and 2 2, 1,0.5 Inv- 4 1,0.154f N  (13) 

Case 4:  
life

| ,f t m : Weibull dist. and ,f m : non-informative prior (14) 

Case 5:  
life

| ,f t m : Weibull dist. and , -0.049,0.472 1.912,0.472f m LogN LogN  (15) 

 

For the likelihood function, normal and Weibull distributions are first considered as fatigue life distributions, and 

then, are used to calculate the fatigue failure probability Pf  in likelihood calculation as in Eq. (8). In the model, the 

associated model parameters are ,  in the case of normal and m,  in the case of Weibull distribution, 

respectively. These are taken to be unknown and are estimated using the inspected data. In terms of prior 

distribution, the probability distribution of fatigue life that was obtained numerically by conducting reliability 

analysis is exploited, in which the mean and standard deviation of fatigue life are given by normalized fatigue life 1 

and 0.154 respectively. Based on these values, different kinds of prior distributions for the two parameters are 

undertaken for the Cases 2, 3 and 5, in which the coefficient of variation (COV) for the mean and standard deviation 

are assumed as 0.5 in common. 

 

 

Figure 1: Probability of defects calculation from life distribution. 

 

Table 1: Field data for inspected turbine blades 

Engine Hours( Nf ) Failed( r )/Total( n ) Engine Hours( Nf ) Failed( r )/Total( n ) 

1 0.836 2/40 8 0.281 0/40 

2 0.604 1/40 9 5.053 13/40 

3 0.290 1/40 10 0.707 0/40 

4 1.770 0/40 11 1.652 0/40 

5 2.321 12/40 12 1.265 10/40 

6 2.254 3/40 13 3.615 18/40 

7 1.162 6/40    

 

C. MCMC simulation 

Once the expression for the posterior PDF is available as in Eq. (6), one can proceed to sample from the PDF. A 

primitive way is to compute the PDF values at a grid of points after identifying the effective range, and sample by 

the inverse CDF method. This method, however, has several drawbacks such as the difficulty finding correct 

location and scale of the grid points, the spacing of the grid, and so on. Especially when a multi-variable joint PDF 

is required, the computational cost is proportional to Nm, where N is the number of grids in one-dimension and m is 
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the number of variables. On the other hand, the MCMC simulation can be an effective solution as it is less sensitive 

to the number of variables
9
. The Metropolis-Hastings (M-H) algorithm is a typical method of MCMC, which is 

given in the case of two parameters (, ) by the following procedure: 

 

(0) (0)

0,1

* * * *

* *

* * * *

* *

1. Initialize , .

2. For 0 to 1

  Sample ~ .

  Sample , ~ , | , .

  if  , , ,

, , | ,
             min 1,

, , | ,

i i

i i

i i

i i i i

i N

u U

q

u A

p q
A

p q

1 1 * *

1 1

                                , ,

 else

                                , ,

i i

i i i i

 (16) 

where (0) (0),  is the initial value of unknown parameters to estimate, N  is the number of iterations or samples, U 

is the uniform distribution, ,p  is the posterior PDF (target PDF), and ,q  is an arbitrarily chosen 

distribution. A uniform distribution is used in this study for the sake of simplicity. Thus, * *, | ,
i i

q  and 
* *, | ,

i i
q  become constants, and ,q  can be ignored. As an example of MCMC, the joint posterior 

PDF of the unknown parameters ,  of the fatigue life using only the first data is shown in Figure 2, which 

represents the degree of belief on the concerned parameters in the form of PDF. The joint posterior PDF using the 

grid method as well as MCMC sampling are shown in Figure 2(a) and (b), respectively. In Table 2, statistical 

moments by the two methods are compared. As shown in the table, the two methods agree quite closely but MCMC 

used 10(10)
3
 samples, whereas gird used 250(10)

3
 samples. The difference in the number of samples will be 

significantly increased as more variables are identified. 

 

 

(a) using grid method (500 500 grid) 

 

(b) using MCMC (10
4
 iterations) 

Figure 2: Joint posterior PDF of Case 2 in Eq. (12) with one test data 

 

Table 2: Statistical moments by the two methods 

     ,Cov  

Grid 1.1476  0.1854  0.1265 0.0656 0.0000  

MCMC 1.1353  0.1797  0.1241 0.0656 0.0000  
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3. ANALYTICAL EXAMPLE 

Although the Bayesian approach has been used extensively in literature
12

, it is important to investigate its 

performance. In particular, it is important to characterize how this method identifies unknown parameters when the 

experimental data have noise and bias. In this section, the properties of Bayes' theorem are studied using analytical 

examples. In particular, the effects of noise and bias of data on the final distribution are discussed. The data here are 

simulated to demonstrate the new analytical technique. These data are then perturbed in order to study the effects of 

noise and bias errors on the algorithm. 

A. Field data governed by a distribution 

The first study is to test the accuracy of the updated distribution using Bayes' theorem. Table 3 shows an example of 

field data that are used in this section. The total number of blades is n = 50. The field data are generated from a 

distribution, B ~ N(12000, 2000) (B is actually unknown distribution which should estimated based on the field 

data but is used to generate the field data) and the objective is to test if the updated distribution recovers the 

distribution B. For the prior distribution, the mean is uniformly distributed in the interval of [0, 30000], while the 

standard deviation is also uniformly distributed in the interval of [0, 4500]. Using the four sets of field data in Table 

3, the posterior joint PDF are calculated using Bayes' theorem. After obtaining the posterior joint PDF, samples 

obtained from the MCMC simulation are used to predict the distribution of life. Figure 3 compares the updated 

distribution of fatigue life with the distribution B, along with the predicted probability of defects from field data. In 

this figure, the red curves represent the 5% lower bound, mean, and 95% upper bound from the left hand, 

respectively. It is clear that both distributions match each other quite well. When the field data are governed by a 

particular distribution, Bayes' theorem can reproduce the distribution well when more than 3 sets of data are 

available. 

 

Table 3: Sample field data for inspected turbine blades 

Engine 1 2 3 4 

Operating hours 9303 14255 12700 11402 

Number of defective blades 4 44 32 19 
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Figure 3: Comparison between the updated life distribution using Bayes' theorem and the original 

distribution 

 

B. Effect of bias and noise 

In practice, the field data are often accompanied by noise and bias. The former is caused by variability in 

measurement environment, while the latter represents systematic departure, such as device error. The difference is 

that the former is random, while the latter is deterministic, although its value is unknown. In some cases, a positive 

bias is consciously applied to remain conservative. This section analyzes the effect of bias and noise on the updated 

life distribution using the same sample data shown in Table 3.  
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First, the bias is given in terms of the operating hours of blades. For example, bias = 10% means that the 

operating hours of blades is 10% more than the nominal operating hours. Figure 4(a) shows the effect of bias on the 

distribution of fatigue life. Both positive and negative biases are considered. As expected a negative bias leads to a 

conservative estimate of the updated life distribution. From Table 4, it can be observed that the standard deviation of 

the life distribution remains about the same as the true value 2000, while the mean values are shifted by ±1200 due 

to the biases. 

Next, the effect of noise in the data is investigated by randomly perturbing the original data by 10% and 20%. 

Figure 4 (b) shows the updated distribution of fatigue life with the two different levels of noise, and more specific 

results are shown in Table 4, which also includes the effect of the number of data. Different from the case of bias, as 

the number of data increases, the means converge to a nominal mean. However, the standard deviation is relatively 

insensitive to the number of data; it shows a slight increase with 50 points of data. Although the estimated 

distribution is inaccurate with high levels of noise, it tends to be conservative when the life with a low probability of 

failure is estimated. In general, bias can be identified with many data by using the least-square method or the 

Bayesian approach with the bias as an unknown system parameter
13

.  
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(a) life distribution results due to ±10% bias 
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(b) life distribution results due to 10% and 20% noise 

Figure 4: Effect of bias and noise  

 

 

Table 4: Mean and standard deviation of unknown parameter ,   

 
determ-

inistic 

bias noise 10% noise 20% 

+10% -10% data=4 data=10 data=50 data=4 data=10 data=50 

 12008 13209 10795 12907  11854  12148  10350  11514  12024  

Error (%) 0.07 10.08 (-)10.04 7.55  1.21  1.24  13.75  4.05  0.20  

 2054 2039 2017 3187  3024  3080  4166  4225  4473  

Error (%) 2.69 1.94 0.86 59.34  51.18  53.98  108.32  111.23  123.65  

 404  404  397  453  408  196  453  347  208  

 322  319  326  640 381 157  262  211  89  

 

4. IDENTIFICATION OF MODEL PARAMETER AND PREDICTION OF LIFE 

DISTRIBUTION 

A. Posterior distribution of model parameter 

The results of Case 1 where the likelihood is a normal distribution and non-informative prior are shown in Figure 5. 

In Figure 5(a), the contours of prior distribution, likelihood function and joint posterior PDF of the unknown 

parameters are plotted. In these figures, the updated prior and the likelihood are obtained from the posterior 

distribution previously obtained and the inspection data, respectively. The posterior distribution is obtained by 

multiplying the prior and likelihood, and is used in the next updating step as the prior distribution. Since a non-
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informative prior is used, the first update is identical to the first likelihood function. Since data from a single test can 

be represented by infinite combinations of means and standard deviations, the contours of likelihood become 

straight lines. In Figure 5(b), the posterior PDFs are plotted in the form of contours. Even if the contours of 

individual likelihood functions are straight, the uncertainty in the posterior distribution is reduced and show 

correlation between the mean and standard deviation. It is shown that as more data are added, the location and range 

of ,  moves and narrows down to converge to a certain point. The results indicate our knowledge on the unknown 

parameters based on the field inspection. 
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(b) contour of joint posterior PDF 

Figure 5: Updated posterior PDF of Case 1. 

 

The results of Cases 2 – 5 are shown in Figure 6~Figure 9. The results of Case 2 where the likelihood is still a 

normal distribution but with normally distributed priors are shown in Figure 6(a) and (b). Different from the non-

informative prior case in Figure 5, the level of uncertainties remains almost constant, but their locations 

continuously change for different field data. As illustrated in Figure 6(a), the posterior distribution is already 

narrowed due to the prior distribution. However, since the prior distribution is quite different from the field data, the 

centers of posterior distributions gradually move as more field data are used. In addition, the final posterior 

distribution moves toward to the prior distribution compared to that of Figure 5. Figure 5 and Figure 6 clearly 

provide the effect of prior distribution. When there is a strong inclination to the prior distribution, then its use can 

yield the posterior distribution closer to it than the non-informative prior. Then due to field data that predict a longer 

fatigue life, the expected life will gradually increase.     

The results of Case 3 where the likelihood is normal and the prior for the sigma is changed to a chi-square 

distribution with degree of freedom n( = 4) – 1 and scale parameter 0 = 0.154, which are more reasonable 

assumptions due to non-negativity, are shown in Figure 7(a) and (b).  In this case, the standard deviation of the 

posterior distribution increases with more field data because the prior has a small standard deviation than that of 

field data. If the likelihoods are considered first with a non-informative prior, as is found in the 1st~4th data and 

1st~10th data of Figure 7(c), and the posterior is obtained by applying the prior at the last stage, which is 1st~13th 

data in the figure, one gets the standard deviation decreased as more field data are added, with the final posterior 

being updated by the prior. 

The results of Case 4 where the likelihood is the Weibull distribution with scale () and shape (m) parameter 

and a non-informative prior are shown in Figure 8, and the results of Case 5 where the likelihood is still the Weibull 

distribution but with the prior being lognormally distributed are shown in Figure 9. Both cases show the convergent 

behavior, but the range of m,  of Case 5 is narrower than that of Case 4 due to the prior. The case of a non-

informative prior shows a strong correlation between the mean and standard deviation, which is significantly 

reduced with the lognormal prior. These cases are the most reasonable because the Weibull distribution is the best 

model for the lifetime
14
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(b) updated posterior PDF contours 

Figure 6: Updated posterior PDF contours of Case 2 
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(b) updated posterior PDF 

 (normalized hour)


 (

n
o
rm

a
liz

e
d
 h

o
u
r)

posterior dist. contour

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1st~13th data

1st~10th data

1st~4th data

 

(c) updated posterior PDF with prior 

being applied at the last stage 

Figure 7: Updated posterior PDF contours of Case 3 

 

 (normalized hour)

m

using only the 1st data

5 10 15 20

1

2

3

4

5

6

7

8

 (normalized hour)

m

using 1st~4th data

5 10 15 20

1

2

3

4

5

6

7

8

 (normalized hour)

m

using 1st~7th data

5 10 15 20

1

2

3

4

5

6

7

8

 (normalized hour)

m

using 1st~10th data

5 10 15 20

1

2

3

4

5

6

7

8

 (normalized hour)

m

using 1st~13th data

5 10 15 20

1

2

3

4

5

6

7

8

 

Figure 8: Updated posterior PDF contours of Case 4  
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Figure 9: Updated posterior PDF contours of Case 5 

 

The final posterior PDFs of all cases are shown in Figure 10. Figure 10(a) and (b) are the results of  and  of 

the normal distribution and  and m of the Weibull distribution, respectively. Case 1 in Figure 10(a) and Case 4 in 

Figure 10(b) are the results of non-informative priors. As was expected, the results are much wider than the others 
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due to the non-informative prior. If specific prior information is available, the precision of the posterior distribution 

is increased. 
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(b) likelihood is Weibull distribution 

Figure 10: Final posterior PDFs of all cases. 

  

B. Posterior predictive distribution of fatigue life 

The posterior PDF obtained in Section 4.2 can be used to predict the probability of fatigue life. Recall that the 

Bayesian inference updates the distribution of mean and standard deviation of the life distribution. Each sample of 

mean and standard deviation yields a distribution of fatigue life, which can be represented by a cumulative 

distribution function (CDF). Thus, as a result of Bayesian inference, a distribution of CDF can be obtained. For 

explanatory purposes, this distribution of CDF can be represented by a confidence interval. It is expected that this 

interval will be wide when the uncertainty in the mean and standard deviation is large. In general, the uncertainty in 

mean and standard deviation reduces with greater numbers of field data, and the confidence interval will also be 

reduced with more field data. 

Figure 11 shows the updating process of the predicted fatigue life CDF along with field data for Case 1. The red 

stars are the field data at the current update, while the blue stars are the field data up to the previous update. In the 

same figure, the dashed red curve is the mean CDF of fatigue life, while the two solid red curves are 5% and 95% 

confidence bounds. Compared to the significant noise in the field data, the confidence interval of the predicted CDF 

is progressively reduced. In order to accommodate safety, it is advised to take a 5% lower bound of the CDF.   

In order to show the difference between initial and final distributions of fatigue life, Figure 12 plots the 

confidence intervals using prior and the final posterior distribution of mean and standard deviation for Cases 2, 3, 

and 5. It is clear that all initial distributions are overly conservative. This often happens because analytical models 

often assume all input random variables are independent, when they may be correlated. In addition, material 

properties and design loads are often chosen to be conservative. 

For the purpose of planning scheduled maintenance, it is often required to choose either 1% or 10% life, which is 

also called B1 or B10 life. Table 5 shows the confidence intervals of B1 and B10 life, along with lower- and upper-

bounds of the 90% confidence intervals. In Cases 1 and 3, which employed a normal model, negative values for the 

life are calculated due to wrong assumptions on the model; the normal distribution can have negative lives. On the 

other hand, Cases 4 and 5 are reasonable because they only allow positive values.  

Since the type of distribution is assumed initially, it is advised to choose the most conservative one, which is 

Case 4 in this study. Although Case 4 does not have prior information compared to Case 5, its confidence interval 

has significantly been reduced using enough field data; the confidence intervals at 1% Pf are 0.245 and 0.267, 

respectively. However, this may not always be true. For example, Cases 4 and 5 are compared in Figure 13 and 

Table 6 when only the first data are used in Bayesian inference. Without having the prior distribution, Case 4 shows 

a significant uncertainty, and the lower-bound of 1% Pf is 0.019, which is overly conservative and costly due to 

frequent maintenance. Thus, when the number of field data is small or the field data have excessive noise, the prior 

information plays an important role to determine acceptable maintenance intervals. In summary, the ability to use 

the prior properly and the ability to choose appropriate statistical model are the main advantages of Bayesian 

inference over the regression method.  
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Figure 11: Updated Process of Case 1 
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(a) Case 2 
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(b) Case 3 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Normalized operating hours

p
f

 

 

 Field data

 Initial(prior)

 Final(1~13th data)

 

(c) Case 5 

Figure 12: Final updated distribution of fatigue life. 

 

 

Table 5: Confidence interval of normalized fatigue life at the last stage 

 1% Pf 10% Pf 

5% lower 95% upper interval 5% lower 95% upper interval 

Case 1 -2.261   -0.562   2.065   1.160   2.013   0.853   

Case 2 0.658   1.272   0.615   1.872   2.320   0.448   

Case 3 -0.459   0.429   0.888   1.461   2.019   0.558   

Case 4 0.093   0.338   0.245   1.035   1.750   0.715   

Case 5 0.229   0.496   0.267   1.223   1.769   0.546   
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Figure 13: Comparison between Case 4 and Case 5 

 

 

Table 6: Confidence interval of normalized fatigue life at the first stage 

 1% Pf 10% Pf 

5% lower 95% upper interval 5% lower 95% upper interval 

Case 4 0.019   0.862   0.843   0.562   3.930   3.368   

Case 5 0.473   0.776   0.303   0.789   1.155   0.366   

 

5. CONCLUSIONS 

In this paper, a Bayesian updating technique is presented, which incorporates statistical prediction with field data. 

By using MCMC simulation, samples of model parameters  (, or m, ) are drawn effectively, which are 

parameters of the fatigue life distribution. After obtaining samples for a joint posterior PDF of , the fatigue life 

prediction results are obtained, which have a CDF in confidence intervals due to the uncertainties of the model 

parameters. If there is specific prior information of model parameters, the precision of the posterior distribution is 

increased. In case the type of the distribution of the likelihood is not known a priori, it is advised to choose the most 

conservative type after examining several candidates as was found in this study. 
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