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ABSTRACT 
In this paper, a statistical methodology of estimating wear 
coefficient and predicting wear volume in a revolute joint using 
in-situ measurement data is presented. An instrumented slider-
crank mechanism is built, which can measure the joint force and 
the relative motion between the pin and bushing during 
operation. The former is measured using a load cell built onto a 
necked portion of the hollow steel pin, while the latter is 
measured using a capacitance probe. In order to isolate the 
effect of friction in other joints, a porous carbon air bearing for 
the revolute joint between the follower link and the slide stage, 
as well as a prismatic joint for the linear slide, are used. Based 
on the relative motion between the centers of pin and bushing, 
the wear volumes are estimated at six different operating cycles. 
The Bayesian inference technique is used to update the 
distribution of wear coefficient, which incorporates in-situ 
measurement data to obtain the posterior distribution. In order 
to obtain the posterior distribution, Markov Chain Monte Carlo 
technique is employed, which effectively draws samples of the 
given distribution. The results show that it is possible to narrow 
the distribution of wear coefficient and to predict the future 
wear volume with reasonable confidences. The effect of prior 
distribution on the wear coefficient is discussed by comparing 
with non-informative case.  

 
Keywords: wear, Bayesian inference, Markov Chain 

Monte Carlo, slider-crank mechanism. 
 

1 INTRODUCTION 
Mechanical systems are characterized by motion. In order to 
fulfill their design function, the individual components of a 
system must move relative to one another, which inevitably 

produces sliding along the mating surfaces and causes a 
destructive effect known as wear. Wear is the gradual removal 
of material from contacting surfaces in relative motion, which 
eventually causes failure of the system. Since wear inevitably 
exists for most of mechanical systems in motion, it is important 
to predict it and estimate the service life of the system before it 
fails due to wear. 

The traditional practice of predicting service life of a 
mechanical component under wear is performed through two 
stages [1]. First, a wear coefficient of the material used is 
measured in a laboratory environment using the tribometer test. 
Normally, a constant load is applied on the two mating surfaces 
under rotational or reciprocating motion. Second, the contact 
pressure and sliding distance of an actual component are 
calculated using either analytical or numerical methods. Then, 
wear volume is estimated as a function of service life by 
combining the wear coefficient with contact pressure and 
sliding distance.  

Although the above process is well-adopted, the 
fundamental limitation of wear prediction is that it works only 
with a constant contact pressure condition that is used in the 
tribometer test. In practice, however, the contact pressure 
usually varies as a function of time. Furthermore, it varies even 
within a contact surface. Since the wear coefficient is not an 
intrinsic material property, it varies with different operating 
conditions. Calculating wear coefficients at all possible 
operating conditions requires numerous wear tests and is 
extremely time consuming. In addition, the variability of wear 
coefficient is significant even if different parts are made of the 
same material. Recently, Mukras et al. [2] presented an 
integrated framework of predicting wear under variable 
kinematics and kinetics. It was found that the process is 
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computationally intensive to predict wear under varying loads 
and wear surfaces that change continuously.  

Thus, it would be more desirable to measure the wear 
coefficient directly from the mechanical component used. Since 
calculating the wear coefficient requires kinematic information 
(wear volume and sliding distance) as well as kinetic 
information (contact force/pressure), it is important to design an 
in-situ measurement apparatus to measure both factors. In this 
paper, we used an instrumented slider-crank mechanism [3] to 
measure kinematic and kinetic information. Since in-situ 
measurement is often accompanied by various noises and 
errors, we used the Bayesian inference technique to update the 
statistical distribution of wear coefficient. 

The paper is organized as follows. In Section 2, a simple 
wear model that is used in this paper is summarized. Although a 
linear model is used, the main concept of the paper can be 
extended to more complicated wear models. In Section 3, in-
situ measurements of joint force and wear volume are 
presented. Section 4 presents the Bayesian inference technique 
along with the Markov Chain Monte Carlo (MCMC) method. In 
Section 5, the wear coefficient is statistically identified and 
validated, followed by conclusions and discussions in Section 6. 

 
2 WEAR MODEL AND WEAR COEFFICIENT 
Among different kinds of wear phenomena, it is assumed that 
all the wear cases to be predicted fall within the plastically 
dominated wear regime, where sliding velocities are small and 
surface heating can be considered negligible. The Archard’s 
wear model [4] would thus serve as the appropriate wear model 
to describe the wear as discussed by Lim and Ashby [5] as well 
as Cantizano et al.[6]. The Archard’s wear model assumes that 
the volume of material removed ( V∆ ) is linearly proportional 
to the product of the slip distance (d) and the normal load (Fn). 
The traditional method of calculating wear coefficient is shown 
schematically in Figure 1. In that model, first published by 
Holm [7], the worn-out volume, during the process of wear, is 
considered to be proportional to the normal load. The model is 
expressed mathematically as follows: 

 nFV K
s H
∆

=  (1) 

where V∆  is the worn-out volume, s  the slip distance, K  
the dimensionless wear coefficient, H  the Brinell hardness of 
the softer material, and nF  the applied normal force. Since the 
wear coefficient is the quantity of interest, Eq. (1) is often 
written in the following form: 

 
n

Vk
F s

=  (2) 

The non-dimensioned wear coefficient K  and the hardness 
are bundled up into a single dimensioned wear coefficient k . 
Since the worn-out volume is relatively small, it is often 
measured in the unit of mm3. Thus, the unit of wear coefficient 

becomes [mm3/N-m]. Note that the wear coefficient is not an 
intrinsic material property. The value of k  for a specific 
operating condition and given pair of materials may be obtained 
through experimentation [1]. 

As can be expected from Figure 1, the applied normal force 
and contact area remain constant through the entire process. If 
the normal force varies within the slip distance, the definition of 
wear coefficient in Eq. (2) needs to be modified as  

 

0
( )d

s

n

Vk
F s s

=
∫

 (3) 

In the above definition, it is assumed that the wear coefficient is 
independent of normal force, which is generally not true. 
However, the wear coefficient k  in Eq. (3) can be interpreted 
as an average wear coefficient for given load profile. 
 
3 IN-SITU MEASUREMENT OF JOINT WEAR OF A 

SLIDER-CRANK MECHANISM 
The crank-slider test apparatus used in the study is shown in 
Figure 2. The detailed dimensions of crank and slider are 
summarized in Table 1. The design philosophy is to attempt to 
isolate friction, wear and error motions exclusively to the joint 
under consideration. In order to minimize confounding dynamic 
contributions from the other components in the mechanism, a 
porous carbon air bearing for the revolute joint between the 
follower link and the slide stage, as well as a prismatic joint for 

 
(a) illustrates a wear rate equation 

 

 
(b) shows data from an unfilled polymer system under steady load 
Figure 1. Wear is the gradual removal of material, which 
progresses linearly for many material combinations. This common 
form of wear is often termed mild wear.                           
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the linear slide, are used. 
The revolute joint under study consists of a 19.0mm 

diameter steel pin and a polymer bushing. The pin is clamped in 
the crank link at one end and is free to rotate, subject to sliding 
friction. The bushing is clamped in the follower link. The pin is 
made of hardened steel and is assumed to be hard enough so 
that no appreciable wear occurs on its surface. The bushing, on 
the other hand, is made of poly-tetra-fluoro-ethylene (PTFE) 
which is soft and is subject to considerable wear. To enable the 
wear debris to escape the contact area and prevent it from 
affecting the progression of wear, grooves are machined into the 
bushing, as shown in Figure 3. 

The contact and friction loads experienced by the joint 
under study can be manipulated in two ways. First, up to 9.6 kg 
of mass (madd) in the form of steel weights can be bolted to the 
dovetail slide stage. The corresponding inertial force is 
dependent on the stage acceleration, which is a function of the 
stage location and the crank velocity. Additionally, single or 
dual coil tension springs can be attached in parallel between the 
stage and the table. With the assumption that the springs have 
no significant strain rate dependency, the spring force is 
nominally a function of stage position. Springs used in this 
study have a nominal spring constant of ks = 220 N/m. The 
added mass and springs will attribute to the joint force, which 
can accelerate the wear progress. In practice, mechanisms are 
usually operated under added masses and additional constraint 

forces. The wear pattern or process depends on three factors: 
(1) wear coefficient and (2) joint force, and (3) relative motion 
in the interface. Different joints may have different joint forces 
and relative motions and they need to be measured. However, 
the wear coefficient is close to the material property and it is 
‘almost’ independent of the process (wear coefficient is not 
intrinsic material property). Therefore, the identified wear 
coefficient for accelerated condition will be close enough to the 
other conditions. 

Forces transmitted through the joint of interest are 
measured via a load cell built into a steel pin (Figure 4). Two 
full-bridge arrays of strain gages mounted to a necked-down 
portion of the pin monitor transverse loads while cancelling out 
bending stresses. The necked portion of the pin, along with a 
hollow cross section, also serves to localize the strain to the 
region where the gages are attached. A slip ring mounted to the 
free end of the pin allows power and signals to be transmitted to 
and from the strain gages. The load cell is deadweight 
calibrated and has a full scale capacity of 400N and a resolution 
of 2N. 

Simultaneously, two orthogonally mounted capacitance 
probes monitor the position of the pin relative to bushing 
(Figure 3). These probes are clamped to the follower arm and 
are electrically insulated by polymer bushings. These probes 
have a range of 1,250μm and a resolution of 40nm. 
Additionally, the pin, as the target, is electrically grounded.  

Additionally, the angular position of the crank is measured 

 
 

Figure 2. The layout of slider-crank mechanism used for 
experiment 
 

Table 1 Pertinent slider-crank mechanism parameters. Mass 
moments of inertia are about the center of mass of each body. 

Property Value 
Crank mass 0.404 kg 

Crank moment of inertia 2.010-4 kg-m2 
Crank length 76.2 mm 
Follower mass 0.812 kg 

Follower moment of inertia 5.510-3 kg-m2 
Follower length 203.2 mm 
Stage mass 8.5 kg 
Pin diameter 19.00 mm 

 
Figure 3. Capacitance probes measure the location of the pin 
from fixed locations on the follower link. 
 

 
 

Figure 4. Instrumented steel pin load cell for measuring joint 
force. 
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by a hollow shaft incremental encoder attached to the spindle 
shaft. 

Figure 5 shows the joint force as a function of crank angle 
at Cycle 1 and Cycle 20,500. High frequency oscillation has 
been observed when the slider changes its velocity direction.  
However, there is no significant variation of joint forces 
between different cycles. Thus, the profile of joint forces is 
fixed throughout entire cycles. 

It is well known that uncertainty in applied loading is the 
most significant factor in prognosis; i.e., without knowing future 
loadings, the uncertainty in prediction can be so wide that the 
prediction may not have a significant meaning. This issue can 
be addressed in two aspects. Firstly, although the loading 
condition is variable, if there is enough proof that the future 
loadings will be similar to the past loadings, then the collected 
data for past joint forces can be used to predict the future 
loadings. In this case, the future loadings can be represented 
using statistical method. Of course, the uncertainty in predicted 
life will be increased due to the added uncertainty. Secondly, the 
focus of this paper is on characterization of wear parameters, 
which only depends on the recorded past loading history. Thus, 
the proposed idea will work for the variable load history, too. In 
this case, the computation will be more expensive than the 
current example. 

Figure 6 shows measured displacements of pin center using 
the capacitance probe. The wear volume is computed based on 
the value of δx and δy. Due to the pre-tensioned springs, the 
contact points are located only one side of the bushing. 
However, the location of pin center varies according to crank 
angle. This can be explained by rounded surface of the pin and 
different amount of elastic deformation due to variation in 
spring forces at different angles. The measured forces, 
computed wear volume from the measured displacement,  
sliding distance and wear coefficient are shown at 6 sets of 
number of cycles for crank angles 0 and π radians in Tables 2 
and 3, respectively. Although the wear coefficient converges to 
a value at high cycles, two results converge to different wear 
coefficient. This is because the joint force is not constant and 
the measured wear volume includes errors. In the following 
section, a statistical approach will be introduced to estimate the 
wear coefficient more reasonably. The idea is to estimate wear 
coefficient incorporating uncertainty based on the first 5 set of 
measured data, and predict the wear volume at the future cycle 
using the information, which is the 6th cycle in Tables 2 and 3. 
Since the actual data at this cycle are also measured, we can 
evaluate the reliability or accuracy of the method by comparing 
the two results. 
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(b) Cycle 20,500 

Figure 5. Joint force predictions and measured data. 
 

 
(a) profile of pin center locations 

 

 
(b) wear volume calculated from the overlapped area 

Figure 6. In-situ measurements of pin displacement. 
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Table 2 Wear coefficient calculation using pin locations at 0 
radian. 
 0 radian 
Cycles Force Volume Slip distance k  x 104 

1 64.41 1.59 0.06 4134.80 
100 62.80 2.57 5.99 68.25 

1000 63.17 8.10 59.85 21.44 
5000 64.77 24.48 299.24 12.63 

10000 62.65 46.21 598.47 12.32 
20585 59.96 93.90 1232.00 12.71 

 
Table 3  Wear coefficient calculation using pin locations at π 
radian. 
 π radian 
Cycles Force Volume Slip distance k  x 104 

1 103.87 7.29 0.06 11731.00 
100 106.90 7.64 5.99 119.43 

1000 114.04 9.55 59.85 13.99 
5000 138.77 23.87 299.24 5.75 

10000 143.50 44.41 598.47 5.17 
20585 147.85 91.56 1232.00 5.03 

 
 

4 BAYESIAN INFERENCE TECHNIQUE FOR 
PREDICTION OF PROGRESSIVE JOINT WEAR 

 
4.1 Bayes’ Theorem 
In this study, the Bayesian technique is employed to identify the 
wear coefficient k , which is the degradation model parameter, 
by using in-situ measurements data. The method is based on the 
Bayes’ rule as is given by Gelman et al. [8] 

 ( ) ( ) ( )| |p L p∝y yθ θ θ , (4) 

where ( )|L y θ  is the likelihood of observed data y  which is 
the wear volume in this case, conditional on the given model 
parameters θ , ( )p θ  is the prior distribution of θ , and 

( )|p yθ  is the posterior distribution of θ  conditional on y . 
As more data are provided, the posterior distribution is again 
used as a prior at the next step, and the values are updated to 
more confident information. This is called Bayesian updating. 
The procedure to obtain posterior distribution ( )|p yθ  
consists of proper definition of probability distribution for the 
likelihood and prior respectively, which is outlined as follows.  

Since no information in variability of experimental data is 
available, two types of likelihood are considered: normal and 
lognormal distributions. In the likelihood calculation, the actual 
wear volume at a cycle is computed by averaging the values at 0 
and π radians (see Tables 2 and 3). Denoting the set of wear 
volume data obtained at these cycles as V , the likelihoods of 

the data for given wear coefficient and standard deviation can 
be defined as  

( ) ( )| , ,L k Nσ µ σV               (5) 

( ) ( )| , ,L k LNσ λ ζV              (6) 
where µ and σ are the mean and standard deviation of the wear 
volume, and λ and ζ are two parameters of the lognormal 
distribution. Recalling Eq. (3), the mean wear volume is 
expressed as the integral of contact force and slip, multiplied by 
k . In practice, this integral is computed discretely by dividing 
the cycle into n  equal intervals: 

1
i

n

n i
i

kC F sµ
=

 
= ∆ 

 
∑                (7) 

where 
inF  and is∆  are the contact force and incremental slip 

at i th segment, respectively, and C  is the number of cycles. 
Being the force profile fixed over the entire cycles, the sum in 
Eq. (7) is obtained as a constant with the value 5.966 [N-m]. In 
Eq. (6), λ and ζ are given as 

 21log
2

λ µ ζ= +  and 
2

2log 1 σζ
µ

 
= + 

 
 (8) 

Note that in Eq. (7), the mean is only the function of k  since 
all other terms are given or fixed. After all, the parameters k  
and σ  are the unknowns to be estimated conditional on the 
observed data V . 

For the prior distribution of k , specific information from 
the previous literature [9] is employed, which is 

  ( ) ( ) 4:  5.05,0.74 10p k N −×            (9) 
The distribution was obtained from the experiments to 
determine k  for the bushing with the same material as the 
current study. Non-informative prior assuming no prior 
knowledge is also considered to study effect of prior 
information. On the other hand, the prior distribution of σ  is 
considered as non-informative prior. 
Consequently, the posterior PDF of wear coefficient k  is 
obtained by multiplying Eq. (5) or Eq. (6) and the prior 
distribution ( )p k  in Eq. (9). 
 
4.2 MCMC Simulation 
Once the expression for posterior PDF is available, one can 
proceed to sample from the PDF. A primitive way is to compute 
the values at a grid of points after identifying the effective 
range, and to sample by the inverse CDF method. This method, 
however, has several drawbacks such as the difficulty in finding 
correct location and scale of the grid points, spacing of the grid, 
and so on. MCMC simulation is an effective solution in this 
case [10]. The Metropolis-Hastings (M-H) algorithm is typical 
method of MCMC, which is given in Table 4. 
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In Table 4,  (0) (0),k σ    are the initial values of unknown 

parameters to be estimated, N  is the number of iterations or 
samples, U  is the uniform distribution, ( )p x  is the posterior 

PDF (target PDF), and ( )q x  is an arbitrary chosen proposal 
distribution. A uniform distribution is used in this study for the 
sake of simplicity. Then, ( ) ( )( )* *, | ,i iq k kσ σ and 

( ) ( )( )* *, | ,i iq k kσ σ  become constant, and ( ),q k σ  can be 

ignored. As an example of MCMC, Figure 7 and Table 5 show 
the sampling result of ,k σ of which the posterior PDF given as  

 ( ) ( )25 5

2
1

1 1, exp
22

i n

i

V kF s
p k σ

σπσ =

 − 
∝ −  

    
∑  (10) 

With only 10,000 iterations, the sampling result follows the 
distribution quite well.  

 
5 IDENTIFICATION OF WEAR COEFFICIENT AND 

PREDICTION OF WEAR VOLUME 
 

5.1 Posterior Distribution of Wear Coefficient 
The posterior distributions of k and σ are obtained using the 
MCMC technique with the first 5 sets of data in Tables 2 and  
3. In the MCMC process, the number of iterations is fixed at 
10,000. During the iteration, determining the convergence 
condition is a difficult task because there is no clearcut 
criterion, but certain amount of experience is required. It 
involves discarding the values at the initial stage of the 
iteration, and monitoring the traces and histogram plots at the 
later part of the iteration from which the subjective judgment is 
made as to the convergence to a stationary chain. The resulting 

Table 4 MCMC simulation process  
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(a) exact solution 

 
(b) using MCMC 

Figure 7. Joint posterior PDF 
 
Table 5 Statistical moments 
 Eµ  Eσ  Eµµ  Eσσ  Eµσ  
Exact Sol. 7.7597 5.6321 0.8478 6.3045 0 
MCMC 7.8212 5.6055 0.8613 6.7054 0 
Error (%) 0.79  0.47  1.60  6.36  0 
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Figure 8. Posterior distribution when using data=5. 
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PDF’s are given in Figure 8. Both normal and lognormal 
distributions are considered for the likelihood, and both non-
informative and normal distribution are considered for the prior. 
In the case of non-informative prior, the PDF shape (c) of 
lognormal likelihood is narrower than the shape (a) of normal 
likelihood. As shown in the 5th set of Table 6, the standard 
deviation from the lognormal likelihood (0.51 410−× mm3/Nm) is 
43% less than that of normal likelihood (0.9 410−× mm3/Nm) 
whereas the mean values are nearly equal, i.e., 7.89 and 7.88. 
The results show that the lognormal likelihood exhibits superior 
precision to the normal likelihood. The reason that the 
lognormal likelihood is better than the normal may be attributed 
to the non-negativity of the lognormal distribution, which is the 
case of the wear coefficient. Comparing the results by the two 
priors, i.e., (a) vs (b) and (c) vs (d), use of the prior leads to the 
estimation of smaller mean for k. It is noted that the actual k 
values at the last cycle are found to vary between 5.03 410−×  
and 12.71 410−×  (see Tables 2 and 3), of which the average is 
8.5 410−× . Despite employing prior, the results are worse than 
the non-informative results. This may happen because the prior 
distribution is not accurate. As mentioned before, the tribometer 
wear tests are performed under the uniform pressure condition, 
while the contact pressure in the bushing is not constant.  

In order to investigate the effect of prior in more detail, the 
posterior distributions of k are obtained after updating at each 
stage of data set. Values of the mean and standard deviation are 
given in Table 6, and 5%, 95% percentile and MLE values are 
plotted in Figure 9, respectively. In Figure 9, the green line 
denotes the mean value of the distribution after the last update, 
i.e., using the 6th data set. This is used as a target value for 
correct prediction of the earlier stage. 

 In Figure 9(a) and 9(b), the confidence intervals with 
prior are located much lower than the ones without prior, and do 
not include the target value. Remark from these observations is 
that although the use of prior knowledge is usually 
recommended to accommodate more confidence and faster 
convergence, it should be used in caution. In this study, the 
wear coefficient is not intrinsic material property but can vary 
with operating condition. This turned out to be the cause of 
incorrect prediction, and should be avoided. It should be noted 

however that this is not always the case. If only a limited data 
are available unlike the present case, user may have to depend 
more on the prior knowledge than the likelihood of the data. 
 
5.2 Posterior Prediction of Wear Volume 
Once the posterior distribution of k and σ are obtained, the 
information can be used to predict the wear volume at the future 
stage. For that purpose, the wear volume at 6th data set (20,585 
cycles) is predicted using the posterior distribution of wear 
coefficient at each cycle. The predictive distribution of wear 
volume are computed using the posterior distribution of k and σ 
at each stage, and 5%, 95% and MLE values are plotted in 
Figure 10. In the figure, the actual value of wear volume 
measured at the 6th data set is used as a target value which is 
92.73 mm3. As was noted before, the use of prior does not 
predict the wear volume well. Besides, even the upper 
confidence limit is below the target value, which can cause 
unexpected failure if the value is carelessly used in the design 
decision. 

Table 6 Mean and standard deviation of k (10-4 mm3/Nm). 

  Num.of 
data set 3 4 5 6 

normal 

non-
inform. 

mean 17.49  8.28  7.89  7.57  
std. 10.02  2.32  0.90  0.40  

prior mean 5.11  5.42  5.93  6.89  
std. 0.73  0.73  0.76  0.57  

lognormal 

non-
inform. 

mean 20.81  8.89  7.88  7.64  
std. 5.82  1.17  0.51  0.25  

prior mean 5.46  5.67  6.29  7.41  
std. 0.72  0.75  0.77  0.25  
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Figure 9. P values in terms of number of data set. 



 8 Copyright © 2010 by ASME 

Comparing the results of normal and lognormal likelihood, 
the length of interval is quite larger at the 3rd stage of data in the 
case of normal likelihood. But the lengths of the intervals are 
quickly reduced and get closer each other afterwards as the 
number of cycles increases. Overall, the lengths of interval of 
the lognormal case are smaller than the other. 

In Figure 11, predictive distribution of the wear volume at 
the 6th stage using the posterior distribution of 5th stage are 
given, in which the red line denotes the actual measured value. 
The result of non-informative prior are better than the case of 
prior.  

In Figure 12, the confidence interval (CI) and predictive 
intervals (PI) of the wear volumes at all the stages are given 
using the posterior distribution of 5th stage along with the actual 
measured data denoted by green dots. In the case of the 
lognormal likelihood, the results at the 1st and 2nd stages, which 
are 1 cycle and 100 cycles respectively, exhibit very small 
intervals and do not include the actual points, which are 
inadequate. The reason is due to the larger uncertainty at the 
early stage with small data while the lognormal distribution  
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Figure 11. Wear volume prediction. 
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(b) likelihood: Lognormal distribution 

Figure 12. C.I. and P.I. of wear volume. 
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Figure 10. Wear volume prediction in terms of number of data set. 
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does not allow negative values. Nevertheless, these early stages 
are not of the interest in terms of prognosis. In Table 7, the 
numerical values of CI and PI are shown as well. The values are 
different significantly at the early stage, i.e., at the 1st and 2nd 
stages, due to the same reason as mentioned above, hence, is 
insignificant. From 1,000 cycles, which is the 3rd stage, the CI’s 
and PI’s of lognormal case is smaller than the normal case, 
which demonstrates superior precision. 

 
6 CONCLUSIONS AND DISCUSSIONS 
In this paper, the Bayesian inference technique is utilized to 
estimate the probability distribution of wear coefficient using 
in-situ measurements. The first five data up to 10,000 cycles are 
used to reduce uncertainty in wear coefficient, and the last data 
at 20,585 cycles are used for validation purpose. The numerical 
results show that the posterior distribution with non-informative 
is more accurate than that with the prior distribution from the 
literature. This happens because the converged posterior 
distribution is quite different from the prior distribution. In 
order to predict the wear coefficient of a mechanical 
component, it has been suggested that the wear volume, slip 
distance and applied load must be measured simultaneously. 
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Table 7 C.I. and P.I. of wear volume. 

Num.of  
data set 1 2 3 4 5 6 

true wear V 4.44 5.105 8.825 24.175 45.31 92.73 

C. 
I. 

N 
95% 0.01  0.56  5.63  28.13  56.25  115.80  
5% 0.00  0.39  3.89  19.43  38.87  80.01  

inter 0.00  0.17  1.74  8.69  17.39  35.79  

L 
95% 0.01  0.52  5.23  26.14  52.27  107.60  
5% 0.00  0.42  4.23  21.16  42.31  87.10  

inter 0.00  0.10  1.00  4.98  9.96  20.50  

P. 
I. 

N 
95% 10.62  10.47  15.25  34.53  60.72  118.80  
5% -10.24  -9.51  -5.33  12.72  33.87  77.49  

inter 20.85  19.98  20.58  21.81  26.85  41.31  

L 
95% 0.00  1.74  10.59  30.03  55.03  108.84  
5% 0.00  0.00  1.13  17.60  40.00  85.62  

inter 0.00  1.74  9.46  12.43  15.03  23.21  
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