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The extended finite element method allows one to represent strong (cracks) and weak 

(holes, material interfaces) discontinuities independent of the finite element mesh through 

the partition of unity. This allows one to avoid costly remeshing which occurs in the vicinity 

of the crack tip in the traditional finite element framework when modeling crack growth. 

However, fatigue crack growth simulation has been computationally challenging due to the 

large number of simulations needed to model growth to failure. Reanalysis techniques are 

well developed in the areas of design and optimization for the modification of the finite 

element stiffness matrix to account for the addition/modification of degrees of freedom as a 

result of the design change. In this paper, it is observed that modeling quasi-static crack 

growth in the extended finite element framework involves the addition of degrees of freedom 

to a system of equations. Therefore, a new reanalysis algorithm based on an incremental 

Cholesky factorization is introduced for modeling quasi-static crack growth in the extended 

finite element method. This method is also used to predict the angle of crack initiation using 

an optimization algorithm. The examples contained within show that a 30-48% reduction in 

the total computational time is achievable for using the reanalysis approach for solving 

optimization problems or modeling quasi-static growth. It is shown that the assembly time 

for the stiffness matrix is insensitive to the number of elements for the proposed method. 

Nomenclature 

a  = half crack length 

Ia , Ib  = enriched nodal degrees of freedom associated with enrichment functions 

xh  = Heaviside enrichment function 

H x  = shifted Heaviside enrichment function 

r  = distance from crack tip to a point of interest 

hu x  = XFEM displacement approximation 

Iu  = nodal degree of freedom vector associated with continuous finite element solution 

 = angle from crack to point of interest in the crack tip coordinate system 

c  = angle of crack growth 

x  = linear elastic asymptotic crack tip enrichment function 

x  = shifted linear elastic asymptotic crack tip enrichment function 

x  = generic enrichment function 

I x  = generic enrichment function evaluated at node I  of an element 
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( )V x  = enrichment function for voids 

x  = generic shifted enrichment function 

 = set of all nodes in the mesh 

d  = set of all enriched nodes 

H  = set of nodes whose shape function is cut by the crack 

T  = set of nodes whose shape functions are cut by the crack tip 

 

I. Introduction 

ODELING crack growth in a traditional finite element framework is a challenging engineering task. 

Originally the finite element framework was modified to accommodate the discontinuities that are caused by 

phenomena such as cracks, inclusions and voids. The finite element framework is not well suited for modeling crack 

growth because the domain of interest is defined by the mesh. At each increment of crack growth, at least the 

domain surrounding the crack tip must be remeshed such that the updated crack geometry is accurately represented. 

The extended finite element method (XFEM) along with the level set method can be used to alleviate many of 

the inconveniences of using the finite element method (FEM) to model the evolution of a crack. Special enrichment 

functions are added to the traditional finite element framework through the partition of unity framework
1
. For 

modeling the strong discontinuity of a cracked body two enrichment functions are used. The Heaviside step function 

represents the discontinuity away from the crack tip, and the linear elastic asymptotic crack tip displacement fields 

are used to account for discontinuity at the crack tip. The crack is represented independent of the mesh by the 

enrichment functions which allows for the crack geometry to be updated without a need to create/update a new mesh 

on the domain. For the case of a material interface, an enrichment function is used which combines distance from 

the weak discontinuity and the absolute value function. 

Crack growth was modeled by combining the maximum circumferential stress criterion and Paris law for 

predicting the direction and incremental crack growth length. The stress intensity factors needed for these models 

were calculated using the domain form of the J-integral interaction integrals. Modeling crack growth is a 

computationally expensive task because it requires tens of thousands of loading cycles. Instead of performing a 

finite element analysis at each cycle, in the literature a fixed crack growth size
2
 or a constant number of elapsed 

cycles
3
 is used to approximate the total life of the component. This assumption yields a constant crack growth rate 

and direction for multiple cycles. As the direction of crack propagation can change in each cycle and as the rate of 

crack growth changes according to the crack size, this assumption does not yield the actual crack propagation path. 

In particular, Moës
2
 showed different crack growth paths for different fixed crack growth sizes. In addition, it is not 

easy to estimate how many cycles will be needed for a given size of crack growth. In order to estimate accurate 

fatigue crack growth, it is necessary to perform a large number of analyses, which will be tremendously expensive. 

Reanalysis algorithms
4,5

 have been developed primarily for use in the fields of design and optimization to 

efficiently solve problems where small perturbations to the finite element domain are made. This may take the form 

of changing the location of elements, adding additional elements, or a combination of both. These methods can be 

classified as either being exact or approximate
6
. The exact methods are generally based on the Sherman-Morrison

7
 

inversion formula and consider cases where the modified elements affect a small number of degrees of freedom. The 

approximate methods are typically iteration based and are used when the modified elements affect a large number of 

degrees of freedom. Li and Wu
5,6,8

 have introduced algorithms for the reanalysis of structures with added degrees of 

freedom through the use of an iterative solver. An exact reanalysis algorithm is used here to allow for each iteration 

of crack growth to be considered instead of using either a fixed increment of crack growth or number of cycles. The 

method is also used to reduce the cost of an optimization analysis of the angle of crack initiation for a crack 

emanating from a plate with a hole. 

The organization of the paper is as follows. Section 2 reviews the basics of the extended finite element method 

along with the enrichment functions used for representing cracks and voids independent of the mesh. Section 3 

reviews the crack growth model used in quasi-static analysis along with the contour integral formulation. Section 4 

introduces the reanalysis algorithm using incremental Cholesky factorization. Section 5 first verifies the 

implementation of the enrichment functions for cracks and voids by comparison with benchmark problems. Then the 

reanalysis algorithm is explored through the use of a plate with an edge crack. Finally, the reanalysis algorithm is 

used to predict the location of crack initiation in a plate with a hole. For one of these cases, the crack is then grown 

to failure in over one thousand cycles and the resulting computational time for the brute force and reanalysis 

algorithm are compared. 

M 
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II. Extended Finite Element Method 

The extended finite element method
2
 (XFEM) allows discontinuities to be represented independent of the finite 

element mesh by exploiting the partition of unity finite element method
1
 (PUFEM). Arbitrarily oriented 

discontinuities can be modeled independent of the finite element mesh by enriching all elements cut by a 

discontinuity using enrichment functions satisfying the discontinuous behavior and additional nodal degrees of 

freedom. In general the approximation of the displacement field in XFEM takes the following form:  

 h( ) N ( ) ( )
d

I I I
I I

x x xu u a  (1) 

where  is the entire domain and d  is the domain containing discontinuities. In Eq. (1), N ( )I x  are the traditional 

finite element shape function, ( )x  is the discontinuous enrichment function, and Iu , Ia  are the traditional and 

enriched degrees of freedom (DOF). Note that where d , the enrichment function ( )x  vanishes. As the 

discontinuities are not defined by the finite element mesh, the level set method
9,10

 is used to track the 

discontinuities
11,12

. The approximation in Eq. (1) does not satisfy interpolation property; i.e., ( )h
I Ixu u  due to 

enriched degrees of freedom. A common practice to satisfy the interpolation property in implementations of XFEM 

is to 'shift' the enrichment function
13

 such that 

 ( ) ( ) ( )I Ix x x . (2) 

where ( )I x  is the shifted enrichment function for the i
th

 node and ( )I x  is the value of ( )x  at the i
th

 node. Thus, 

the interpolation property is recovered as the shifted enrichment function ( )I x  vanishes at the node. Here lower 

case variables are used to represent the unshifted enrichment functions. 

For modeling a crack in a homogeneous material, two different enrichment schemes are employed. For an 

element completely cut by a crack, the Heaviside
2
 enrichment function is used such that  

 
Above Crack

Below Crack

1
h( )

1
x . (3) 

Thus a discontinuity is explicitly added to an element cut by a crack. 

For the case of an element containing the crack tip, the asymptotic functions, originally introduced by Fleming
14

 

for the representing crack tip displacement fields in the element-free Galerkin (EFG) method and repeated by 

Belytschko,
15

 are used in this paper. The near tip displacement field takes the form of the following four functions: 

 
1 4

( ) sin , cos , sin cos , sin cos
2 2 2 2

x r r r r  (4) 

where r  and  are the polar coordinates in the local crack-tip coordinate system. Note that the crack tip enrichment 

functions in Eq. (4) introduces a discontinuity across the crack in the element containing the tip, while the Heaviside 

function in Eq. (3) does in the elements cut by the crack. When a node would be enriched by both Eqs. (3) and (4), 

only Eq. (4) is used as is shown in Figure 1, in which the nodes with circle are enriched by Heaviside step function, 

and the nodes with square are by the crack tip enrichment functions. 
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Finite Element Mesh

 
Figure 1. The nodes enriched with the Heaviside (circle) and crack tip (square) enrichments. 

 

 Voids
12,16

 have been modeled independent of the finite element mesh using a different enrichment strategy which 

takes the form of 

 ( ) V( ) N ( )h
I I

I

x x xu u  (5) 

where V( )x  is the void enrichment taking a value of zero inside the void and one outside the void. In two-

dimensions, integration is performed only in the portion of an element containing material and nodes with support 

completely within in void are fixed. An example of the nodes which are fixed is shown in Figure 2. For more details 

on integration of an enriched element, the reader is referred to Mousavi
17

 and Sukumar
18

. 

Finite Element Mesh

 
Figure 2. The fixed degrees of freedom (red circles) associated with the hole enrichment. 

 

Using the Bubnov-Galerkin method to build the system of equations, we are able to derive a system of equations 

to represent the total domain where the approximation takes the following form: 

 

H T

4

1

( ) V( ) N ( ) H( ) ( )h
I I I I

I I I

x x x x xu u a b  (6) 
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where H  is the domain cut by the crack, T  is the domain containing the crack tip, H( )x  is the shifted Heaviside 

enrichment and ( )x  is the shifted crack tip enrichment. The system of linear equation can be written in the form 

 K u f  (7) 

where K  is the global stiffness matrix, u  are the global degrees of freedom and f  are the applied loading. 

The elemental stiffness matrix is symmetric and takes the form 

 

uu ua ub

T
e ua aa ab

T T
ub ab bb

K K K

K K K K

K K K

 (8) 

where u  refers to the traditional finite element stiffness values, a  refers to the Heaviside enrichment values and b  

refers to the crack tip enrichment values and 

 
T

d , , ,u a bK B CB . (9) 

III. Crack Growth Model 

In order to determine how to propagate the crack, information is needed about the direction and magnitude of the 

crack growth at each growth increment. The direction of crack growth is found from the maximum circumferential 

stress criterion
19

, which predicts that the crack will grow in the direction where  is maximum. The angle of crack 

growth is given by 

 

2
1

2arctan sign 8
4

I I
c II

II II

K K
K

K K
 (10) 

where c  is given in the crack tip coordinate system, and IK  and IIK  are the mixed-mode stress intensity factors. 

The Paris crack growth model
20

 is used to determine the magnitude at which the crack will grow. For the 

through-thickness center crack in the infinite plate under Mode I loading, the Paris model takes the following form: 

 mda
C K

dN
 (11) 

where da dN  is the crack growth rate, K  is the range of stress intensity factor. Although N  is an integer, it is 

considered as a real number because the crack growth is a slow process. By integrating Eq. (11), an equation for 

updating the crack length over N  cycles can be found such that 

 ma CN K  (12) 

where a  is the increment of crack growth. Note that the above equation is the forward finite different method, 

whose accuracy and stability are controlled by step size N . In many applications, the increment is very small as the 

crack grows over tens of thousands of cycles. Because the original Paris model is defined for the case of pure Mode 

I loading, the relationship proposed by Tanaka
21

 is used to find the effective K  for the case of mixed-mode 

loadings. 

 4 44 8I IIK K K . (13) 



 

 

6 

The stress intensity factors needed for the maximum circumferential stress criterion and Paris model are 

calculated using the domain form of the interaction integrals
19,22

. For a general mixed-mode situation the 

relationship between the J-integral and the stress intensity factors can be given as 

 
2 2
I II

eff eff

K K
J G

E E
 (14) 

where G  is the energy release rate, and effE  is the effective Young's modulus, defined by a state of plane stress or 

plane strain as 

 

Plane Stress

Plane Strain2

,

,
1

eff

E

E E

v

 (15) 

where E  is Young's modulus and v  is Poisson's ratio. In order to calculate the mixed-mode stress intensity factors, 

an auxiliary stress state is superimposed onto the stress and displacement fields from the XFEM analysis. The 

auxiliary stress and displacement equations are chosen to be those derived by Westergaard
23

 and Williams
24

 which 

are given in the Appendix. The XFEM solutions are denoted with superscript (1) as 1
ij , 1

ij  and 1
iu , while that 

from the auxiliary state as 2
ij , 2

ij  and 2
iu .  

 Recall that the J-integral
25

 takes the form of 

 k
i i jk j

i

u
J Wn n d

x
 (16) 

where W  is the strain energy density and i  denotes the crack tip opening direction, which is assumed to correspond 

to the global x-direction, denoted 1x . The summation convention is used for the repeated indices. Equation (16) can 

be rewritten into a more convenient form as 

 1 1
1

i
j ij j

u
J W n d

x
. (17) 

The two stress states can be superimposed into Eq. (17) such that 

 
(1 2)

1 2
1 2 1 2 1 2

1 1
1

1
2

i i
j jij ij ij ij ij ij

u u
J n d

x
. (18) 

The J-integrals for pure state 1 and auxiliary state 2 can be separated from Eq. (18), which leaves an interaction term 

such that 

 1 2 1 2 1,2
1 1 1J J J I  (19) 

where 1,2I  is the interaction term and is given by 

 
2 1

1 21,2 1,2
1

1 1

i i
j jij ij

u u
I W n d

x x
 (20) 
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where 1,2W  is the interaction strain energy density 

 1 2 2 11,2
ij ij ij ijW . (21) 

 Since we are superimposing two cracked configurations onto one another we can also write Eq. (14) as 

 

2 21 2 1 2
1 2
1

I I II II

eff eff

K K K K
J

E E
. (22) 

Expanding and rearranging terms from Eq. (22) yields 

 

1 2 1 2
1 2 1 2
1 1 1

2 I I II II

eff

K K K K
J J J

E
. (23) 

Setting Eq. (19) and Eq. (23) equal leads to the relationship 

 

1 2 1 2
1,2

2 I I II II

eff

K K K K
I

E
. (24) 

The stress intensity factors for the current state can be found by separating the two modes of fracture. By selecting 
2 1IK  and 2 0IIK , we are able to solve for 1

IK  such that 

 

1,Mode I
1 2
I

eff

I
K

E
. (25) 

A similar procedure can also be followed such that 1
IIK  is given by 

 

1,Mode II
1 2
II

eff

I
K

E
. (26) 

The contour defining 1,2I  is converted to an area integral by using a smoothing function q . This function takes 

a value of one on the innermost contour and a value of zero on the outermost contour. At any point in the area 

integral, the linear shape functions are used to interpolate the value of q . The area integral is chosen to be a circular 

domain about the crack tip. With sufficiently large radius, the contour integral becomes path independent. This value 

was determined to correspond to a radius of three. The divergence theorem can be used to give the following 

equation for the domain form of the interaction integral: 

 d
2 1

1 21,2 1,2
1

1 1

i i
jij ij

jA

u u q
I W A

x x x
 (27) 

IV. Reanalysis 

Recall that the approximation of the displacement in XFEM takes the form 

 

4

1

h
I I I I I

I

u x N x u H x a x b  (28) 
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and the corresponding finite element stiffness matrix takes the form 

 

uu ua ub

T
ua aa ab

T T
ub ab bb

K K K

K K K K

K K K

. (29) 

It can be noticed from Eq. (28) that the stiffness component associated with the traditional finite element 

approximation is not a function of the crack location, which implies that the uuK  component of the stiffness matrix 

will be constant at each iteration of crack growth. This implies that the changing portion of the stiffness matrix is the 

enriched portion, which will be small compared to the un-enriched portion. Furthermore, it can also be noticed that 

while the Heaviside enrichment term is a function of the crack location within an element, that once an element has 

been enriched with the Heaviside enrichment its stiffness value will not change in any future iterations, meaning that 

the stiffness components containing subscript a will be constant for future iterations of crack growth. 

Thus it is only necessary to consider elements which convert from a crack tip enrichment to a Heaviside 

enrichment as a result of crack growth and new elements containing crack tips at each iteration after the initial 

iteration. If an incremental crack growth, a , which is less than the elemental length is considered, then for any 

iteration after the initial iteration the stiffness matrix in only about 10 elements per tip must be considered instead of 

the entire domain. This clearly leads to a drastic decrease in the computational time required for the simulation of 

crack growth in the XFEM environment. 

Further increases in reducing computational time may be achieved by considering an incremental Cholesky 

factorization of the global stiffness matrix. This algorithm is based on the realization that the crack exists in a 

relatively small area of the total domain being modeled. Furthermore, of the enriched domain, a large amount of the 

domain can be considered to be constant as the result of the Heaviside enrichment. Recall that the Cholesky 

factorization of a matrix A  takes the form
26

 

 
11 12 11 11 21

21 2212 22 22

0

0

T T

T
T T

A A L L L
A LL

L LA A L
. (30) 

where  

 

11 11

21 11 12

22 22 21 21

T

T

L chol A

L L A

L chol A L L

. (31) 

With the above algorithm, 11A  can be considered to be equivalent to  

 11

uu ua

T
ua aa

K K
A

K K
 (32) 

in the first iteration. Due to crack growth, the submatrices 
12
A  and 22A  in Eq. (30) will be modified.  The 

components of the global stiffness matrix associated with the crack tip can be considered as  
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12 22

,ub

bb
ab

K
A A K

K
. (33) 

Then 11A  can be kept and reused at future iterations of crack growth. Then the above algorithm can be used to 

find the factorization for the new constant stiffness matrix components as a result of new Heaviside nodes. The new 

factorization can be appended to the end of the previous iteration's 11A , then Eqs. (31) and (33) can be used to factor 

the new crack tip stiffness matrix. This method can save the Cholesky factorization of the entire stiffness matrix, 

which takes the most computational cost in finite element analysis. However, it requires more information from the 

matrix solver, such as internal reordering sequences. Thus, when a matrix solver allows accessing this information, 

then Eq. (30) can be used to modify the factorized matrix. 

Due to limitations in sparse division present within MATLAB, the above algorithm has not been implemented in 

this work. Instead the global stiffness matrix is modified at each increment and factored from scratch within 

MATLAB. Figure 3 illustrates the portion of stiffness matrix that is kept constant from the previous iteration and the 

other portion that has to be modified due to crack growth. Although this method requires factorization of the entire 

stiffness matrix, it can still save matrix assembly time. Example D in Section V shows that this can save 

computational cost up to 48%.  An iterative procedure such as the one introduce by Wu
5
 could also be used to solve 

the system of equations. 

 

 
Figure 3. Reanalysis of XFEM stiffness matrix due to crack growth. 

V. Numerical Results 

To verify the implementation of XFEM and the domain form of the J-integrals, three test cases are presented 

before the problem of interest is investigated further. The last example demonstrates crack initiation and propagation 

in the plate with a hole. All example problems were run on a Pentium 4 3.0 GHz computer with 4 GB of memory on 

MATLAB R2009a installed on the Windows XP 64 bit operating system. 

A. Center Crack in an Infinite Plate under Tension 

For a center crack in an infinite plate under tension the theoretical stress intensity factor
27

 takes the following 

form: 

 IK a  (34) 

where  is the applied nominal stress and a  is the half crack length. Half of the domain is modeled and symmetric 

boundary conditions are applied. The initial half crack length is 1 m, and unit tension is applied at the top and 

bottom surface of the domain, defining the theoretical stress intensity factor to be 1.77. An aluminum alloy with E = 

70 GPa and v = 0.3 and a half domain of size 15 m by 30 m was modeled with square quadrilateral 4 node elements 

of size h = 0.01 giving a calculated stress intensity factor of 1.78. Thus, the XFEM can predict the stress intensity 

factor with error in 0.5%.  

B. Inclined Crack in an Infinite Plate under Tension 

For an inclined center crack in an infinite plate under tension the theoretical mixed-mode stress intensity 

factors
27

 take the form 

 

2cos

cos sin

I

II

K a

K a
 (35) 

uu ua ub
T
ua aa ab
T T
ub ab bb

K K K

K K K K

K K K

Unchanged 

portion 
Changed 

portion 
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where  is the angle of inclination from the positive x-axis. A half crack length of 1 m and 1 N tension are applied 

to the domain. An aluminum alloy with E = 70 GPa and v = 0.3 and a domain of size 30 by 30 was modeled with 

square quadrilateral 4 node elements of size h = 0.005. Angles of inclination  are chosen to be 15°, 30° and 45°. 

The results are summarized in Table 1. 

 

Table 1. Comparison of mixed-mode stress intensity factors for several angles of inclination. 

 Theoretical Calculated Percent Error 

Β KI KII KI KII KI KII 

15 1.65 0.44 1.63 0.42 1.2 4.5 
       

30 1.33 0.77 1.34 0.75 0.8 2.6 
       

45 0.89 0.89 0.88 0.86 1.1 3.3 

C. Hole in an Infinite Plate under Tension 

To verify the XFEM void implementation a plate with a circular hole is considered. A plate of size 10 m x 10 m 

was modeled with a center hole with radius 0.4 m under unit tension in the y-direction with square four node 

quadrilateral elements of element size 0.0025. The theoretical values
28

 for this case are given as 

 

2 4

2 4

2 4

2 4

2 4

2 4

1 3
, cos2 cos 4 cos 4

2 2

3 3
, 1 cos2 cos 4 cos 4

2 2

1 3
, sin2 sin 4 sin 4

2 2

xx

yy

xy

a a
r

r r

a a
r

r r

a a
r

r r

 (36) 

where r  and  are polar coordinates from the center of the circle and a  is the hole radius. The resulting theoretical 

and numerical stress contours for yy  are shown in Figure 4 and are in good agreement. The higher stress 

concentration values in the XFEM solution are likely due to there being a small lingering finite plate effect leading 

to an increase in the calculated stress values. This enrichment scheme was shown by Sukumar
12

 to converge at a rate 

comparable to traditional FEM. 


yy

 

 

0 0.5 1 1.5 2 2.5


yy

 

 

0 0.5 1 1.5 2 2.5  
Figure 4. The stress contour for a plate with hole under unit tension, theoretical (left) and calculated (right). 

D. Analysis of Reanalysis Algorithm 

The problem which will be given a detailed discussion here is that of an edge crack under uniaxial tension as 

shown in Figure 5. 
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Figure 5. The edge cracked specimen and loading of interest for the reanalysis benchmark. 

 

The first test was to perform 30 iterations of crack growth with a constant crack growth increment of 0.1 and 

square quadrilateral elements with sides of length 1/15. The total computational time for the case without reanalysis 

 was 83 seconds, while the total time with reanalysis was 43 seconds. 

 

For a more detailed analysis, the time for assembling the stiffness matrix as a function of iteration was 

considered. The results are shown in Figure 6. Note that in addition to a drastic decrease in computational time for 

the assembly of the stiffness matrix that the reanalysis algorithm is significantly less sensitive to the increasing 

number of degrees of freedom caused by the additional elements containing enriched degrees of freedom than the 

original method by itself. 
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Figure 6. Comparison of stiffness matrix assembly with and without reanalysis. 

 

A study was also done where only two iterations were performed on the geometry presented in Figure 5. Here 

the goal was to determine how sensitive the cost of reanalysis is to that of the mesh density. The increment of crack 

growth at each increment was chosen to be equal to the elemental length such that each case would experience 

approximately the same change in the total number of degrees of freedom in the system of equations. These results 

are summarized in Figure 7. 
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Figure 7. Comparison of mesh density to cost of reanalysis for constant DOF . 

 

There are several observations which one can make from Figure 7. The first is that while the cost of building the 

finite element stiffness matrix is approximately quadratic with respect to the mesh density for the structured mesh 

used, the cost for updating is almost constant. Note that the slightly higher costs for 10, 20 and 30 elements per unit 

length are a function of the crack tip being at an element edge and therefore, additional elements are considered in 

the crack tip enrichment. Also, the relative cost of updating versus the initial iteration's cost decreases drastically 

with mesh density. Thus, if the cost for solving the system of equations for a more dense mesh is not too large, there 

is no reason not to use a more dense mesh when considering modeling crack growth. 

 

While the results from Figure 7 are true for a constant change in number of additional degrees of freedom, a 

more accurate representation of the modeling would be to consider the same crack growth increment for all mesh 

densities, which leads to an increased amount of updating as the mesh density decreases. These results are shown in 

Figure 8. 
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Figure 8. Comparison of mesh density to cost of reanalysis for constant a . 

 

The very encouraging results from Figure 8 show very similar results to those in Figure 7. The reanalysis is a bit 

more expensive, but still nearly linear and still much less expensive than the initial iteration. 

E. Crack Initiation and Growth from a Plate with a Hole 

The proposed example problem to be considered is that of a plate with a hole. A crack will be assumed to initiate 

and then propagate from some location at the interface of the hole. As this point will be unknown, numerous initial 
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cracks will be considered of small length and normal to the hole at single degree increments about the full radius of 

the hole. The point(s) with the largest stress intensity factor will be used as the initial crack location and the crack 

will propagate under quasi-static conditions to failure from exceeding the critical stress intensity factor for the given 

material. Every cycle will be considered, unlike previous crack growth simulations. 

The optimization problem takes the following form for this problem: 

 

min

3
s.t.

2 2

G

 (37) 

where G  is given by Eq. (14) and  is the angle that the crack makes with the positive x-axis as shown in . Due to 

the direction of the applied shear τ only the left side of the hole is considered for the optimization. The chosen 

material properties are those of Al 7075, which are E = 71.7 GPa,  = 0.33 and ICK  = 30 MPa. 

 
Figure 9. Geometry used for the initiation and growth of a crack from a hole in a plate. 

 

Various tensile σ and shear τ loading combinations are applied to the given geometry to define the effect of the 

angle of crack initiation. The plate of size 8 x 8 m and structured mesh with elemental length of 0.05 which 

corresponds to about 52,000 degrees of freedom depending upon the orientation of the initial crack was used in the 

optimization. The fminbnd command within MATLAB was used for the optimization with tolerances on G  and  

of 1E-9 and 1E-6 respectively. For the optimization algorithm the reanalysis algorithm presented in Section IV is 

used, except here all enriched components of the stiffness matrix are calculated at each iteration as no portions are 

constant. The resulting optimum angles based on the applied loading ratio is given in Table 2. 

 

Table 2. Crack initiation angle and comparison between brute force and reanalysis algorithms. 

Tension Shear Theta [rad] Iterations Brute Force [s] Reanalysis [s] Difference [%] 

0 1 3.14 28 392 301 23 

1 0 2.41 28 394 302 23 

1 1 2.58 31 434 305 30 

1 5 2.90 32 448 293 35 

1 10 2.90 31 434 297 32 

5 1 2.44 31 433 336 23 

10 1 2.41 27 378 293 23 

 

The geometry with equivalent shear and tensile loading is used for to illustrate the advantages of the applied 

method with respect to modeling quasi-static growth. The initial crack of length 0.15 m is grown to failure, ie. when 

the equivalent stress intensity factor given by Eq. (13) is equal to the materials critical stress intensity factor. The 

loading is increased for both tension and shear to 1E6. Here each iteration of crack growth it simulated until failure 

occurs. In each case, failure occurs at 1337 iterations of growth with an approximate crack length of 0.193 m. 

θ 
8 

ao 

τ 

σ 
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 At this point in time the total time for the brute force method was 18734 seconds while for the reanalysis 

algorithm the total time was 12711 seconds. If each iteration is compared we find that the average time per iteration 

was 14.0 seconds, while the reanalysis algorithm was 9.5 seconds. This is approximately a savings of 32% compared 

to the traditional method and clearly illustrates the advantages of the proposed method when compared to the 

traditional methods. 

 Note that the crack fails before growing though a substantial number of elements. Therefore, the total number of 

degrees of freedom does not change significantly between the initial and final iteration for this examples. By 

comparison, Example D shows a large change in the number of degrees of freedom and correspondingly a larger 

amount of savings compared to the traditional method. 

VI. Conclusions and Future Plans 

A reanalysis algorithm for the extended finite element method has been introduced. This method allows one to 

model in a more efficient manner problems where the geometry is constant, while the location of some or all of the 

discontinuities is not constant between iterations. This algorithm allows for optimization problems to be explored 

which may have previously have been too expensive. Furthermore, great savings in computational time can be 

achieved when the algorithm is used for modeling quasi-static growth. The savings from using the proposed method 

allow for problems to be solved which may have not been feasible prior to the introduction of this method. While a 

simple solution procedure has been used here which does not take advantage of the repeated factorization of a large 

portion of the stiffness matrix, large gains in computational time have been achieved. With the use of an incremental 

Cholesky factorization or other reanalysis technique which does not require for a repeated factorization of the 

constant components of the stiffness matrix further savings for both the optimization and quasi-static problem may 

be achieved. It was shown that reductions of up to 35% in simulation time can be achieved when the reanalysis 

algorithm is used for optimization problems. As the number of iterations would increase, these savings would also 

increase. It was shown that for the considered optimization problem, up to a 35% reduction in savings could be 

achieved by using the reanalysis algorithm. For the case of quasi-static crack growth, it was shown that for a case 

where the total number of degrees of freedom is not significantly different from the initial and final iteration a 

savings of about 30% could be achieved. As the number of degrees of freedom added to the system of equations 

during the analysis increases, additional savings are obtained using the reanalysis algorithm instead of the traditional 

approach. One area where the proposed method may be applied is to the modeling of crack growth in a structure 

with non-cyclic loading. In this case, the assumption of a constant increment of crack growth or cycles does not hold 

and each individual cycle of loading must be modeled. The proposed method greatly alleviates solving problems of 

this type. 

Appendix 

The auxiliary stresses derived by Westergaard
23

 and Williams
24

 are 

 11
1 3 3
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2 2 2 2 2 22 I IIK K

r
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and the auxiliary displacements are 

 1
1

cos cos sin 2 cos
2 2 2 2I II

r
u K K  (A7) 

 2
1

sin sin cos 2 cos
2 2 2 2I II

r
u K K  (A8) 

 3
2

sin
2 2III
r

u K  (A9) 

where  is the shear modulus and  is the Kosolov constant. 

References 
1Babuska, I., Melenk, J., "The partition of unity method." International Journal for Numerical Methods in Engineering, Vol. 40, 

1997, pp. 727-758. 

 
2Moës, N., Dolbow, J., Belytschko, T., "A finite element method for crack growth without remeshing." International Journal for 

Numerical Methods in Engineering, Vol. 46, 1999, pp. 131-150. 

 
3Gravouil, A., Moës, N., Belytschko, T., "Non-planar 3D crack growth by the extended finite element and level sets - Part II: 

Level set update." International Journal for Numerical Methods in Engineering, Vol. 53, 2002, pp. 2569-2586. 

 
4Kassim, A., Topping, B., "Static reanalysis: A review." Journal of Structural Engineering, Vol. 113, 1987, pp. 1029-1045. 

 
5Wu, B., Li, Z., "Static reanalysis of structres with added degrees of freedom." Communications in Numerical Methods in 

Engineering, Vol. 22, 2006, pp. 269-281. 

 
6Wu, B., Lim, C., Li, Z., "A finite element algorithm for reanalysis of structures with added degrees of freedom." Finite Elements 

in Analysis and Design, Vol. 40, 2004, pp. 1791-1801. 

 
7Sherman, J., Morisson, W., "Adjustment of an inverse matrix corresponding to a change in one element of a given matrix." 

Annals of Mathematical Statistics, Vol. 21, 1950, pp. 124-127. 

 
8Li, Z., Lim, C., Wu, B., "A comparison of several reanalysis methods for structural layout modifications with added degrees of 

freedom." Structural and Multidisciplinary Optimization, Vol. 36, 2008, pp. 403-410. 

 
9Osher, S., Sethian, J., "Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations." 

Journal of Computational Physics, Vol. 79, 1988, pp. 12-49. 

 
10Osher S, F.R., "Level set methods: An overview and some recent results." Journal of Computational Physics, Vol. 169, 2001, 

pp. 463-502. 

 
11Stolarska, M., Chopp, D., Moës, N., Belytschko, T., "Modelling crack growth by level sets in the extended finite element 

method." International Journal for Numerical Methods in Engineering, Vol. 51, 2001, pp. 943-960. 

 
12Sukumar, N., Chopp, D., Moës, N., Belytschko, T., "Modeling holes and inclusions by level sets in the extended finite-element 

method." Computer Methods in Applied Mechanics and Engineering, Vol. 190, 2001, pp. 6183-6200. 

 
13Belytschko, T., Moës, N., Usui, S., Parimi, C., "Arbitrary discontinuities in finite elements." International Journal for 

Numerical Methods in Engineering, Vol. 50, 2001, pp. 993-1013. 

 
14Fleming, M., Chu, A., Moran, B., Belytschko, T., "Enriched element-free Galerkin methods for crack tip fields." International 

Journal for Numerical Methods in Engineering, Vol. 40, 1997, pp. 1483-1504. 

 
15Belytschko, T., Black, T., "Elastic crack growth in finite elements with minimal remeshing." International Journal for 

Numerical Methods in Engineering, Vol. 45, 1999, pp. 601-620. 

 



 

 

16 

16Daux, C., N, M., Dolbow, J., Sukumar, N., Belytschko, T., "Arbitrary branched and intersecting cracks with the extended finite 

element method." International Journal for Numerical Methods in Engineering, Vol. 48, 2000, pp. 1741-1760. 

 
17Mousavi, S., Xiao, H., Sukumar, N., "Generalized quadrature rules on arbitrary polygons." International Journal for Numerical 

Methods in Engineering, Vol. 00, 2009, pp. 1-26. 

 
18Sukumar, N., Prévost, J., "Modeling quasi-static crack growth with the extended finite element method Part I: Computer 

implementation." International Journal of Solids and Structures, Vol. 40, 2003, pp. 7513-7537. 

 
19Shih, C., Asaro, R., "Elastic-plastic analysis of cracks on bimaterial interfaces: part I - small scale yielding." Journal of Applied 

Mechanics, Vol. 55, 1988, pp. 299-316. 

 
20Paris, P., Gomez, M., Anderson, W., "A rational analytic theory of fatigue." The Trend in Engineering, Vol. 13, 1961, pp. 9-14. 

 
21Tanaka, K., "Fatigue crack propagation from a crack inclined to the cyclic tension axis." Engineering Fracture Mechanics, Vol. 

6, 1974, pp. 493-507. 

 
22Yau, J., Wang, S., Corten, H., "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity." Journal 

of Applied Mechanics, Vol. 47, 1980, pp. 335-341. 

 
23Westergaard, I., "Bearing pressures and cracks." Journal of Applied Mechanics, Transactions ASME, Vol. 61, 1939, pp. A49-

A53. 

 
24Williams, M., "On the stress distribution at the base of a stationary crack, ." Journal of Applied Mechanics, Vol. 24, 1957, pp. 

109-114. 

 
25Rice, J., "A path integral and the approximate analysis of strain concentration by notches and cracks." Journal of Applied 

Mechanics, Vol. 35, 1968, pp. 379-386. 

 
26Chapra, S., Canale, R., Numerical Methods for Engineers. 2002, New York: McGraw-Hill. 

 
27Mukamai, Y. (ed.), Stress Intensity Factors Handbook, Pergamon Press, 1987. 

 
28Szabo, B., Babuska, I., Finite Element Analysis. 1991, New York: Wiley. 

 


