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ABSTRACT 
In this paper, two procedures to analyze planar multibody 

systems experiencing wear at a revolute joint are compared. In 

both procedures, the revolute joint of interest includes a 

clearance whose shape and size are dictated by wear. The 

procedures consist of coupled iterative analyses between a 

dynamic analysis of the system with non-ideal joints and wear 

prediction to determine the evolution of the joint clearance. In 

the first procedure, joint forces and contact pressure are 

estimated using the elastic foundation model (EFM) with 

hysteresis damping via the dynamic analysis. In the second 

procedure, a contact force model with hysteresis damping is 

used to estimate the joint forces. In the latter case, however, the 

contact pressure is estimated using a finite element method 

(FEM). Comparison in performance of the two models is 

facilitated through the use of an experimental slider-crank 

mechanism in which wear is permitted to occur at one of the 

joints. It is observed that the two procedures provide similar 

estimates for the dynamics response and wear volumes but 

substantially different predictions on the wear profiles. 

Additionally, experimental results show that while predictions 

on the wear volume from both models are reasonably accurate, 

the FEM-based model produced more accurate predictions on 

the wear profile. 

1.  INTRODUCTION 
Mechanical/multibody systems consist of a number of 

components that are interconnected by joints. These joints 

typically consist of at least two components that are in contact 

and experience relative motion. It is therefore inevitable that 

joint wear will occur. Depending on the system configuration 

and the amount of wear at the joints, the performance of the 

system may be adversely affected. It is therefore no surprise that 

a considerable amount of effort has been expended to develop 

ways to account for wear in the design process. One approach is 

to develop procedures that can be used to estimate wear 

beforehand. A trend that has developed, in this regard, is the use 

of Archard‟s [1] wear model in an iterative wear prediction 

scheme. In this scheme, incremental wear is estimated based on 

the relative sliding, the contact pressure and tribological data 

(typically in the form of a wear coefficient) that describes the 

operating conditions. The geometry is then updated to reflect 

wear and the incremental wear is recomputed and accumulated 

in subsequent iterations. This procedure has been used in a 

number of applications including wear prediction in cam and 

follower components [2-5], revolute joint components [6], 

helical gears [7] and spur gears [8, 9]. It has also been used in 

medical applications to predict wear in hip arthroplasty [10, 

11]. 

Despite the increasing use of the iterative wear prediction 

procedure, for certain cases the procedure may yield less than 

accurate predictions. This is because the procedure is a 

component level prediction in which the component is isolated 

from the entire system and the wear estimate is based on initial 

system dynamics. Two possible errors may be associated with 

the component level assumption. First, as the wear at the 
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contact interface of the component evolves, the system 

dynamics may also evolve. Thus, the joint forces responsible 

for the wear are altered as the wear progresses. Depending on 

the degree of evolution, it may not be sufficient to use the initial 

dynamics in the wear prediction. This issue was identified and 

documented by Blanchet [12] and Sawyer [13] for a scotch 

yoke mechanism and by Dickrell et al. [14] for cam wear. 

Secondly, without performing a dynamic analysis it may not be 

possible to correctly determine the contact locations in the joint 

and the predictions may lead to incorrect wear profiles. This 

aspect of wear prediction was also identified and discussed by 

Mukras et al. [15] and Flores [16]. In Mukras et al. [15], a 

procedure to analyze multibody systems with non-ideal joints 

based on a contact force model was coupled with the previously 

discussed wear prediction procedure. This coupling accounts 

for changes in the dynamics due to joint wear. In addition, the 

contact locations and, subsequently, the wear regions can be 

predicted in a multibody dynamic framework. The procedure 

was used to estimate the wear at a revolute joint in a slider-

crank mechanism. Results from the model showed agreement 

with experiment. A similar procedure was presented by Flores 

[16].   

In this paper, a procedure to analyze planar multibody 

systems with revolute joint wear, similar to that used in Mukras 

et al. [15] and Flores [16], is presented. However, the procedure 

is based on the elastic foundation model (EFM), rather than the 

contact force model. A similar concept was employed by Bei et 

al. [17] in multibody analysis of knee contact and by Fregly et 

al. [18] in wear prediction of a knee replacement. The 

procedure presented here employs the EFM to simultaneously 

estimate the joint reaction force, required in the dynamic 

analysis, and contact pressure distribution at the joint, which is 

required for wear analysis. The EFM-based procedure is then 

compared with the contact force model approach. The 

advantages and disadvantages of the two procedures are then 

discussed. The aim of this paper is to present a fair comparison 

between the two procedures to enable users the opportunity to 

make an informed choice. 

2.  WEAR PREDICTION PROCEDURE 
In this work, an iterative wear prediction procedure, similar 

to the one used in the works of Podra et al. [19, 20], is 

employed. The procedure is based on Archard‟s wear model 

which can be expressed in differential form as follows: 

 
dh

kp s
ds

 . (1) 

In Eq. (1), h is the wear depth, s and p are the relative sliding 

distance and contact pressure between the contacting bodies and 

k is the wear coefficient. If the two bodies are made of different 

materials, each body will have a separate wear coefficient. The 

wear depth may be estimated using a finite difference approach 

in which a temporal discretization of the relative motion of the 

bodies in contact yields the following updating formula: 

1i i i ih h kp s   . (2) 

In Eq. (2), 
ip , 

ih  and 
is  are the contact pressure, wear depth 

and incremental sliding distance at the thi  cycle and 
1ih 
 is the 

wear depth at the previous cycle. The product on the right-hand 

side of Eq. (2) is referred to as the incremental wear depth. In 

this term, the incremental sliding distance is usually specified 

while the wear coefficient is determined through experiments 

[21–23] and the contact pressure is determined using numerical 

techniques such as EFM or the finite element method (FEM).  

Accurate wear predictions require that the geometry be 

updated to reflect the evolving contact conditions. One way to 

achieve this is by displacing the contact boundary in the 

direction of the surface normal by an amount equal to the wear 

estimated by Eq. (2). In addition, these procedures must 

incorporate some strategies, such as extrapolation, to minimize 

computational costs.  More detailed studies on wear prediction 

on geometries, such as the revolute joints including geometry 

update and the use of extrapolations, can be found in Mukras et 

al. [6] and Kim et al. [21]. 

3.  ANALYSIS OF MULTIBODY SYSTEMS  
In order to predict joint wear within a system, it is 

necessary to formulate it within the multibody dynamic analysis 

of the system. The analysis of multibody systems with either 

ideal or non-ideal joints involves the assembly and solution of a 

set of differential algebraic equations of motion (DAE). A brief 

discussion on how to perform a dynamic analysis is presented in 

this section.  

A multibody system consists of several components 

(bodies) that are interconnected by joints which impose 

restrictions on the relative motion of the bodies. The description 

of interconnections is expressed through algebraic equations 

known as kinematic constraints. The kinematic constraint can 

be expressed as [24, 25]: 

 ,t Φ q 0 , (3) 

where q is the set of generalized coordinates that uniquely 

define the position and orientation of all bodies in the system 

and t is time. Equation (3) is usually referred to as the position 

equation. It is differentiated once to obtain the velocity equation 

and twice for the acceleration equation. These equations can, 

respectively, be expressed as: 

t 
q

Φ q Φ , (4) 

  2 t tt    
q q qq

Φ q Φ q q Φ q Φ γ . (5) 

For a properly constrained system, Eqs. (3), (4) and (5) can 

be solved to determine the position, velocity and acceleration of 

the system components. This analysis, referred to as a kinematic 

analysis, provides only information on the motion of the system. 

A dynamic analysis is required in order to determine the 
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dynamic response of a multibody system. This involves 

formulating and solving the DAE of motion. The DAE can be 

obtained by combining the equations of motion for the system 

and the acceleration equation (Eq. (5)). For a constrained rigid 

multibody system, the equation on motion for a multibody 

system can be expressed as [24, 25]: 

T A 
q

Mq Φ λ Q , (6) 

where M  is the generalized mass matrix consisting of masses 

and moments of inertia for the system components, q  and T

q
Φ  

are the generalized acceleration vector and Jacobian of the 

constraints, respectively, λ  is a vector of Lagrange multipliers, 

and A
Q  is a vector of externally applied loads. The second term 

on the left hand side of Eq. (6) is the vector of reaction forces. 

For an unconstrained system, the vector of Lagrange multipliers 

is zero and this term disappears. 

Equations (5) and (6) can then be combined to result in a 

mixed system of differential algebraic equations (DAE) of 

motion. The equations are expressed as:  

T A    
    

      

q

q

M Φ q Q

Φ 0 λ γ
. (7) 

Equation (7) can then be solved to reveal the dynamics of the 

system. The solution procedure for this equation is well 

documented in the literature [24–26].  

 
Figure 1: A revolute joint with clearance. 

4.  ANALYSIS OF MULTIBODY SYSTEMS WITH NON-

IDEAL JOINTS 
In this section the procedure to model non-ideal revolute 

joints using the contact force model and the EFM is presented. 

The analysis of a system with such joints can then be performed 

with the procedure outlined in section 3. 

It is assumed in this work that the revolute joint consists of 

two components, a pin and a bushing. The pin and the bushing 

are rigidly attached to the two bodies that share the joint. This is 

depicted in Fig. 1 where the pin and the bushing are, 

respectively, attached to body i and body j. The ideal revolute 

joint, which allows relative rotation between two bodies in the 

system, assumes that no clearance is present at the joint and the 

pin and bushing center coincide at all time. In the case of a non-

ideal revolute joint, clearance is present at the joint so that the 

pin and bushing centers do not necessarily coincide. 

The joint components (pin and bushing) of a non-ideal joint 

can assume one of three configurations. The three 

configurations are: freefall, when the components are not in 

contact; impact, when contact is established; and the following 

motion, which together describe the duration when the joint 

components are in contact and in relative motion. It is possible 

to model the effect of a non-ideal joint by ensuring that the 

motion of the pin is confined within the inner perimeter of the 

bushing. This can be achieved by using a force constraint in 

place of a kinematic constraint to describe the joint. The force 

constraint involves applying a force on the joint components 

every time contact is established (this force is equivalent to the 

joint reaction). This procedure has previously been used by 

Ravn [27] and Flores et al. [28]. 

 
Figure 2: Geometric description of a non-ideal revolute joint 

with eccentric vector e. 

 

Before the constraint/contact force can be applied, it is 

necessary to determine the direction in which the contact force 

is acting. In Fig. 2, a diagram of two bodies constrained by a 

non-ideal revolute joint is shown. Body coordinates xi-yi and xj-

yj are fixed to the center of masses of the bodies i and j, 

respectively. The coordinates are oriented at angles i  and j  

relative to the global x-axis. The point of contact C is defined as 

the center of contact region between the pin and the bushing. 

This point can be located using the eccentric vector e which is a 

vector connecting the bushing center D and the pin center B. At 

the time of contact the eccentric vector points in the direction of 

the contact. It is assumed that this is also the direction in which 

the joint reaction will act. This vector is expressed as: 

   i i i j j j   e r A s r A s , (8) 

where ir  and jr  are vectors linking the global origin and 

the center or masses of the bodies, is  and js  are vectors in the 

local coordinate system that link the center of masses to the pin 

and bushing centers respectively, and iA  and jA  are matrices 

that transform a vector from the local coordinate system to the 

global system. In this case, they transform vectors is  and js  
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into their global equivalent. A unit vector in the direction of the 

eccentric vector can be defined by: 

;   e
e

 
e

n e . (9) 

The constraint/contact force can then be applied in the 

direction of the above unit vector. The forces can be estimated 

using a contact form model with hysteresis damping [29] as 

discussed by Ravn [27] and Flores et al. [28]. The EFM may 

also be used to determine the constraint force. The two 

techniques will be discussed in the following subsections.  

4.1. Contact Force Model for Modeling Non-Ideal 

Revolute Joints  
It is assumed that, while the joint components are 

compliant, the bodies to which the components are attached are 

rigid. It is then possible to estimate the constraint force using a 

contact force model. A widely used model in multibody 

analysis, which was derived for colliding spheres, is the Hertz 

model with hysteresis damping [29]. It assumes a nonlinear 

relation between the contact force and the penetration   

resulting from the contact. Using this model, the force normal to 

the plane of contact can be expressed as:  

n

NF K D   , (10) 

where n = 1.5 and K is a constant that represents compliance. 

The constant K depends on the elastic constants   and E  as 

well as the radii (
iR  and jR ) of the spheres:  

 

1

2
4

3 i j

K R
b b




, (11) 

where  

21
;          ;      , . 

i j k

k

i j k

R R
R b k i j

R R E

  
   
  

 (12) 

In the case of conformal contact as shown in Fig. Figure 2, 

the radius of the second body (Rj) should take a negative value. 

Damping is included in the contact model in the form of a 

damping coefficient D and the penetration velocity  . The 

damping coefficient is expressed as: 

 
 

23 1

4

r n
K e

D 





 , (13) 

where re  and 
 


 are the coefficient of restitution and the 

initial penetration velocity upon impact. 

The coefficient of restitution plays an important role when 

components impact at high relative velocities resulting in 

bouncing of the components and elasto-plastic deformation [44, 

45]. However, in the revolute joint, the interaction between the 

joint components is mainly smooth contact with continuous 

sliding. The contact surface will experience only elastic 

deformation. In such a case, the effect of the coefficient of 

restitution is minimal. 

The model described by Eq. (10) is valid for colliding 

spheres whose contact area is small and circular. While several 

expressions have been proposed to model the colliding 

cylinders [30, 31] (as is the case for revolute joints), this model 

(Eq. (10)) has been used in multibody dynamic analysis by a 

number of researchers [27, 28, 32]  to estimate the contact force 

between colliding cylinders. In addition, the Hertz contact 

model may lead to erroneous results when the conformity is 

large [43]. The justifications for using the expression in Eq. 

(10) are that (1) the depth of revolute joint is relatively small 

compared to the diameter of the joint and (2) the error in Eq. 

(10) is acceptable as long as the contact force is calculated 

accurately from the dynamic analysis because the penetration 

will be re-calculated from either the EFM or FEM model. A 

more detailed discussion of the justification is presented in the 

literature [26–28]. In this work, Eq. (10) is thus used to estimate 

the contact force at the revolute joint. It will be shown that this 

approach yields similar results to experiment when used in 

multibody analysis. 

In order to evaluate the contact force in Eq. (10), the 

penetration has to be determined. In the case of the non-ideal 

revolute joint, the penetration between the pin and bushing 

during contact is computed as the difference between the 

eccentricity and clearance:  

e c   , (14) 

where the clearance is defined as the difference between the 

bushing and pin radii, j ic R R  . When the pin and bushing 

are not in contact, the eccentricity is smaller than the clearance 

and the penetration has a negative value. However, when the 

value of the penetration is equal to or greater than zero, contact 

is established. Thus, for a value of   greater than zero, a 

contact force is applied between the bodies. The contact force 

vanishes when  is equal to or less than zero. 

Estimates of the joint forces may be enhanced by including 

friction. In this work, Coulomb friction is applied. The friction 

force is expressed as: 

f k NF F , (15) 

where k  is the coefficient of friction which can be determined 

through experiments as discussed by Schmitz [33] and NF  is the 

normal force as defined in Eq. (10). 

4.2. EFM for Modeling Non-Ideal Revolute Joints 
In the EFM the contact surface is modeled as a set of 

springs (spread over the contact surface). The springs represent 

the elastic layer and the thickness of the layer is composed of 

the thickness of one or both bodies (depending on whether one 

of the bodies is defined as rigid).  
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The EFM assumes that the springs are independent from 

each other and thus the shear force between them is neglected. 

The consequence of this assumption is that the model does not 

account for how pressure applied at one location affects the 

deformation at other locations. This is contrary to what is 

experienced in elastic contact where the displacement at one 

location is a function of the pressure applied at other locations. 

Although this simplifying assumption violates the very nature of 

contact problems, some benefits can be derived from its use. In 

particular, the simplified model provides a cheaper alternative 

for estimating contact pressure (compared to other 

computational techniques such as the FEM) and facilitates the 

analysis of conformal geometry, layered contact and nonlinear 

materials [17].  

The contact pressure for any spring (spring i ) in the elastic 

foundation can be calculated from [19]: 

W

i i

i

E
p

L
 , (16) 

where 
ip  is the contact pressure, 

WE  is the elastic modulus for 

the elastic layer, 
iL  is the thickness of the elastic layer and 

i  is 

the deformation of the spring. When both bodies are deformable 

WE  is a composite of the elastic modulus and Poisson‟s ratio 

for the two bodies. The procedure to determine the composite 

modulus is discussed by Podra [19] and in more detail by 

Johnson [34]. For the purpose of illustration, it is assumed that 

only one of the bodies in contact is deformable. For this case, a 

common expression for 
WE  is given by [17, 18, 35-38]: 

 

  

1

1 1 2
W

E
E



 




 
, (17) 

where E  and   are the elastic modulus and Poisson‟s ratio of 

the deformable body, respectively. The contact pressure for the 

spring i  can then be determined from: 

 

  

1

1 1 2

i

i

i

E
p

L

 

 




 
, (18) 

The total load supported by the elastic layer (or the joint 

reaction force) can then be computed by summing the contact 

forces on all elements in the direction of the mid-surface 

normal. The resultant force has a magnitude equal to the joint 

reaction with direction normal to the contact plane (as defined 

in Eq. (9)). The magnitude of the resultant can be expressed as 

the sum of the product of the element pressure ip  and the 

element area iA  projected in the direction of load application n 

(or direction of eccentric vector; see Eq. (9)):  

N i iF p A . (19) 

In the case of the revolute joint, the element area in Eq. (19) can 

be estimated using the following expression: 

21

2
i pin i bushingA R d

 
  
 

. (20) 

where pinR  is the pin radius,
bushingd is the bushing depth and 

i  

is the angle between two discretized points on the bushing 

measured from the pin center. 

To enable a fair comparison between the contact force 

model and EFM, a damping term, similar to the one used in the 

contact force model, should be added to Eq. (19). The EFM 

model with damping can be derived by noting that individual 

spring force without damping can be expressed as: 

iN i iF p A , (21) 

The contact pressure in Eq. (18) can be substituted into Eq.(21) 

to result in the following expression for the individual spring 

force: 

 

  

1

1 1 2i

i

N i

i

i

E A
F

L

KA




 




 



, (22) 

where the spring constant K is 

 

  

1

1 1 2

i

i

E
K

L

 

 




 
. (23) 

The EFM model with damping can then be expressed as: 

 
 

 

  

 

  

 
 

 

  

 

  

 
 

2

2

2

3 1

4

3 11 1

1 1 2 1 1 2 4

3 11 1

1 1 2 1 1 2 4

iN i i

r

i i

ri i

i i

i i

ri i

i i

i i

F K D

e
K K

eE EA A

L L

eE E
A A

L L

 

 


 
 

    

  


    







 


 

 
 

   

 
 

   

. (24) 

Noting that the contact pressure is given by Eq.(18), Eq.(24) 

can be written as: 

 
 

23 1

4
i

r

N i i i i

e
F p A p A 




 
  
 
 

. (25) 

The total contact force can then be obtained as the sum of the 

individual forces. The contact force can then be expressed as: 
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 
 

23 1

4

r

N i i i i

e
F p A p A 




  
   

  
  

 . (26) 

 

Once the contact forces are determined using either of the 

two procedures (contact force model or EFM), they may be 

assembled into the DAE (Eq. (7)) as applied loads. The DAE 

may then be solved to reveal the system dynamics.  

4.3. Example: Slider-Crank Mechanism with Joint 

Clearance 
The slider-crank mechanism shown in Fig. Figure 3 is used 

to illustrate the procedure to model planar systems with non-

ideal revolute joints. The mechanism consists of two ideal 

revolute joints, one between the ground and the crank and the 

other between the follower and the slider, a non-ideal joint 

between the crank and the follower and an ideal translational 

joint between the slider and the ground. The dimension and 

mass properties of the slider-crank are listed in Table Table 1. 

In Table If it is assumed that the crank is driven at a constant 

angular velocity of   the kinematic constraints can be 

formulated using methods discussed in Nikravesh [24] and 

Haug [25]. For this system, the kinematic constraints can be 

written as: 

1 1 1

1 1 1

2 3 2 2

2 3 2 2

3

3

1

cos 0

sin 0

cos 0

sin 0

0

0

0

x l

y l

x x l

y y l

y

t











 

   
   


   
    
   

     
   
   
   
      

Φ , (27) 

where 
1l and

2l  are the lengths of the crank and the follower and 

ix , 
iy  and 

i  are the generalized coordinates. In Eq. Error! 

the first four equations describe the two ideal revolute joints, 

the 5th and 6th equations represent the translational joint and 

the last equation describes the driving constraint that specifies 

the velocity of the crank. It should be emphasized that, since the 

joint between the crank and the follower is non-ideal, it does 

not appear in the set of kinematic constraints. The non-ideal 

joint is instead described using a force constraint that is present 

in the DAE as applied loads. 

 

Table 2, the material properties and dimensions for the 

joint components are provided. The pin and bushing are 

assumed to be made of steel and polytetrafluoroethylene 

(PTFE), respectively. 

 

 
Figure 3:  Slider-crank mechanisms with joint clearance 

between the crank and follower. 

 

Table 1:  Dimension and mass parameter for slider-crank 

mechanism 

 
Length (m) 

Mass 

(g) 

Moment of 

inertia (kg-m
2
) 

Crank  1.00 10.00 45.00 

Connecting Rod 1.75 15.00 35.00 

Slider -- 30.00 -- 

 

If it is assumed that the crank is driven at a constant 

angular velocity of   the kinematic constraints can be 

formulated using methods discussed in Nikravesh [24] and 

Haug [25]. For this system, the kinematic constraints can be 

written as: 

1 1 1

1 1 1

2 3 2 2

2 3 2 2

3

3

1

cos 0

sin 0

cos 0

sin 0

0

0

0

x l

y l

x x l

y y l

y

t











 

   
   


   
    
   

     
   
   
   
      

Φ , (27) 

where 1l and 2l  are the lengths of the crank and the follower and 

ix , iy  and i  are the generalized coordinates. In Eq. 

Error! Reference source not found. the first four equations 

describe the two ideal revolute joints, the 5th and 6th equations 

represent the translational joint and the last equation describes 

the driving constraint that specifies the velocity of the crank. It 

should be emphasized that, since the joint between the crank 

and the follower is non-ideal, it does not appear in the set of 

kinematic constraints. The non-ideal joint is instead described 

using a force constraint that is present in the DAE as applied 

loads. 

 

Table 2:  Material properties and dimensions for the joint 

components 

 Pin (steel) Bushing (PTFE) 

Young‟s modulus 206.8 GPa  0.5 GPa  

Poisson ratio 0.29 0.38 

Radius 20 mm 20.0003, 23 mm 

 

Crank 

Follower 

Slider 

Joint clearance 

Ground Ground 

y3 

x3 

x1 
y1 

y2 

x2 

y 

x 
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The DAE for this system can easily be assembled and 

solved. For a crank speed of 30 rpm, representative results of 

the dynamic analysis are shown in Figures 4–7. In Fig. 4, 

comparisons of the joint reaction between the ideal and non-

ideal joints are provided for two clearance sizes when the 

contact force model is used. For a clearance of 0.0003 mm the 

two cases predict almost identical values for the joint reaction 

Fig. 4(a)). This similarity in joint reaction predictions is 

expected since the clearance is small enough so that the non-

ideal joint behaves essentially like an ideal joint. In Fig. 4(b), a 

plot of the joint reaction of the non-ideal joint for a clearance of 

3 mm is shown. From the two plots it is clear that as the 

clearance is increased, the curve of the joint reaction evolves 

from a smooth one to one characterized by peak forces. The 

location of these peaks can be explained by noting that they 

occur right after the joint reaction attains a minimum value or 

when contact between the joint components is temporarily lost. 

When contact is reestablished, there is an impact which causes 

the peaks forces. Similar results are obtained when the EFM is 

used to model the non-ideal joint except that higher peak forces 

are observed (see Fig. 5). 

 

 
 

Figure 4:  Comparison of reaction between the ideal and the 

non-ideal joints for various joint clearances for the contact force 

model. 

 

 
 

Figure 5:  Comparison of reaction between the ideal and the 

non-ideal joints for various joint clearances for EFM. 
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Figure 6:  Locus of contact point „C‟ for a complete crank cycle 

based on the contact force model. a) Locus for the pin. b) Locus 

for the bushing. 

 

In Fig. 6(a), the locus of the center points of the contact 

region (contact point „C‟ as defined in Fig. Figure 2) for a 

complete crank cycle, measured from the pin center, is shown. 

The corresponding locus of points for the bushing, measured 

from the bushing center, is shown in Fig. 6(b). For the pin (Fig. 

6(a)), the locus contact points „C‟ are concentrated on the left 

half, whereas for the bushing (Fig. 6(b)) the contact point „C‟ is 

concentrated on both the left and the right side of the bushing. 

This corresponds to bushing angular coordinates of 

approximately 0 and π radians as defined in Fig. 6(b). Similar 

results are obtained when the non-ideal joint is modeled using 

the EFM procedure (Fig. 7). 
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Figure 7:  Locus of contact point „C‟ for a complete crank cycle 

based on EFM. a) Locus for the pin. b) Locus for the bushing. 

 

The importance of the point „C‟ cannot be overemphasized. 

This point is a reference point in the dynamic analysis when 

using the previously outlined procedures to model systems non-

ideal revolute joints. It identifies the locations where the 

constraint force will be applied and thus the regions that will 

experience wear. It would be difficult to predetermine the 

locations that would wear without knowledge of this point; this 

highlights the need for a system level wear prediction. 

a b 

a b 

a b 

a b 

x 

y 

θ 
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y 

θ 
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5. WEAR ANALYSIS OF MULTIBODY SYSTEMS WITH 

NON-IDEAL REVOLUTE JOINT  
In section 2, a procedure to predict wear at the interface of 

two bodies that are in contact and relative motion was 

presented. Later, two dynamic analysis procedures to analyze 

multibody systems with non-ideal revolute joints were 

discussed. Next, the dynamic analysis procedures and the wear 

prediction procedure must be integrated to enable the analysis 

of multibody systems with joint wear. This type of analysis 

allows any changes in the system dynamics caused by joint wear 

to be captured. In addition, the analysis allows the correct 

contact location (where wear occurs) to be identified in 

accordance with the wear prediction procedure.  

In the integrated model, previously discussed in Mukras et 

al. [15], a dynamic analysis is performed on the system for a 

complete cycle in order to determine the joint reactions as well 

as the incremental siding distance at the wearing joints. This 

information is obtained at each time increment of the 

discretized cycle. Thus, for a non-ideal joint b, the contact and 

friction force at time increment ti can be expressed as:  

, , ,

, , ,

i i i

i i i

b

N t N t t

b

t k N t t

F

F  





F n

F n
, (28) 

where 
NF  is the contact force determined via the contact force 

model or EFM and n  is a unit normal vector pointing in the 

direction of contact. The corresponding incremental sliding 

distance can also be described as: 

 
1i i it j t ts R  


   , (29) 

where jR  is the bushing radius, 
it

  is the angular difference (in 

radians) between the local x- axes of the two bodies i and j that 

share the revolute joint at a current time, and 
1it




 corresponds 

to the difference at a previous time. 

The joint reaction and the incremental sliding distance can 

then be used to estimate the joint wear using the procedure 

outlined is section 2. It is, however, necessary to first determine 

the contact pressure distribution at the joint. For the dynamics 

analysis procedure based on the EFM, the contact pressure is 

readily available from the dynamic analysis, whereas for the 

contact force based procedure, FEM is used to determine the 

contact pressure distribution. The wear is estimated using Eq. 

(2) and the geometry is updated to reflect the wear. The 

evolving geometry must also be reflected in the dynamic 

analysis. This can be done by noting that the value of the 

clearance c will no longer be a constant but will depend on the 

contact point „C‟ as defined in Fig. Figure 2. The new value for 

the clearance c can be determined by the following expression: 

B Dc  r r , (30) 

where 
Br  and 

Dr  are the position vectors of the pin and 

bushing centers, respectively. In the case of the contact  force 

model, once the value of the clearance c  at the reference 

contact point „C‟ has been obtained (using Eq. (30)), the new 

value of Rj at contact point „C‟ can be determined using the 

expression 
j ic R R   (see Eq. (14)). In this case it is assumed 

that the value of Ri remains constant. The contact force model 

can then be updated for with new value of Rj. In the case of the 

EFM, the new value of the clearance c at the reference contact 

point „C‟ is also obtained using Eq. (30). The penetration at that 

point can then be obtained using Eq. (14). 

Once the pin and bushing geometries have been updated 

and the clearance size is adjusted to reflect the wear, a dynamic 

analysis for the next cycle is performed. The wear is then 

computed based on the results of the new dynamic analysis 

followed by an update on the geometry and clearance size. This 

process is repeated until the desired number of cycles has been 

completed. Flowcharts showing the integrated models based on 

the contact force model and the EFM model are shown in Fig. 8 

and Fig. Figure 9, respectively. 

6. COMPARISON BETWEEN THE EFM AND A 

CONTACT FORCE MODEL IN WEAR ANALYSIS OF 

MULTIBODY SYSTEMS 
Two procedures to analyze multibody systems with joint 

wear were presented in section 5. In this section the two 

procedures are used to simulate an actual slider-crank 

mechanism in which wear is allowed to occur at one of the 

joints. The wear results from the two procedures are compared. 

In addition, the performance of the two procedures is assessed 

by comparing simulation results to results from the actual 

mechanism. 

 

 
Figure 8:  Integration of wear analysis into system dynamics 

analysis based on the contact force model 
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Figure 9:  Integration of wear analysis into system dynamics 

analysis based on the EFM  method. 

 

A diagram of the slider-crank mechanism is shown in Fig. 

Figure 10. The mechanism was designed and constructed to 

allow only the joint between the crank and the follower to wear. 

Provisions were made to ensure that all other joints behaved as 

ideal joints. The components of the wearing joint were made of 

a hardened steel pin which is assumed to be hard enough so that 

no appreciable wear occurs on its surface and a PTFE bushing 

which is soft and experiences considerable wear. Furthermore, a 

spring was attached to the slider which served as a means to 

accelerate the wear on the bushing by increasing the joint 

reaction force. The joint reaction force at the joint of interest 

(joint between the crank and the follower) is measured using a 

load cell built onto a necked portion of the joint‟s steel pin. The 

load cell, provided by Deere & Company, uses two full-bridge 

strain gage circuits to measure the transverse shear on the pin 

which can then be translated into joint reaction force. Details of 

the corresponding instrumentation and force extraction can be 

found in the work of Mauntler [39-41]. 

 

 
Figure 10:  Slider-crank mechanism used in this study. 

 

To allow wear debris to exit the contact area and prevent it 

from affecting the progression of wear, cylindrical grooves with 

radius of 2.29mm were machined into the bushing. A diagram of 

the bushing is shown in Fig. Figure 11. The dimensions and 

mass properties for the slider-crank are provided in Table Table 

3. The dimensions, the material properties, the friction 

coefficient and the wear coefficient of the joint components 

(bushing and pin) are listed in Table  

The slider-crank mechanism was operated for 21,400 

cycles at a constant velocity of 30 rpm. A spring with a spring 

constant of 525 N/m was used. Simulations based on these 

conditions were conducted using the two integrated models 

outlined in the previous section and shown in Fig. 8 and Fig. 

Figure 9. For the FEM-based model the finite element model 

shown in Figure 12 was used. In this model, a rigid element was 

used to model the pin. This follows the assumption that the pin 

is much harder than the bushing so that it deformation would be 

negligible compared to that of the bushing. Furthermore, it‟s 

assumed that the pin has negligible wear and as a result retains 

its original shape. The bushing geometry is, however, modeled 

using 8-node quadrilateral element and the corresponding 

potential contact surface (inner bushing surface) is modeled 

using 3-node contact elements. The nodes on the outer surface 

of the bushing are constrained from translation. Contact 

between the two components is generated by applying the joint 

reaction force on the pilot node that is attached to the rigid pin 

element. 

 

Table 4. Further details of the slider-crank mechanism 

including its construction and instrumentation can be found in 

the works of Mauntler et al. [39–41].  

 

 
Figure 11: Bushing with debris grooves. 

 

Table 3: Dimension and mass properties of the slide-crank 

mechanism 

 Length (m) Mass (kg) 
Inertia x10

-6 

(kg.m
2
)

 

Crank 0.0381 0.4045 204.0 

Connecting rod 0.1016 0.8175 5500.0 

Slider - 8.5000 -- 

 

The slider-crank mechanism was operated for 21,400 

cycles at a constant velocity of 30 rpm. A spring with a spring 

constant of 525 N/m was used. Simulations based on these 

conditions were conducted using the two integrated models 

outlined in the previous section and shown in Fig. 8 and Fig. 

Figure 9. For the FEM-based model the finite element model 

shown in Figure 12 was used. In this model, a rigid element was 

Wear Debris 

groove 
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used to model the pin. This follows the assumption that the pin 

is much harder than the bushing so that it deformation would be 

negligible compared to that of the bushing. Furthermore, it‟s 

assumed that the pin has negligible wear and as a result retains 

its original shape. The bushing geometry is, however, modeled 

using 8-node quadrilateral element and the corresponding 

potential contact surface (inner bushing surface) is modeled 

using 3-node contact elements. The nodes on the outer surface 

of the bushing are constrained from translation. Contact 

between the two components is generated by applying the joint 

reaction force on the pilot node that is attached to the rigid pin 

element. 

 

Table 4: Properties of the pin and bushing 

 Pin Bushing 

Bushing Inner radius -- 9.533 mm 

Outer radius 9.500 15.875mm 

Depth -- 13.100mm 

Poisson ratio  0.29 0.38 

Density 7.8 g/cm
3
 2.25g/cm

3
 

Young‟s Modulus 206.8 GPa 0.500 GPa 

Fric. coef. (steel-PTFE) [33]  0.13 

Wear coef. (steel-PTFE) [22] 
 5.05x10

-4
 

mm
3
/Nm 

 

The slider-crank mechanism was operated for 21,400 

cycles at a constant velocity of 30 rpm. A spring with a spring 

constant of 525 N/m was used. Simulations based on these 

conditions were conducted using the two integrated models 

outlined in the previous section and shown in Fig. 8 and Fig. 

Figure 9. For the FEM-based model the finite element model 

shown in Figure 12 was used. In this model, a rigid element was 

used to model the pin. This follows the assumption that the pin 

is much harder than the bushing so that it deformation would be 

negligible compared to that of the bushing. Furthermore, it‟s 

assumed that the pin has negligible wear and as a result retains 

its original shape. The bushing geometry is, however, modeled 

using 8-node quadrilateral element and the corresponding 

potential contact surface (inner bushing surface) is modeled 

using 3-node contact elements. The nodes on the outer surface 

of the bushing are constrained from translation. Contact 

between the two components is generated by applying the joint 

reaction force on the pilot node that is attached to the rigid pin 

element. 

 

 
Figure 12: Finite element model for the pin and bushing. 

Figures Figure 13 and Figure 14 show representative 

results from the initial system dynamics. Three plots of the joint 

reaction force from: 1) the experiment, 2) the model based on 

the EFM, and 3) the model based on the contact force model are 

shown in Fig. Figure 13. The two models, which are identical in 

this case, predict the joint reaction force reasonably well over 

the entire crank cycle except at about π radians. At this location, 

the measured force exhibits high frequency oscillation for a 

short duration. The location of these oscillations corresponds to 

one half of the crank rotation when the slider changes direction. 

It is believed that these higher order dynamics are a result of the 

change in the direction of the slider which most likely involves 

a slight rotation of the slider and thus a moment of brief impact 

with the sliding rail. It should be mentioned that, although the 

magnitude of these oscillations is large, their effects on the wear 

prediction is quite small. This is because the corresponding 

incremental sliding distance is also quite small. 

  

0 1 2 3 4 5 6
0

50

100

150

200

Crank Position (rad)

J
o

in
t 
F

o
rc

e
 (

N
)

Comparison Joint Force Between Models and Expt

EFM

Contact Model

Experiment

 
Figure 13: Comparison of the initial joint reaction force 

between the two models and the experiment. 
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Figure 14: Locus of the center of the contact region. a) 

Prediction based the elastic foundation model. b) Prediction 

based on the contact force model. 

 

In Fig. Figure 14 the locus of the center of the region of 

contact for the pin and bushing (measured for the pin and 

bushing centers respectively) is plotted. Figure Figure 14(a) 

shows the locus of points when the model based in the EFM is 

used. It is seen that the entire pin surface experiences contact, 

while the center of the region of contact on the bushing is 

concentrated on the left side of the bushing. This means that 

only one side of the bushing will experience wear and that the 

maximum wear will occur at the center of the region of contact. 

The concentration of the contact point in this location is 

reasonable because the spring restricts the motion of the pin 

relative to the bushing. FigureFigure 14(b) displays the locus of 

the center of the region of contact when the contact force model 

is used. It is clear that the two models yield nearly identical 

results. 

The wear predicted by the contact force model (in 

conjunction with FEM) and the EFM models are compare in 

Fig. Figure 15 and Table 5. In Fig. Figure 15, it can be seen that 

while the FEM-based model predicts a larger maximum wear 

depth, the EFM has a wider base. The wider base means that a 

wider region in the bushing surface is worn. An interesting 

observation is that while the wear depth for the two models 

differs, their wear profile is such that the worn volume is 

approximately equal. This equality is a manifestation of the 

similarity in the force profile as shown in Fig. Figure 13. In 

Table 5, the computation time for the wear prediction based on 

the two models is compared. It can be observed that the EFM 

has a shorter computational time. There are two reasons for this 

observation: 1) evaluation of the contact pressure using EFM is 

inexpensive because the elastic layer is composed of a bed of 

springs that are assumed to be independent, and 2) in the case 

of the EFM-based model only one set of analyses for each cycle 

is required to simultaneously determine both the contact force 

and the contact pressure during the dynamic analysis. However, 

in the case of the FEM-based model the contact force is 

determined in the dynamic analysis which, in turn, is used to 

determine the contact pressure. 
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Figure 15: Comparison of the wear prediction between the 

models. 

 

 
Figure 16: Comparison of the wear profile for the models and 

the experiment. a) Comparison between experiment and FEM. 

b) Comparison between experiment and EFM. 

 

Table 5: Comparison of wear results for FEM and EFM models 

(21,400 crank cycles) 

 

The wear results from experiment and simulation results for 

the two models are compared in Fig. Figure 16, Table 6 and 

Table 7. From Fig. Figure 16(a) and Table 6, it can be seen that 

the maximum wear depth, the wear profile and the wear volume 

from the experiment are accurately predicted by the FEM-based 

model. There is, however, a discrepancy in the range 4.5 < θ < 

6.3 rad. This discrepancy could be attributed to errors 

encountered during measurement. It is possible, however, that 

they are the result of some wear mechanism that was not 

identified in the experiment.  

 

Table 6:  Comparison of wear results between test and FEM 

model (21,400 crank cycles) 

 FEM EFM Diff. 

Wear Volume 106.71 mm
3
 106.68 mm

3
 0.02% 

Max wear depth 0.4779 mm 0.4263 mm 10.70% 

Computation time 11hrs 7hrs 4 hrs 

b 
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Table 7:  Comparison of wear results between test and EFM 

model (21,400 crank cycles) 

 

In the case of the EFM model, the wear profile and the 

maximum wear depth are incorrectly predicted as shown in Fig. 

Figure 16(b) and Table 7. The location of maximum wear and 

the wear volume are, however, correctly predicted as expected.  

7. CONCLUDING REMARKS 
The objective of this work was to present a comparison 

between two models that can be used to analyze multibody 

systems with joint wear. The comparison was based on wear 

results of an experimental slider-crank mechanism that was built 

to encourage wear at a single joint (a revolute joint between the 

crank and the follower). Quantities that were considered in the 

comparison included the joint reaction, the contact/wear 

location and wear amount on the bushing.  

For the initial dynamics the two models provided 

reasonably accurate prediction of the contact force. This 

indicates that the system dynamics are insensitive to the contact 

model used. The two models also produced identical prediction 

for the location of maximum wear, which was verified to be the 

correct location through the corresponding experiment. 

Although this location was correctly predicted by both models, 

only the FEM-based model gave an accurate prediction of the 

wear profile and maximum wear depth. Prediction from the 

FEM-based model differed by 6.7% from experiment, while the 

prediction from the EFM model differed by 12.1% from 

experiment. The difference in the wear depth prediction 

between the FEM- and EFM-based models is attributed to the 

assumption that the springs forming the elastic foundation are 

independent (no shear force between the springs). As was 

mentioned earlier, the consequence of this assumption is that the 

model does not account for how pressure applied at one 

location affects the deformation at other locations [42]. This is 

contrary to what is experienced in elastic contact where the 

displacement at one location is a function of the pressure 

applied at other locations. Thus as is observed, the FEM-based 

model provides a better prediction of the wear depth. It should, 

however, be noted that, while the predictions on the wear 

profile differed, the wear volume predictions of the two models 

were identical and reasonably close to the experimental wear 

volume (8.2 %).   

Despite the poor prediction on the wear profile and 

maximum wear depth, the EFM-based model had a shorter 

computation time. The experiment took about 12 hours 

(excluding construction and setup time) and FEM-based model 

took 11 hours, while the EFM-based model took only 7 hours to 

complete. The speed of the EFM-based model is associated 

with the assumption that the springs in the elastic foundation 

model are independent and the fact the only one analysis is 

required to determine both the contact pressure distribution and 

the joint reaction. 

From the comparison between the results of the two models 

and between the results of the two models and the experiment, 

the following conclusions can be made: 1) the two procedures 

can accurately predict the contact force, the contact locations 

and the wear volume, 2) the FEM-based procedure is a better 

predictor of maximum wear depth and the wear profile than the 

EFM-based procedure, and 3) the EFM model is 

computationally less expensive than the FEM-based model. 

It can be concluded that the FEM-based procedure is 

preferred for the analysis of multibody systems with joint wear 

when the computational cost is not an issue. If the cost is a 

concern, however, and only qualitative information about the 

system is needed, then the EFM-based procedure is a suitable 

choice. Other scenarios will require a compromise on either 

accuracy or computational costs. 

NOMENCLATURE 

A   : Contact area 

EA   : Extrapolation factor 

   : Penetration 

re   : Coefficient of restitution 

E   : Young‟s modulus 

NF   : Normal force in the contact interface 

h   : Wear depth 

k   : Dimensioned wear coefficient 

K   : Elastic constant 

λ   : Vector of Lagrange multipliers 

M   : Mass matrix 

p   : Contact pressure 

q   : Position vector 

A
Q   : Vector of applied loads 

s   : Sliding distance 

t   : Time 

   : Poisons ratio 

Φ   : Constraint vector 

q
Φ   : Jacobian matrix 

   : Crank velocity 
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 Expt. Simulation (FEM) Diff. 

Worn mass 0.2616 g 0.2401 g 8.2% 

Wear Volume 116.27 mm
3
 106.71 mm

3
 8.2% 

Max wear depth 0.4850 0.4779 mm 1.5% 

 Expt. Simulation (EFM) Diff. 

Worn mass 0.2616 g 0.2400 g 8.2% 

Wear Volume 116.27 mm
3
 106.68 mm

3
 8.2% 

Max wear depth 0.4850 0.4263 mm 12.1% 
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