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ABSTRACT 

Due to uncertainty in design, manufacturing and operating 

processes, the initial prediction of a machine‟s useful life is 

often quite different from that of the actual machine. In this 

paper, we utilize the Bayesian technique to incorporate the field 

data with the initial predictions in order to improve the 

prediction. The field data is interpreted in terms of the 

probability of having defective hardware, and then the 

likelihood function is generated from the binomial distribution. 

Since the predictions incorporate field experience, as time 

progresses and more data becomes available the probabilistic 

predictions are continuously updated. This results in a 

continuous increase of confidence and accuracy of the 

prediction. The resulting distributions can then be used directly 

in risk analysis, maintenance scheduling, and financial 

forecasting by both manufacturers and operators of heavy-duty 

gas turbines. This presents a quantification of the real time risk 

for direct comparison with the volatility of the power market. 

1. INTRODUCTION 

Modern heavy-duty gas turbines are subject to numerous 

factors that have an influence on their lifetime, including but 

not limited to, environmental effects, maintenance processes, 

manufacturing processes, and material properties scatter.  

Mücke, et al [1] used Monte Carlo Simulations to determine the 

distributions of burst strength, creep lifetime and low cycle 

fatigue of turbine blades accounting for scatter in 

aforementioned factors. Voigt, et al [2], Weiss, et al [3] used a 

combination of Monte Carlo Simulation and Response Surface 

Method to probabilistic assessment of turbine blade 

components.  

Even with today‟s modern computing systems, it is infeasible 

to include all the relevant input variables into the analytical 

prediction, since all of the potential inputs are not known in the 

design phase. To account for the unknown variables, common 

practices use so called “safety factors” or statistical minimum 

properties in conjunction with the numerical method when 

evaluating lifetimes.  

 Due to these estimations, often analytical predictions are 

not in agreement with the engine fleet experience, which again 

may vary across the fleet. Often a gap exists in correlating the 

field data with the analytical predictions. Thus, there is an 

increased need to improve the analytical predictions using field 

data, which somehow represents the real status of a particular 

machine. 

 In addition, the analytical predictions often use damage 

parameters that are calculated in the laboratory environment. 

However, due to uncertainty in a particular batch of material 

process and due to variability in manufacturing process, the 

actual damage parameters of a particular machine can be 

different from that of the generic material. Even if the 

analytical model can cover wide range of distribution of 

damage parameters, it is still required to obtain more accurate 

information of the damage parameters of a particular machine. 

For this purpose, the field data can play an important role to 

reduce the distribution of the analytical prediction with actual 

information.  

 One of the important design criteria is the useful life of 

each part a machine. In most cases, computational models 

provide an initial estimate of the useful life. As the expected 

remaining useful life (RUL) of a machine changes according to 

the operating conditions and history, it is important to 

constantly update it based on the feedback from the field data. 

This is a time dependent iterative procedure, through which a 

more refined estimation can be made. 

 Many attempts have been made in literature to determine 

the RUL from the field data. Orchad et al [4] used particle 

filtering and learning strategies to predict the RUL of a 

defective component. Marahleh et al [5] predicted the creep life 

from test data, using Larson-Miller parameter. Park et al [6] 

used energy-based approach to predict constant amplitude 
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multiaxial fatigue life. Guo et al [7] performed the reliability 

analysis for wind turbines using maximum likelihood function, 

incorporating test data. 

 The Bayesian theorem [8] has its roots in the conditional 

probability and has been used as a novel method to update 

distributions of life with additional test/field data. Acar et al [9] 

showed the conservativeness of Bayesian update. Guerin et al 

[10] used Bayesian update to update the life of rubber like boot 

seal material in automobiles. Cross et al [11] used Bayesian 

technique to update probabilistic structural life models with 

maintenance data. Gogu et al [12] performed two-dimensional 

Bayesian update to update the joint PDF of material constants 

simultaneously. 

 In this paper, the Bayesian theorem is utilized to 

incorporate field data with analytical predictions of fatigue life 

distribution. The analytical predictions are obtained either from 

numerical models or laboratory tests. The field data, although 

they are noisy, invariably portray environmental factors, 

measurement errors, and loading conditions, or in short, reality. 

The RULs of several turbine components under low-cycle 

fatigue and oxidation damage are estimated in terms of the 

probability of defects. Since the predictions incorporate field 

experience, as time progresses and more data are available, the 

probabilistic prediction is continuously updated. This results in 

a continuous increase of confidence and accuracy of the 

prediction. The resulting distributions can then be used directly 

in risk analysis, maintenance scheduling, and financial 

forecasting by both manufacturers and operators of heavy-duty 

gas turbines. This presents a quantification of the real time risk 

for direct comparison with the volatility of the power market. 

2. BAYSIAN INFERENCE FOR FATIGUE LIFE 
DISTRIBUTION 

 

In this section, Bayesian inference is explained in the view of 

updating distribution of fatigue life using test data. The 

Bayesian theorem is first presented in a general form, followed 

by a specific expression for estimating the distribution of 

fatigue life. 

2.1.  Bayes' Theorem 

Bayesian inference estimates the degree of belief in a 

hypothesis based on collected evidence. Bayes [8] formulated 

the degree of belief using the identity in conditional probability: 

( ) ( | ) ( ) ( | ) ( )P X Y P X Y P Y P Y X P X    (1) 

where P(X|Y) is the conditional probability of X given Y. In the 

case of estimating the probability of fatigue life using test data, 

the conditional probability of event X (i.e., fatigue life) when 

the probability of test Y is available can be written as 

( | ) ( )
( | )

( )

P Y X P X
P X Y

P Y
  (2) 

where P(X|Y) is the posterior probability of fatigue life X for 

given test Y, P(Y|X) is called the likelihood function or the 

probability to get test Y for given fatigue life X. In Bayesian 

inference, P(X) is called the prior probability, and P(Y) is the 

marginal probability of Y and acts as a normalizing constant. 

The above equation can be used to improve the knowledge of 

P(X) when additional information P(Y) is available.  

 The Bayes' theorem in Eq. (2) can be extended to 

continuous probability distribution with probability density 

function (PDF), which is more appropriate for the purpose of 

the present paper. Let fX be a PDF of fatigue life X. If the test 

measures a fatigue life Y, it is also a random variable, whose 

PDF is denoted by fY. Then, the joint PDF of X and Y can be 

written in terms of fX and fY, as 

( , ) ( | ) ( ) ( | ) ( )XY X Y Y Xf x y f x Y y f y f y X x f x     (3) 

When X and Y are independent, the joint PDF can be written as 

( , ) ( ) ( )XY X Yf x y f x f y   and Bayesian inference cannot be 

used to improve the probabilistic distribution of fX(x). Using the 

above identity, the original Bayes' theorem can be extended to 

the PDF (Papoulis [13]) as 

( | ) ( )
( | )

( )

Y X

X

Y

f y X x f x
f x Y y

f y


   (4) 

Note that it is trivial to show that the integral of fX(x|Y = y) is 

one by using the following property of marginal PDF: 

( ) ( | ) ( )dY Y Xf y f y X f  




   (5) 

Thus, the denominator in Eq. (4) can be considered as a 

normalizing constant. By comparing Eq. (4) with Eq. (2), 

( | )Xf x Y y  is the posterior PDF of fatigue life X given test Y 

= y, and ( | )Yf y X x  is the likelihood function or the 

probability density value of test Y given fatigue life X = x. 

 When the analytical expressions of the likelihood function, 

( | )Yf y X x , and the prior PDF, fX(x), are available, the 

posterior PDF in Eq. (4) can be obtained through simple 

calculation. In practical applications, however, they may not be 

in the standard analytical form. In such a case, the entire range 

of X is discretized first, and the values of PDF at discrete points 

need to be calculated. This can be a computationally intensive 

process especially when X is a random vector because the 

calculation should be performed at grid points of multi-

dimensional mesh. For the calculation of likelihood function, at 

each discrete point of X = x, the PDF fY is calculated first and 

then the likelihood is the value of PDF fY at Y = y. When the 

uncertainty structure of Y is known, this can be a 

straightforward process. Otherwise, Monte Carlo simulation 

(MCS) can be performed first to estimate the cumulative 

distribution function (CDF), and then the PDF can be obtained 

by differentiating the CDF. Again, this process can be 

computationally intensive because the posterior PDF is 
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calculated at discrete grid points, and MCS is required at each 

grid point.  

 When multiple, independent tests are available, Bayesian 

inference can be applied either iteratively or all at once. When 

N number of tests are available; i.e., y = {y1, y2, …, yN}, the 

Bayes' theorem in Eq. (4) can be modified to 

 
1

1
( | ) ( | ) ( )

N

X Y i X

i

f x Y f y X x f x
K 

  y  (6) 

where K is a normalizing constant. In the above expression, it is 

possible that the likelihood functions of individual tests are 

multiplied together to build the total likelihood function, which 

is then multiplied by the prior PDF followed by normalization 

to yield the posterior PDF. On the other hand, one-by-one 

update formula for Bayes' theorem can be written in the 

recursive form as 

( ) ( 1)1
( | ) ( | ) ( ), 1, ,i i

X i Y i X

i

f x Y y f y X x f x i N
K

     (7) 

where Ki is a normalizing constant at i-th update and ( 1) ( )i

Xf x  

is the PDF of X, updated using up to (i1)th tests. In the above 

update formula, (0) ( )Xf x  is the initial prior PDF, and the 

posterior PDF becomes a prior PDF for the next update. 

 In the view of Eqs. (6) and (7), it is possible to have two 

interesting observations. Firstly, the Bayes' theorem becomes 

identical to the maximum likelihood estimate when there is no 

prior information; i.e., fX(x) = constant. Secondly, the prior PDF 

can be applied either at first or at last. For example, it is 

possible to update the posterior distribution without prior 

information and then to apply the prior PDF after the last 

update.  

 An important advantage of Bayes' theorem over other 

parameter identification methods, such as the least square 

method and maximum likelihood estimate, is its capability of 

estimating the uncertainty structure of the identified 

parameters. These uncertainty structures depend on that of the 

prior distribution and likelihood function. Accordingly, the 

accuracy of posterior distribution is directly related to that of 

likelihood and prior distribution. Thus, the uncertainty in 

posterior distribution must be interpreted in that context. 

2.2.  Application to Fatigue Life Estimation 

In deriving the Bayes' theorem in the previous section, it 

requires two sets of information: a prior PDF and a likelihood 

function. In estimating fatigue life, the prior distribution can be 

obtained from numerical models and laboratory tests. Since 

they can be performed multiple times with different input 

parameters that represent various uncertainties, it is possible to 

evaluate the distribution of fatigue life, which can be served as 

a prior PDF of fatigue life. 

 On the other hand, the field data cannot be obtained in the 

laboratory environment. In this section, it is presented how to 

use the field data in calculating the likelihood function. When a 

gas turbine engine is built and installed in the field, the 

maintenance/repair reports include the history of the number of 

parts that were defective and replaced at specific operating 

cycles. Although these data are not obtained under the 

controlled laboratory environment, they represent reality with 

various effects of uncertainties in environmental factors, 

measurement errors, and loading conditions. Thus, it is 

desirable to use these data to update the fatigue life of the 

specific machine using Bayes' theorem. 

 The standard approach to applying Bayes' theorem is to use 

the field data to build the likelihood function, which is basically 

the same PDF form with the fatigue life. However, different 

from specimen-level tests, the field data cannot be repeated 

multiple times to construct a distribution. Only one data point 

exists for specific operating operation cycles. Thus, the original 

formulation of Bayes' theorem needs to be modified. First, 

instead of updating the PDF of fatigue life, it is assumed that 

the distribution type of fatigue life is known in advance. This 

can be a big assumption, but it is possible that different types of 

distribution are assumed and the most conservative type can be 

chosen. Once the distribution type is selected, then it is 

necessary to identify distribution parameters. For example, in 

the case of normal distribution, the mean () and standard 

deviation () need to be identified. In this paper, these 

distribution parameters are assumed to be uncertain and Bayes' 

theorem is used to update their distribution; i.e., the joint PDF 

of mean and standard deviation will be updated. In this case, 

the vector of random variables is defined as x = {, }, and the 

joint PDF fX is updated using Bayes' theorem. Initially, it is 

assumed that the mean and standard deviation are uncorrelated. 

 A field data set consists of number of hours of operation 

until inspection (Nf), and the number of defective blades (r) out 

of the total number of blades (n). Thus, the field data are 

represented by y = {Nf, n, r}. Then, the likelihood function is 

the PDF fY for given x = {, }. Since the field data is given at 

fixed Nf and n, fY can be represented in terms of r. 

Unfortunately, the number of defective blades cannot be a 

continuous number; it is an integer. Thus, the likelihood 

function fY can be represented using the following probability 

mass function: 

 
!

| { , } ( ) (1 )
!( )!

r n r

Y

n
f y P P

r n r
    


X  (8) 

where P is the probability of defects at given Nf for given x = 

{, }. Since the distribution of fatigue life is given as a 

function of x, the probability of defects can be calculated by 

   life

0

, ; ,

fN

P f t dt      (9) 

where, flife is the PDF of fatigue life distribution. The 

probability of mass function in Eq. (8) is a binomial 

distribution, which models the probability distribution of 
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having „r‟ defects out of „n‟ samples with defect probability of 

P. Figure 1 illustrates the relation in Eq. (9). 

 

Figure 1: Probability of defects calculation from life 

distribution 

 

 The procedure of Bayesian update is as follows. First, the 

range of mean and standard deviation are divided by 500×500 

grids. At each grid point (i.e., each value of  and ), the value 

of likelihood function is calculated. This will construct the 

discrete likelihood function for Bayes' theorem. Then, Eq. (7) is 

employed to update the joint PDF of mean and standard 

deviation. Once the joint PDF is updated, the distribution of life 

is estimated using the mean values of the joint PDF: 

life ( ) ( , )f t N     (10) 

where  and  are the mean values of mean and standard 

deviation, respectively. 

3. ANALYTICAL EXAMPLE 

In this section, the properties of Bayes' theorem are studied 

using analytical examples. In particular, the effects of noise and 

bias of data on the final distribution are discussed in detail. The 

data here is simulated to demonstrate the new analytical 

technique. This data is then perturbed in order to study the 

effects of noise and bias errors on the algorithm. 

3.1 Field Data Governed by a Distribution 

The first study is to test the accuracy of updated distribution 

using the Bayes' theorem. Table 1 shows an example of field 

data that are used in this section. The total number of blades is 

n = 100. The field data are generated from a known 

distribution, B ~ N(12000, 2000), and the objective is to test if 

the updated distribution recovers the distribution B. For the 

prior distribution, the mean is uniformly distributed in the 

interval of [0, 30000], while the standard deviation is also 

uniformly distributed in the interval of [0, 4500]. Using the four 

sets of field data in Table 1, the posterior joint PDF are 

calculated using Bayes' theorem. After obtaining the posterior 

joint PDF, the mean values are used to predict the distribution 

of life. Figure 2 compares the updated distribution of fatigue 

life with the distribution B, along with the predicted probability 

of defects from field data. It is clear that both distributions 

match each other quite well. When the field data are governed 

by a particular distribution, Bayes' theorem can reproduce the 

distribution well when more than 3 sets of data are available. 

 

 

 

 

Table 1: Sample field data for inspected turbine blades 

Engine Operation Hours No. of Defective Blades 

1 9,437 10 

2 10,317 20 

3 10,951 30 

4 11,493 40 

 

 

 
Figure 2: Comparison between the updated life distribution 

using Bayes' theorem and the original distribution 

3.2 Effect of Bias 

In practice, the field data are often accompanied by noise and 

bias. The former is caused by variability in measurement 

environment, while the latter represents systematic departure, 

such as calibration error. The difference is that the former is 

random, while the latter is deterministic, although its value is 

unknown. In some cases, a positive bias is consciously applied 

to remain conservative. This section analyzes the effect of bias 

on the updated life distribution using three sets of sample data 

shown in Table 2. The data are generated from the distribution 

B ~ N(12000, 2000). All data sets are symmetrically located 

about the 50% probability of defects location. 

 The bias is given in terms of the number of defective 

blades. For example, bias = 5 means that the number of 

defective blades is five more than the nominal numbers. The 

bias is imposed all data in the same set. The bias affects the 

updated distribution of mean and standard deviation. Figure 3 

shows the variations of the mean of mean and the mean of 

standard deviation due to different magnitudes of bias. All data 

are normalized by 12,000 hours. It is found that bias has a 
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minimal effect on the standard deviation. A positive bias leads 

to a conservative estimate of the mean of the updated life 

distribution. 

 

 

Table 2: Sample field data sets for bias study 

Set Engine Operation Hours No. of Defective Blades 

1 

1 9,437 10 

2 12,000 50 

3 14,563 90 

2 

1 10,317 20 

2 12,000 50 

3 13,683 80 

3 

1 10,951 30 

2 12,000 50 

3 13,049 70 

 

 
Figure 3: Variation of mean and standard deviation due to bias 

in data 

3.3 Effect of Noise 

In general, the field data contains variability caused by 

environmental and operational conditions. This variability is 

random and is called a noise. As opposed to bias, the noise is 

induced on individual field data. In this section, the nominal 

field data in Table 2 is perturbed by 10% to study the effect of 

noise on the updated distribution. When 10 blades need to be 

removed from service, (Engine 1 in Set 1, Pf = 0.1), 10% noise 

means the field data show the removal from service of 11 

blades. On the other hand, when 90 blades are defective 

(Engine 3 in Set 1, Pf = 0.9), -10% noise means the field data 

show that 81 blades are defective. By perturbing each data 

individually, the updated joint PDF is calculated first. Then, the 

mean of mean and the mean of standard deviation are plotted 

against the nominal value of probability of defects, which is 

shown in Figure 4. The solid horizontal lines are the updated 

mean and standard deviation without having noise. The trends 

for updated mean and standard deviation follow a mirror image 

pattern for negative and positive noises. A positive noise gives 

a conservative estimate of the updated mean, while a negative 

noise gives an unconservative estimate. In addition, the higher 

the probability of a defective component is, the greater the 

effect of noise on the updated mean. This can be explained 

from the fact that 10% noise is interpreted as one more 

defective blade when Pf = 0.1, while it means nine defective 

blades when Pf = 0.9. 

 The variation of standard deviation with noise follows an 

interesting pattern. The noise at Pf = 0.5 does not affect the 

updated standard deviation. The effect on standard deviation 

depends on the location of the field data on distribution and 

also on the other field data present in the set. 

 

 
Figure 4: Effect of ±10% noise on three sets of field data 

 

 Instead of having a constant fraction of noise, the effect of 

noise caused by a constant number of defective blades is shown 

in Figure 5. The effect of constant noise on the updated mean is 

almost negligible. At the point of symmetry for all 3 field data 

sets, there is no effect of noise on the updated standard 

deviation. The trend of negative and positive noise on updated 

standard deviation mirrors itself at this point of symmetry. 

 
Figure 5: Effect of constant noise on 3 sets of field data 
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4. UPDATE OF LOW-CYCLE FATIGUE LIFE 

In this section, the Bayes' theorem is utilized to update the 

distribution of low-cycle fatigue life of gas turbine engines 

using actual field data. In this particular type of engine, the total 

number of blades is n = 40. A total of 13 engines are inspected 

at specific operation hours and the numbers of defective blades 

are recorded as shown in Table 3.  

 From the Monte Carlo simulation of analytical model, the 

normalized mean and standard deviation of fatigue life are 

estimated by 1.0 hour and 0.154 hours, respectively. Since these 

values are uncertain, we assume that the mean and standard 

deviation are normally distributed with the coefficient of 

variance equals 50%. Thus, the assumed initial distributions for 

the mean and standard deviation are summarized in Table 4.  

 

Table 3: Field data for low-cycle fatigue defects of turbine 

blades 

Engine Date 
Operation Hours 

(Normalized) 

 

No. of Defective Blades 

1 Jan-04 0.836 2 

2 Mar-04 0.604 1 

3 Mar-04 0.290 1 

4 Jul-04 1.770 0 

5 Sep-04 2.321 12 

6 Sep-04 2.254 3 

7 Oct-04 1.162 6 

8 Nov-04 0.281 0 

9 Feb-05 5.053 13 

10 Mar-05 0.707 0 

11 Apr-05 1.652 0 

12 Nov-06 1.265 10 

13 Mar-06 3.615 18 

 

Table 4: Initial distribution of the distribution parameters 

 Mean Standard deviation 

Mean (life) 1.0 0.5 

Standard deviation (life) 0.154 0.077 

 Figure 6 shows an example of likelihood function. It is 

noted that the mean and standard deviation are strongly 

correlated. This makes sense because in order to have the same 

value of probability of defects, it is necessary to have either 

large mean with small standard deviation or small mean with 

large standard deviation.  

 

 

 

Figure 6: Contour plots of the likelihood function for the first 

field data 

 

 Using all thirteen field data in Table 3, the Bayesian update 

is performed to update the joint PDF of mean and standard 

deviation. After finishing updates, the mean values of the joint 

PDF are used to predict the distribution of fatigue life. Figure 7 

shows a snap shot of likelihood functions and distribution of 

the joint PDF after update. It is clear that the distribution 

narrows down significantly as more updates are performed.  

 Once the updates are finished, the mean values of the joint 

PDF are used to estimate the distribution of the fatigue life. 

Figure 8 shows the updated distribution of fatigue life along 

with the predicted probability of defects from the field data. It 

is noted that both mean and standard deviation progressively 

increase. This means that the analytical prediction is overly 

conservative.  

 

 

    
(a) First field data 
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(b) Twelfth field data 

 

Figure 7: Likelihood functions and updated distributions 

 

 
Figure 8: Updated distribution of fatigue life 

5. UPDATE OF OXIDATION  DAMAGE 
For oxidation damage, the initial life prediction is estimated 

using 500 finite element analyses and the response surface 

method. The thermo-mechanical analysis of 60,000 quadratic 

elements with 180,000 nodes takes about 2.5 hours for 

Windows-based desktop computer. By applying Monte Carlo 

simulation on the response surface, the initial distribution of the 

oxidation damage life is obtained. Based on the distribution, it 

is assumed that the oxidation damage life is normally 

distributed with normalized mean of 1.0 and normalized 

standard deviation of 0.196 operating hours. 

 As oxidation takes a long time to set in, the number of field 

data is scarce. Four sets of field data, tabulated in Table 5 are 

used to update the joint PDF of mean and standard deviation of 

life. The joint PDF of mean and standard deviation of life after 

update with four sets of field data are shown in Figure 9. 

The means of the Joint PDF is used to construct the 

distribution of life after each update. The initial and updated 

distributions of life are plotted in Figure 10.  

 As shown in Figure 10, all four field data show consistent 

behavior. All the field data points look to be governed by a 

particular distribution, and the updated distribution of life 

seems to model that distribution quite closely. However, the 

initial distribution is over predicted the distribution. In this 

case, the finite element analysis turns out to be unconservative. 

This can happen especially when the mathematical model does 

not take into account important uncertain parameters. 

 

Table 5: Field data for oxidation damage 

Engine Hours No. Parts Scrapped Reconditioned 

1 0.464 33 3 30 

2 0.605 32 6 26 

3 0.685 32 9 23 

4 0.953 32 25 7 

 

 
Figure 9: Updated Joint PDF of Mean and standard deviation of 

life 

 

 
Figure 10: Initial and final distributions of life 

 To analyze the effect of assumption on distribution type, a 

lognormal distribution and a Weibull distribution are assumed 

on life, and the results are compared with the normally 

distributed life case in Figure 11. It can be readily seen that 

normal distribution of life predicts a more conservative 

estimate. The 1% probability of damage for the normal 

distribution life is 0.280 hours, while it is 0.376 hours for log-

normal distribution life and 0.341 hours for Weibull distribution 

life. 
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Figure 11: Comparison between types of distributions 

 

6. DEVELOPMENT OF GRAPHICAL USER 
INTERFACE 
The proposed method of updating posterior distribution using 

field data is a relatively simple process in which it only requires 

prior distribution and counting the number of defective samples 

during scheduled inspection. In order to make this method 

available to the field engineers, a graphical user interface (GUI) 

is developed that can collect required information and provide 

posterior distribution of fatigue life. In addition, the developed 

tool can perform parameter study with respect to parameters in 

the prior distribution. This tool can automatically incorporate a 

spreadsheet of field data and an analytical probabilistic analysis 

into an updated or posterior lifetime distribution. These 

distributions can directly be used for risk analysis, lifetime 

extensions, inventory control, calibration of analysis methods, 

and design optimization, with continuous improvements of life 

estimates as more field experience becomes available. Figure 

12 shows a snapshot of the developed GUI. 

 The prior distribution can be defined in three different 

ways: two-point method, Monte Carlo simulation method, and 

multiple CDF points. This information is converted into the 

distribution type and parameters for prior distribution. The 

current implementation supports three different types of 

distributions: normal, lognormal, and Weibull. The field data 

needs to be prepared in the spreadsheet format. In this 

implementation, Alstom‟s field summary sheet (FSS) format is 

used. In general, the inspection spreadsheet includes various 

information, and thus, the GUI extracts necessary information 

from the spreadsheet. 

 Once prior distribution and field data are selected, the tool 

calculates the posterior distribution using Bayes' theorem. The 

results can be displayed in various forms, such as the 

cumulative distribution function (CDF) of fatigue life at each 

update, the joint PDF of mean and standard deviation at each 

update. The results can also be displayed in tabulated format. 

This tool shows how the predicted life distribution evolves 

according to each field data. 

 The tool is further extended to performing parameter study 

so that it can be used as a design tool. The What-If module can 

estimate a new posterior distribution when the prior distribution 

is changed due to design improvement. 

 

 
 

Figure 12: Graphical user interface for statistical life prediction 

using Bayes' theorem and field data 

 

7. CONCLUSIONS 
In this paper, we present a Bayesian updating technique to 

incorporate the analytical prediction with field data. In the case 

of low-cycle fatigue, the initial prediction is overly 

conservative and the updated distribution using field data 

shows much higher expected life. Bayesian update can also be 

utilized as a method to fit the distribution of field data when no 

prior knowledge of the damage mechanism is available. The 

sensitivity of the Bayesian update to the number of defective 

blades reported during an inspection has been analyzed. 

Reporting conservative values of number of defective blades 

would still lead to under-conservative life distribution, if the 

reported value is at a high crude probability of failure region.  
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