Design Sensitivity Analysis and Optimization of Nonlinear Transient Dynamics

8th AIAA/USAF/NASA/ISSOMO Symposium on Multidisciplinary Analysis and Optimization

Nam Ho Kim and Kyung Kook Choi

Center for Computer-Aided Design College of Engineering The University of Iowa

Contents

Introduction

> Structural Dynamics

- Multiplicative Elastoplasticity
- Linearization and Tangent Stiffness
- Implicit Time Integration

Shape Design Sensitivity Analysis

- Finite Deformation Elastoplasticity
- Time Integration of Design Sensitivity Equation
- Update Path-Dependent Variables

> Numerical Examples

- Bumper Impact Problems
- Pressurized Sheet Metal Stamping Problems

Introduction

> Shape Design Sensitivity Analysis of Nonlinear Structure

- Finite Deformation Elastoplasticity Using Multiplicative Decomposition of the Deformation Gradient
- Classical Return Mapping Algorithm Is Preserved Using Principal Kirchhoff Stress and Logarithmic Strain
- •Design Sensitivity Equation Is Obtained at the Initial Domain and Then Transformed into the Current Domain to Recover the Updated Lagrangian Form
- Path-Dependency Comes from the Intermediate Configuration and Plastic Evolution Variables
- Exact Tangent Operator Yields Iteration-Free DSA

Introduction *cont*.

> Design Sensitivity Analysis of Structural Dynamics

- Newmark Family Implicit Time Integration Is Used to Solve 2nd-Order Design Sensitivity Differential Equation with Homogeneous Initial Conditions
- Design Sensitivity Equation Solves for the Material Derivative of Acceleration at Converged Time Steps

Time Integration

Material Derivative of Displacement

• Sensitivity Equation Is More Efficient for the Implicit Time Integration Method Than the Explicit Method Compared to the Cost of Response Analysis

Multiplicative Elastoplasticity

➢ Kinematics (Deformation Gradient) $F(X) = F^e(X)F^p(X)$

Principal Logarithmic Strain

$$\mathbf{b}^{e} = \mathbf{F}^{e} \mathbf{F}^{e^{T}} = \sum_{i=1}^{3} V_{i}^{2} \mathbf{m}^{i} \qquad \mathbf{e} = \begin{bmatrix} e_{1} \\ e_{2} \\ e_{3} \end{bmatrix} = \begin{bmatrix} \log(V_{1}) \\ \log(V_{2}) \\ \log(V_{3}) \end{bmatrix}$$

$$\succ \text{ Kirchhoff Stress}$$

$$\tau = \sum_{i=1}^{3} \tau_{i}^{p} \mathbf{m}^{i} \qquad \mathbf{m}^{i} = \mathbf{n}^{i} \otimes \mathbf{n}^{i}$$

$$\tau_{i}^{p}: \text{ Principal Stress}$$

Isotropic Material Assumption

Constitutive Relation

Trial Elastic Principal Stress

 $(\boldsymbol{\tau}^{p})^{tr} = \mathbf{c}^{e} \mathbf{e}^{tr}$ $\mathbf{c}^{e} = (\lambda + \frac{2}{3}\mu)\mathbf{1} \otimes \mathbf{1} + 2\mu \mathbf{I}_{dev}$

All incremental deformation is assumed to be elastic

Yield Function

$$f(\mathbf{\eta}, e^p) = \|\mathbf{\eta}\| - \sqrt{\frac{2}{3}} \kappa(e^p) \qquad \qquad \mathbf{\eta} = dev(\mathbf{\tau}^p) - \mathbf{\alpha}$$
$$= \|\mathbf{\eta}^{tr}\| - (2\mu + H_{\alpha}(e^p))\gamma - \sqrt{\frac{2}{3}} \kappa(e^p) = 0$$

Return Mapping Algorithm

$$\mathbf{\tau}_{n+1}^p = (\mathbf{\tau}^p)^{tr} - 2\mu\gamma\mathbf{N}$$

$$\boldsymbol{\alpha}_{n+1} = \boldsymbol{\alpha}_n + \gamma H_{\alpha}(e^p) \mathbf{N}$$

$$e_{n+1}^p = e_n^p + \sqrt{\frac{2}{3}}\gamma$$

Linearization and Tangent Stiffness

Tangent Stiffness Tensor

$$\mathbf{c} = \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij}^{\text{alg}} \mathbf{m}^{i} \otimes \mathbf{m}^{j} + 2 \sum_{i=1}^{3} \tau_{i}^{p} \mathbf{c}_{\text{trial}}^{i}$$
$$\mathbf{c}^{\text{alg}} = \frac{\partial \tau^{p}}{\partial \mathbf{e}^{tr}} = \mathbf{c}^{e} - 4\mu^{2} A \mathbf{N} \otimes \mathbf{N} - \frac{4\mu^{2} \gamma}{\|\mathbf{\eta}^{tr}\|} [\mathbf{I}_{dev} - \mathbf{N} \otimes \mathbf{N}]$$

c^{alg} is the same as classical elastoplasticity in principal stress/strain space

Linearization

 $a(\mathbf{z}, \overline{\mathbf{z}}) = \int_{\Omega} \tau_{ij} \varepsilon_{ij}(\overline{\mathbf{z}}) d\Omega \qquad \text{Structural Energy Form} \\ a^*(\mathbf{z}; \Delta \mathbf{z}, \overline{\mathbf{z}}) \equiv \int_{\Omega} \left(\varepsilon_{ij}(\overline{\mathbf{z}}) c_{ijkl} \varepsilon_{kl}(\Delta \mathbf{z}) + \tau_{ij} \eta_{ij}(\Delta \mathbf{z}, \overline{\mathbf{z}}) \right) d\Omega$

Updated Lagrangian Formulation

Intermediate Configuration

Update Intermediate Configuration

$$\mathbf{F}_{n}^{e^{tr}} = \mathbf{F}_{n} \mathbf{F}_{n-1}^{p^{-1}} = \sum_{i=1}^{3} \exp(e_{i}^{tr}) \mathbf{m}^{i}$$
$$\mathbf{f}^{p} = \sum_{i=1}^{3} \exp(-\gamma N_{i}) \mathbf{m}^{i}$$

Incremental Plastic Deformation Gradient

 $\mathbf{F}_n^p = \mathbf{F}_n^{e^{-1}} \mathbf{F}_n$

 $\mathbf{F}_n^e = \mathbf{f}^p \mathbf{F}_n^{e^{tr}}$

It is assumed that the incremental plastic spin is arbitrary Continuous intermediate configuration

Variational Formulation of Structural Dynamics

➢ Weak Form

 $d(\mathbf{z}_{,tt}, \overline{\mathbf{z}}) + a(\mathbf{z}, \overline{\mathbf{z}}) = \ell(\overline{\mathbf{z}}), \quad \forall \overline{\mathbf{z}} \in Z$ $d(\mathbf{z}_{,tt}, \overline{\mathbf{z}}) = \int_{\Omega} \rho \overline{\mathbf{z}}^T \mathbf{z}_{,tt} d\Omega \qquad \text{Kinetic Energy Form}$ $\ell(\overline{\mathbf{z}}) = \int_{\Omega} \overline{\mathbf{z}}^T \mathbf{f}^b \, d\Omega + \int_{\Gamma^h} \overline{\mathbf{z}}^T \mathbf{f}^h \, d\Gamma \quad \text{Load Linear Form}$

- Variational Equation in Structural Domain
- 2nd-Order Differential Equation in Time Domain

Initial Conditions

$$\mathbf{z}(\mathbf{x},0) = \mathbf{z}^{0}(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$
$$\mathbf{z}_{t}(\mathbf{x},0) = \mathbf{z}_{t}^{0}(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$

Implicit Time Integration

Newmark Method

- Predictor ${}^{n}\mathbf{z}_{,t}^{pr} = {}^{n-1}\mathbf{z}_{,t} + (1-\gamma)\Delta t {}^{n-1}\mathbf{z}_{,tt}$ ${}^{n}\mathbf{z}^{pr} = {}^{n-1}\mathbf{z} + \Delta t {}^{n-1}\mathbf{z}_{,t} + (\frac{1}{2} - \beta)\Delta t^{2} {}^{n-1}\mathbf{z}_{,tt}$

– Corrector

$${}^{n}\mathbf{Z}_{,t} = {}^{n}\mathbf{Z}_{,t}^{pr} + \gamma \Delta t {}^{n}\mathbf{Z}_{,tt}$$

$${}^{n}\mathbf{z} = {}^{n}\mathbf{z}^{pr} + \beta \Delta t^{2} {}^{n}\mathbf{z}_{,tt}$$

 β , γ : Newmark Parameters

Implicit Time Integration *cont*.

 \succ Linearization [$a_{\Omega}(\mathbf{z}, \overline{\mathbf{z}})$ Is Nonlinear w.r.t. \mathbf{z}]

 $d(\Delta \mathbf{z}_{,tt}^{k+1}, \overline{\mathbf{z}}) + a^*({}^n \mathbf{z}^k; \Delta \mathbf{z}^{k+1}, \overline{\mathbf{z}})$ = $\ell(\overline{\mathbf{z}}) - a({}^n \mathbf{z}^k, \overline{\mathbf{z}}) - d({}^n \mathbf{z}_{,tt}^k, \overline{\mathbf{z}}), \quad \forall \overline{\mathbf{z}} \in \mathbb{Z}$ n: Time t_n k: Iteration Counter

Acceleration Form

 $\Delta \mathbf{z}^{k+1} = \beta \Delta t^2 \Delta \mathbf{z}_{,tt}^{k+1}$

$$d(\Delta \mathbf{z}_{,tt}^{k+1}, \overline{\mathbf{z}}) + \beta \Delta t^2 a^*({}^n \mathbf{z}^k; \Delta \mathbf{z}_{,tt}^{k+1}, \overline{\mathbf{z}})$$

= $\ell(\overline{\mathbf{z}}) - a({}^n \mathbf{z}^k, \overline{\mathbf{z}}) - d({}^n \mathbf{z}_{,tt}^k, \overline{\mathbf{z}}), \quad \forall \overline{\mathbf{z}} \in \mathbb{Z}$

Update Kinematic Variables

$${}^{n} \mathbf{z}^{k+1} = {}^{n} \mathbf{z}^{k} + \Delta \mathbf{z}^{k+1}$$
$${}^{n} \mathbf{z}^{0} = {}^{n} \mathbf{z}^{pr}$$

Finite Deformation DSA

- Updated Lagrangian Formulation
- Finite Deformation Elastoplasticity
- No Need to Update Velocity Fields
- Updating Sensitivity Information of Intermediate

Configuration and Plastic Variables

Finite Deformation DSA cont.

Material Derivative

$$\dot{\mathbf{z}} = \frac{d}{d\tau}(\mathbf{z})$$
$$= \lim_{\tau \to 0} \frac{1}{\tau} [\mathbf{z}_{\tau} (\mathbf{X} + \tau \mathbf{V}) - \mathbf{z}(\mathbf{X})]$$
$$= \mathbf{z}' + \nabla_0 \mathbf{z} \mathbf{V}$$

V(X) : Design Velocity Field

Material Derivative of Structural Energy Form

 $\frac{d}{d\tau}[a(\mathbf{z}, \overline{\mathbf{z}})] = a^{*}(\mathbf{z}; \dot{\mathbf{z}}, \overline{\mathbf{z}}) + a'_{V}(\mathbf{z}, \overline{\mathbf{z}})$ Explicitly Dependent Terms on V(X)
Path-Dependent Terms
Implicitly Dependent Terms

Same As Structural Linearization

Finite Deformation DSA cont.

Fictitious load

$$a_{V}'(\mathbf{z},\overline{\mathbf{z}}) = \int_{\Omega} \Big(\mathcal{E}_{ij}(\overline{\mathbf{z}}) c_{ijkl} \mathcal{E}_{kl}^{P}(\mathbf{z}) + \tau_{ij} \eta_{ij}^{P}(\mathbf{z},\overline{\mathbf{z}}) + \tau_{ij}^{fic} \mathcal{E}_{ij}(\overline{\mathbf{z}}) \Big) d\Omega + \int_{\Omega} \Big(\mathcal{E}_{ij}(\overline{\mathbf{z}}) c_{ijkl} \mathcal{E}_{kl}^{V}(\mathbf{z}) + \tau_{ij} \eta_{ij}^{V}(\mathbf{z},\overline{\mathbf{z}}) + \tau_{ij} \mathcal{E}_{ij}(\overline{\mathbf{z}}) div \mathbf{V} \Big) d\Omega$$

• Explicitly Dependent Terms $\boldsymbol{\varepsilon}^{V}(\mathbf{z}) = -sym(\nabla_{0}\mathbf{z}\nabla_{n}\mathbf{V})$ $\boldsymbol{\eta}^{V}(\mathbf{z},\overline{\mathbf{z}}) = -sym(\nabla_{n}\overline{\mathbf{z}}^{T}\nabla_{0}\mathbf{z}\nabla_{n}\mathbf{V})$ $-sym(\nabla_{0}\overline{\mathbf{z}}\nabla_{n}\mathbf{V})$

• Path-Dependent Terms

 $\boldsymbol{\varepsilon}^{P}(\mathbf{z}) = -sym(\mathbf{G})$ $\boldsymbol{\eta}^{P}(\mathbf{z}, \overline{\mathbf{z}}) = -sym(\nabla_{n} \overline{\mathbf{z}}^{T} \mathbf{G})$ $\boldsymbol{G} = \mathbf{F}^{e} \frac{d}{d\tau} (\mathbf{F}^{p}) \mathbf{F}^{-1}$ $\boldsymbol{\tau}^{fic} = \sum_{i=1}^{3} \left[\frac{\partial \tau_{i}^{p}}{\partial \boldsymbol{\alpha}} \frac{d}{d\tau} (\boldsymbol{\alpha}_{n}) + \frac{\partial \tau_{i}^{p}}{\partial \hat{e}^{p}} \frac{d}{d\tau} (e_{n}^{p}) \right] \mathbf{m}^{i}$

DSA for Structural Dynamics

 $\succ \text{Kinetic Energy}$ $\frac{d}{d\tau}[d(\mathbf{z}_{,tt},\overline{\mathbf{z}})] = \int_{\Omega} \rho \overline{\mathbf{z}}^T \dot{\mathbf{z}}_{,tt} \, d\Omega + \int_{\Omega} \rho \overline{\mathbf{z}}^T \mathbf{z}_{,tt} \, div \mathbf{V} \, d\Omega$ $\equiv d(\dot{\mathbf{z}}_{,tt},\overline{\mathbf{z}}) + d'_V(\mathbf{z}_{,tt},\overline{\mathbf{z}})$

Design Sensitivity Equation

 $\frac{d}{d\tau} [d({}^{n}\mathbf{Z}_{,tt}, \overline{\mathbf{z}})] + \frac{d}{d\tau} [a({}^{n}\mathbf{z}, \overline{\mathbf{z}})] = \frac{d}{d\tau} [\ell(\overline{\mathbf{z}})], \quad \forall \overline{\mathbf{z}} \in Z$ $d({}^{n}\dot{\mathbf{z}}_{,tt}, \overline{\mathbf{z}}) + a^{*}({}^{n}\mathbf{z}; {}^{n}\dot{\mathbf{z}}, \overline{\mathbf{z}})$ $= \ell_{V}'(\overline{\mathbf{z}}) - a_{V}'({}^{n}\mathbf{z}, \overline{\mathbf{z}}) - d_{V}'({}^{n}\mathbf{z}_{,tt}, \overline{\mathbf{z}}), \qquad \forall \overline{\mathbf{z}} \in Z$

– Initial Conditions (Homogeneous)

 $\dot{\mathbf{z}}(\mathbf{x},0) = \mathbf{0}$ $\mathbf{x} \in \Omega$

$$\dot{\mathbf{z}}_{,t}(\mathbf{x},0) = \mathbf{0} \qquad \mathbf{x} \in \Omega$$

DSA for Structural Dynamics *cont*.

Predictor

$${}^{n} \dot{\mathbf{z}}_{,t}^{pr} = {}^{n-1} \dot{\mathbf{z}}_{,t} + (1-\gamma)\Delta t {}^{n-1} \dot{\mathbf{z}}_{,tt}$$
$${}^{n} \dot{\mathbf{z}}^{pr} = {}^{n-1} \dot{\mathbf{z}} + \Delta t {}^{n-1} \dot{\mathbf{z}}_{,t} + (\frac{1}{2} - \beta)\Delta t^{2} {}^{n-1} \dot{\mathbf{z}}_{,tt}$$

 $\succ \text{Corrector}$ ${}^{n} \dot{\mathbf{z}}_{,t} = {}^{n} \dot{\mathbf{z}}_{,t}^{pr} + \gamma \Delta t {}^{n} \dot{\mathbf{z}}_{,tt}$ ${}^{n} \dot{\mathbf{z}} = {}^{n} \dot{\mathbf{z}}^{pr} + \beta \Delta t^{2} {}^{n} \dot{\mathbf{z}}_{,tt}$

Acceleration Form DSA
Acceleration Form DSA $d(^{n} \dot{\mathbf{z}}_{,tt}, \overline{\mathbf{z}}) + \beta \Delta t^{2} a^{*}(^{n} \mathbf{z};^{n} \dot{\mathbf{z}}_{,tt}, \overline{\mathbf{z}})$ $= \ell'_{V}(\overline{\mathbf{z}}) - a'_{V}(^{n} \mathbf{z}, \overline{\mathbf{z}})$ $-d'_{V}(^{n} \mathbf{z}_{,tt}, \overline{\mathbf{z}}) - a^{*}(^{n} \mathbf{z};^{n} \dot{\mathbf{z}}^{pr}, \overline{\mathbf{z}}), \quad \forall \overline{\mathbf{z}} \in Z$ Sensitivity Equation Is Linear
and Solves for Total Acceleration

Update Path-Dependent Variables

Updating Plastic Variables

$$\frac{d}{d\tau}(\boldsymbol{\alpha}_{n+1}) = \frac{d}{d\tau}(\boldsymbol{\alpha}_{n}) + \left(H_{\alpha} + \sqrt{\frac{2}{3}}H_{\alpha}'\gamma\right)\frac{d}{d\tau}(\gamma)\mathbf{N} + H_{\alpha}\gamma\frac{d}{d\tau}(\mathbf{N})$$

$$\frac{d}{d\tau}(e_{n+1}^{p}) = \frac{d}{d\tau}(e_{n}^{p}) + \sqrt{\frac{2}{3}}\frac{d}{d\tau}(\gamma)$$

$$\frac{d}{d\tau}(\mathbf{N}) = \frac{1}{\|\boldsymbol{\eta}^{tr}\|} [\mathbf{I}_{dev} - \mathbf{N}\otimes\mathbf{N}] [2\mu\frac{d}{d\tau}(\mathbf{e}^{tr}) - \frac{d}{d\tau}(\boldsymbol{\alpha}_{n})]$$

$$\frac{d}{d\tau}(\gamma) = A\mathbf{N}^{T} [2\mu\frac{d}{d\tau}(\mathbf{e}^{tr}) - \frac{d}{d\tau}(\boldsymbol{\alpha}_{n})] - A\kappa'\frac{d}{d\tau}(e_{n}^{p})$$

► Updating Intermediate Configuration $\frac{d}{d\tau}(\mathbf{F}_{n+1}) = \frac{d}{d\tau}(\mathbf{I} + \nabla_0 \mathbf{z}) = \nabla_0 \dot{\mathbf{z}} - \nabla_0 \mathbf{z} \nabla_0 \mathbf{V}$

$$\frac{d}{d\tau}(\mathbf{F}_{n+1}^{p}) = \frac{d}{d\tau}(\mathbf{F}_{n+1}^{e^{-1}})\mathbf{F}_{n+1} + \mathbf{F}_{n+1}^{e^{-1}}\frac{d}{d\tau}(\mathbf{F}_{n+1})$$

$$\frac{d}{d\tau}(\mathbf{F}_{n+1}^{e}) = \frac{d}{d\tau}(\mathbf{f}^{p})\mathbf{F}_{n+1}^{e^{tr}} + \mathbf{f}^{p}\frac{d}{d\tau}(\mathbf{F}_{n+1}^{e^{tr}})$$

$$\frac{d}{d\tau}(\mathbf{F}_{n+1}^{e^{-1}}) = -\mathbf{F}_{n+1}^{e^{-1}} \frac{d}{d\tau}(\mathbf{F}_{n+1}^{e}) \mathbf{F}_{n+1}^{e^{-1}}$$

Bumper Impact Problem

Analysis	Meshfree Method
Density	$\rho=7{,}800~kg/m^3$
Initial Velocity	$v_0 = 8.05 \text{ km/hr}$
Analysis Time	$t = 0 \sim 10 msec$
Time Increment	$\Delta t = 0.1 \text{ msec}$
Mounting Displ.	d = 2.8 cm
Thickness	h = 0.5 cm
Contact Penalty No.	$w_n = 1,000$
Friction Coeff.	$\mu_{\rm f}=0.4$
Lame's Constants	$\lambda = 110.8 \text{ GPa}$
	$\mu = 80.2 \text{ GPa}$
Plastic Hardening	H = 1.1 GPa
	Isotropic Hardening
Initial Yield Stress	$\sigma_{\rm Y} = 500 \text{ MPa}$
Newmark Parameters	$\gamma = 0.26$
	$\beta = 0.5$

The University of Florida College of Engineering default_Deformation3 : Max 2.80-01 @Nd 1

Analysis Results

Effective Plastic Strain

Response Analysis 1,600 sec

Sensitivity Analysis 853 / 16 sec

Time History

BUMPER IMPACT PROBLEM

Time History cont.

BUMPER IMPACT PROBLEM 10.0 - Disp 8.0 -Vel - Acc 6.0 4.0 2.0 0.0 -2.0 Time (msec) -4.0 -6.0 -8.0 Time History of Node 39

Sensitivity Results and Optimization Problem

Performance(Ψ)	ΔΨ	Ψ'	$(\Delta \Psi / \Psi') \times 100\%$
u ₂			
e ^p ₁₅ .653533E-01	754098E-07	754105E-07	100.00
e ^p ₆₅ .618309E-01	.313715E-07	.313668E-07	100.02
e ^p ₂₉ .460146E-01	.441192E-07	.441162E-07	100.01
z _{x39} .175053E+00	.790973E-05	.791092E-05	99.98
F _{Cx100} .128266E+01	657499E-06	657074E-06	100.06
u ₄			
e ^p ₁₅ .653533E-01	.268699E-06	.268712E-06	100.00
e ^p ₆₅ .618309E-01	843101E-09	863924E-09	97.59
e ^p ₂₉ .460146E-01	.123988E-06	.123993E-06	100.00
<i>z</i> _{x39} .175053E+00	847749E-05	847586E-05	100.02
F _{Cx100} .128266E+01	.410724E-07	.407515E-07	100.79
u ₆			
<i>e</i> ^{<i>p</i>} ₁₅ .653533E-01	317362E-06	317349E-06	100.00
<i>e</i> ^{<i>p</i>} ₆₅ .618309E-01	640031E-07	640159E-07	99.98
e ^p ₂₉ .460146E-01	163051E-06	163051E-06	100.00
<i>z</i> _{x39} .175053E+00	190521E-05	190392E-05	100.07
F _{Cx100} .128266E+01	.473040E-06	.472876E-06	100.03
u ₈			
<i>e</i> ^{<i>p</i>} ₁₅ .653533E-01	.888094E-08	.890589E-08	99.72
<i>e^p</i> ₆₅ .618309E-01	.355128E-07	.354794E-07	100.09
<i>e^p</i> ₂₉ .460146E-01	981276E-08	981572E-08	99.97
<i>z</i> _{x39} .175053E+00	239706E-05	239333E-05	100.16
F _{Cx100} .128266E+01	184457E-06	183954E-06	100.27
u ₁₀			
<i>e^p</i> ₁₅ .653533E-01	642594E-08	643542E-08	99.85
e ^p ₆₅ .618309E-01	151580E-07	151527E-07	100.03
e ^p ₂₉ .460146E-01	.172663E-07	.172698E-07	99.98
<i>z</i> _{x39} .175053E+00	154011E-05	154125E-05	99.93
F _{Cx100} .128266E+01	134372E-06	134701E-06	99.76
u ₁₂			
e ^p ₁₅ .653533E-01	.107017E-07	.107147E-07	99.88
e ^p ₆₅ .618309E-01	928369E-07	928496E-07	99.99
e ^P 29 .460146E-01	163080E-06	163083E-06	100.00
<i>z</i> _{x39} .175053E+00	982943E-07	957423E-07	102.67
<i>F</i> _{Cx100} .128266E+01	120596E-05	120568E-05	100.02

Design Optimization Problem Definition

MIN	Area	
S.T.	$e^{p_{6}}(0.07) \leq 0.04$	$e^{p_7}(0.02) \le 0.04$
	$e^{p_{12}}(0.02) \le 0.04$	$e^{p_{13}}(0.02) \le 0.04$
	$e^{p_{14}}(0.02) \le 0.04$	$e^{p_{15}}(0.07) \le 0.04$
	$e^{p_{16}}(0.09) \le 0.04$	$e^{p_{17}}(0.05) \le 0.04$
	$e^{p}_{28}(0.04) \le 0.04$	$e^{p}_{29}(0.05) \le 0.04$
	$e^{p}_{45}(0.01) \le 0.04$	$e^{p}_{46}(0.01) \le 0.04$
	$e^{p}_{65}(0.06) \le 0.04$	$e^{p}_{66}(0.04) \le 0.04$
	$e^{p}_{67}(0.02) \le 0.04$	$F_{Cx}(2.0) \ge 2.0$
	$-1.0 \le u_i \le 1.0 \ i = 1,16$	

Optimization Results

The University of Florida College of Engineering UNIVERSITY OF FLORIDA

Optimization History

INIVERSITY OF

Pressurized Sheet Metal Stamping

Initial Geometry and Design Parameters

Die Shape DSA and Optimization Kim *et al.* Comp. Mech. 25 (2000) 157-168

Pressure Load Time History

Time History of Deformation

Analysis Results

Design Optimization

$$MIN \quad G = \iint_{\Gamma} \|\boldsymbol{\pi}(\mathbf{x}) - \mathbf{x}\|^2 \quad d\Gamma$$

S.T. $e^{p_i} \le 0.16$ i = 22, 28, 49, 55, 68, 70, 72, 74

 $-3.0 \le u_j \le 3.0 \ j = 1, \cdots, 18$

55, Response Analysis : 12,018 sec Sensitivity Analysis : 3,215/18 sec

Optimization History

Optimization Results

Conclusions

- An Accurate and Efficient Shape DSA and Optimization of Structural Transient Dynamics is Proposed.
- Finite Deformation Elastoplastic Material and Frictional Contact Condition Are Considered in DSA
- Design Sensitivity Equation Is Solved at Each Converged Time Step without Iteration Using the Same Tangent Stiffness Matrix from Analysis
- Sensitivity Equation Is More Efficient for the Implicit Time Integration Method Than the Explicit Method Compared to the Cost of Response Analysis

