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This paper investigates the effects of the number of coupon and element tests on 

uncertainty in element failure stress. In aircraft structural design, failure stress is first 

obtained from coupon tests, which is then used in predicting failure stress of structural 

element under combined loads. The mean and standard deviation of failure stress are 

expressed as a distribution due to errors in failure theory and variability due to finite 

number of coupon tests. This paper focuses on identifying the effect of the number of coupon 

and element tests on the distribution of failure stress of structural element. This paper 

assumes isotropic properties and the failure stress of structural element is assumed to be 

predicted by a failure theory (e.g. Von Mises), and initial distribution of this failure stress 

reflects uncertainties. Bayesian updating is used to reduce the uncertainties in the initial 

failure stress distribution by using element tests. The relation between the number of tests 

and the level of uncertainties is presented for a simple test case. 

I. Introduction 

HE traditional design practice of aircraft structures is based on safety factors and building-block test processes, 

which have evolved in tandem over many decades based on experience through trial and error in aircraft 

structures. For example, the Federal Aviation Administration (FAA) requires using A-basis (or B-basis) allowable 

failure stresses that are below 99% (or 90%) of the test failure stresses with 95% confidence. However, it is unclear 

how much the use of conservative failure stresses improves the safety of the system. Similarly, all aircraft structures 

are regularly inspected and repaired when large cracks are detected, but it is not quantified how much this process 

will improve safety. Although it is generally accepted that these processes improve product safety, only a few 

research results have tried to quantify their contribution to safety over the lifecycle of the product. Dhillon et al. [1] 

incorporated theses processes into evaluating reliability of industrial robots. Kale et al. [2] and Garbatov and Guedes 

Soares [3] used variable inspection schedules to maintain a constant level of reliability throughout the lifecycle. 

Kulkarni and Achenbach [4] modeled the effects of inspection schedule on the probability of failure using the 

probability of damage detection when uncertainty comes from the initial crack distribution. 

Although there is a push to replace safety-factor-based design with probabilistic design, the latter cannot readily 

replace the former because current probabilistic design frameworks do not incorporate various uncertainty reduction 

measures (URMs) that happen after design. Instead, it uses only uncertainty information available at the design stage 

without considering future reductions through these processes, which is a major obstacle for the wide adoption of 

probabilistic design in most engineering industries. Therefore, it is important for the probabilistic design to include 

the effects of URM on structural safety; i.e., reliability. 
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As a first step toward quantifying the effect of URMs, the objective of this paper is to calculate the contribution 

the effects of coupon tests and structural element tests on the uncertainty in element failure stresses. The 

fundamental difficulty in modeling the abovementioned building-block test processes is how to consider them in the 

design stage, especially when most of tests are not performed at the design stage; that is, how to model the 

uncertainty reduction effect of future tests. As a first step toward quantifying uncertainty reduction by building-

block test processes, the proposed paper models the uncertainty reduction by structural element tests in the failure 

stress. The effect of future element tests is modeled using a distribution of distributions, and multi-layered Monte 

Carlo simulation with Bayesian inference is utilized to evaluate this effect. The goal is to show the relation between 

final uncertainty and the number of element tests. For the sake of simplicity, the true (unknown) distribution of 

failure stresses is assume to be Normal. 

II. Uncertainty reduction by structural element tests 

In aircraft structural design, most complex modern aircrafts are designed based on simulations, which may have 

substantial prediction errors and material variability; i.e., uncertainties. Once the conceptual design is completed, 

simulation models are refined and extensive tests should be undertaken so that the structural safety can be achieved 

by taking steps to reduce uncertainties. For airliners, the 

building-block test is used as a process of error reductions 

through tests (see Figure 1). Before the design, dozens of coupon 

tests are carried out to measure stiffness and failure properties. A 

large number of coupon tests provide statistical information on 

the variability of the material properties. Then tests with 

structural elements are used to update failure prediction by 

adjusting the design failure stresses to the results of the tests. 

When going up the building-block pyramid, understanding 

deviations from analytical predictions becomes more difficult 

and the tests are more expensive; furthermore any modification 

can also be very expensive. The fundamental difficulty in the 

building-block tests is that since it is heuristically designed, it is 

difficult to quantify how much each level can reduce uncertainty, 

which is the main objective of this paper. Once the contribution 

of each level to the uncertainty is modeled, the design engineer 

can decide how much resources should be allocated to a specific 

URM, such as a particular set of tests, in order to achieve the 

target reliability at minimum cost. 

In this paper, only coupon tests and element tests are 

considered to demonstrate the main concept of URMs. The goal 

is to reduce the uncertainty in element failure stress prediction. 

The effect of the number of coupon tests and element tests on 

final uncertainty in element failure stress is investigated. In the 

following subsections, detailed assumptions and procedures are 

presented. 

A. Errors in estimating failure stress from coupon tests. 

 Coupon tests are conducted to obtain the statistical distribution of material strength properties, such as failure 

stress, and their corresponding design values (A-basis or B-basis). In this paper, it is assumed that the true failure 

stress of coupons 
,c true follows a normal distribution as, 

  , , ,~ ,c true c true c trueN    (1) 

where 
,c true  and 

,c true  are, respectively, the mean and standard deviation of the true failure stress of coupons. 

Unfortunately, 
,c true  and 

,c true  are unknown and can only be found with an infinite number of coupon tests. 

Instead, it is estimated with a finite number of specimens. In this paper, the estimated mean and standard deviation 

of failure stress with a finite number of specimens are called the possible true mean failure stress, 
,c Ptrue , and 

possible true standard deviation of failure stress, 
,c Ptrue .  

 
Figure 1: Building-block approach for testing 

aircraft structural components. At each stage, 

analytical models can be adjusted to account 

for discrepancies between the model and test 

and, thus, reduce the errors in the analytical 

model used to predict the response at the next 

level. 
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In this paper, it is assumed that the failure stress is normally distributed so that the true distribution is estimated 

by estimating two parameters; mean and standard deviation. Two methods can be used to estimate the parameters of 

the true distribution: Bayesian or sampling method. In this section, the latter is used because the two methods have 

little differences and the latter is simpler. Appendix A shows the detail of comparison between the two methods. 

The possible true failure stress of coupons, 
,c Ptrue , is again assumed to be normally distributed as, 

  , , ,~ ,c Ptrue c Ptrue c PtrueN    (2) 

The possible true failure stress 
,c Ptrue

 
is estimated using 

,c Ptrue  and 
,c Ptrue  from nc specimens. Obviously 

,c Ptrue  and 
,c Ptrue  include sampling errors due to the finite number of specimens. Different analysts have different 

,c Ptrue  and 
,c Ptrue so that they are modeled as random variables, it is rational to consider them as a distribution and 

the possible true failure stress in Eq. (2) has a form of the distribution of distributions. Of course, a test with a small 

number of specimens has large uncertainty, and it will lead to a wide distribution. With more specimens, this wide 

distribution will shrink and gives more accurate estimation. 

It will be discussed next how to obtain the distributions of 
,c Ptrue  and 

,c Ptrue
 
for use in Eq. (2). However, first 

the final product is displayed with an example. Figure 2 shows a PDF of ,c true  , with a mean of 1.1 and a coefficient 

of variation of 0.07, as well as the PDFs of two 
,c Ptrue  with different numbers of specimens. For this example, test 

results of 30 specimens and 80 specimens were randomly sampled. The 30 specimen sample had a mean of 1.053 

and a standard deviation of 0.096. From the calculations described later (in Eqs. (3) and (4)) the standard deviation 

of the mean was estimated to be 0.018 and the standard deviation of the standard deviation was estimated to be 

0.013. The possible true distribution was obtained by double-loop Monte Carlo simulation. First we sampled means 

and standard deviations and then the actual failure stress from a normal distribution with the sampled mean and 

standard deviation. The resulting distribution, shown in Figure 2 had a mean of 1.053 and a standard deviation of 

0.098. For the 80 sample case, the corresponding numbers were a mean of 1.113, standard deviation of 0.083, the 

standard deviation of the mean of 0.009 and the standard deviation of the standard deviation of 0.007. The resulting 

distribution, shown in Fig. 2 had a mean of 1.113 and a standard deviation of 0.085. As expected, the possible true 

distribution of coupon failure stress with 80 specimens gives good estimation of the true distribution of coupon 

failure stress. For the distribution with 30 specimens, the sample mean was an underestimate (not conservative), but 

the width of the distribution compensates.  

 
Figure. 2: True distribution, the distribution of ,c Ptrue with 30 specimens, and  

the distribution of ,c Ptrue with 80 specimens. (True mean =1.1, and true standard deviation=0.077) 

 

Since it was assumed that 
,c true  is normally distributed, its sample mean also follows a normal distribution. We 

assume that an analyst estimates the distribution of the sample mean as 
,c Ptrue with a test mean 

,c test  and a test 

standard deviation 
,c test from a coupon test with finite number of specimens as 

 
,

, ,~ ,
c test

c Ptrue c test

c

N
n


 

 
 
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It is well known that the standard deviation 
,c true  follows a chi-distribution of order 1cn  [10]. See Appendix 

B for detail of the chi-distribution. Since calculating true distribution of 
,c true  needs the unknown 

,c true , analysts 

estimate it as 
,c Ptrue  with the test standard deviation 

,c test . The standard deviation can be estimated by 

  ,

,

1
~ 1

c c Ptrue

c

c test

n
n







  (4) 

Estimated standard deviation of ,c Ptrue is calculated by  

  Estimated standard deviation of ,c Ptrue
,c test

cn


  (5) 

Estimated standard deviation of ,c Ptrue is standard deviation of chi-distribution of order 
cn .  

 

Estimated standard deviation of ,c Ptrue =
 

 

  

22

,2

, 2

2
2

1 1 2

cc test

c test

c c

n

n n







  
 

(6) 

Those estimated standard deviations of mean and standard deviation are approximated standard deviations of the 

estimated mean ,c Ptrue  and the estimated standard deviation ,c Ptrue . When the sample standard deviation ,c test is 

replaced with the true standard deviation ,c true , Eqs. (5) and (6) give true standard deviation of the sample mean 

and the sample standard deviation. 

Note that Eq. (2) describes a distribution used by the designer whose parameters are also random and this will be 

referred to as a distribution of distributions, with an example illustrated in Fig. 2. This distribution is needed to 

satisfy the FAA requirements that the design stress value is sufficiently conservative. For example, when no 

redundancy is present in the structure, the A-basis is used which determines the failure stress from the value of a 

material property exceeded by 99% of the population with a 95% lower tolerance bound [12]. 

B. Errors in estimating failure stress of structural element tests 

The second level in the building-block test sequence in Fig. 1 is structural element tests, where structural 

elements with different joints are tested to validate the failure theory used in multi-dimensional stress states. Here it 

is assumed that Bayesian updating will be used to integrate the element test results with the information available 

from coupon tests. It is assumed that the true failure stress of element 
,c true follows a normal distribution as, 

  , , ,~ ,e true e true e trueN    (7) 

where 
,e true  and 

,e true  are, respectively, the mean and standard deviation of the true failure stress of elements. 

The Bayesian updating estimates the mean and standard deviation of the distribution. In the following we discuss 

the prior distribution used for the mean and standard deviation.  

 

(1) Estimating the prior distribution of element mean failure stress 

In the failure theory, there exists a relation between one-dimensional failure stress (e.g., 
,c true  from coupon 

tests) and failure stress due to multi-dimensional stress state (e.g., 
,e true  from element tests). In general, this relation 

can be represented using the prediction factor truek  as 

 
, ,e true true c truek   (8) 

where truek
 
is a ratio between the unidirectional failure stress and the failure stress under combined loading. Since 

most failure theories are not perfect, the true prediction factor is unknown, and the calculated prediction factor, calck , 

is given. For a given failure theory and a given loading direction, calck  can be uniquely determined. 

From the relation in Eq. (8), it is assumed that 
,e true can be calculated from 

,c true as  

 
, ,e true true c truek  . (9) 

If the failure theory is perfect ( )truek  and the number of coupon tests is infinite
,( )c true , then the true mean failure 

stress of element 
,( )e true  can be obtained, but this is impractical. Two errors are involved in predicting

,e true ; the 
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first due to the finite number of specimens and the other due to imperfect failure theory. The possible true mean 

failure stress of structural element 
,e Ptrue  can be obtained by Eq. (10) in terms of two possible true variables.  

 
, ,e Ptrue Ptrue c Ptruek   (10) 

where 
Ptruek

,
due to the imperfect failure theory, is defined in terms of the error in prediction ek as 

  1Ptrue k calck e k   (11) 

Although one true value of 
ke exists, the analyst does not know the true value

 
 The error 

ke is assumed to be 

uniformly distributed with bounds kb reflecting the estimated accuracy of the failure theory. The minus sign in Eq. 

(11) is selected in order to make a positive error conservative. Readers are referred to An et al. [11] for additional 

discussion of the error bounds.  

 It was assumed that ,c Ptrue is calculated using the normal distribution with ,c test and ,c test in Eq. (3). That is, 

although the error 
ke and the true mean coupon failure stress have each a single true value, the distributions of 

possible true variables reflect the uncertainty associated with our lack of knowledge of what these values are (so-

called epistemic uncertainty).  

The process of obtaining the distribution of possible mean failure stress of structural element ,e Ptrue based on Eq. 

(10) is shown in Fig. 3. It is assumed that the distribution of  ,k Ptrue Ptruef k is obtained using the error bounds
kb . The 

possible true distribution  , ,c Ptrue c Ptruef   is the normal distribution defined by Eq. (3). Using the two possible 

distributions, the distribution of possible true element mean failure stress  , ,e Ptrue e Ptruef  is obtained. 

 
Figure. 2: Process of estimating initial element mean failure stress 

The combined possible true distribution 
, ,( )e Ptrue e Ptruef  is calculated with Eq. (12). 

 
     , , , , , , , ,| de Ptrue e Ptrue e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue c Ptruef f f      




  . (12) 

In the following, the two PDFs in the integrand will be explained. 

First, in the case of 1
calc

k   for simplicity, it was assumed that the possible true distribution  ,k Ptrue Ptruef k is a 

uniform distribution with bounds
kb .  

  .

1
if 1

2

0 otherwise

Ptrue k

kk Ptrue Ptrue

k b
bf k


 

 



 (13) 

By using Eq. (10), the possible true PDF  , ,e Ptrue e Ptruef  can be obtained from all possible combinations of 

random variables generated from  ,k Ptrue Ptruef k and random variables generated from  , ,c Ptrue c Ptruef  . It is 

reasonable to consider a case that a 
,c Ptrue is given from the possible true distribution of coupon mean. In the case of 

the one given
,c Ptrue , the possible true element failure stress which is calculated from the 

,c Ptrue  can be regarded as 

a conditional PDF  , ,,
|

e Ptrue c Ptruee Ptrue
f


  which is a uniform distribution with an error bound of kb  and mean of the 

uniform distribution is the same with the given
,e Ptrue

 because this PDF depends on the value of 
,c Ptrue . It represents 

the prediction error of a given failure theory.   

 , ,c Ptrue c Ptruef 

 , ,e Ptrue e Ptruef 

,

,

c test

c test





cn

 ,k Ptrue Ptruef k
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 
,

, , , , ,

1
if 1

| 2

0 otherwise

e Ptrue

k

e Ptrue e Ptrue c Ptrue k c Ptrue c Ptrue

b
f b



   


 

 



 (14) 

Simply, Eq. (14) is a possible true PDF of 
,e Ptrue

 for a given 
,c Ptrue

 so that the possible true PDF of element mean 

failure stress  , ,e Ptrue e Ptruef  is calculated through considering all possible values
,c Ptrue

 with Eq. (14). 

Second, by using Eq. (3) PDF of the possible true distribution of 
,c calc is calculated from coupon test results as 

   ,

, , , ,| ,
c test

c Ptrue c Ptrue c Ptrue c test

c

f N
n




  

 
  

 
   

(15) 

where the notation  | ,N x a b  denotes the value of the normal PDF with mean a and standard deviation b at x. 

Figure 3 illustrates
,e true a unique value, the estimated PDF of

,c Ptrue , and the conditional PDF of 
,e Ptrue for given

,c Ptrue . 

 
With Eqs. (14) and (15), the convolute form in Eq. (12) can be directly integrated with the finite range of PDF in 

Eq. (14) as 

 

 
 

 
,

,

1 ,

, , , , ,

,1

1
| ,

2

e Ptrue

e

e Ptrue

e

b c test

e Ptrue e Ptrue c Ptrue c test c Ptrue

e c Ptrue cb

f N d
b n






   







 
  

 
 

 .

 

(16) 

Appendix C shows the detail of convolution integral. This PDF is a prior distribution of mean failure stress of 

structural element and will be updated using the Bayesian method. 

 
Figure. 3: The possible true distributions of mean failures stress of specimens and the 

conditional true distribution of the possible true distribution of element mean failure stress.  

e

Probability 

density

,e true

, ,( )c Ptrue c Ptruef 

,c Ptrue

, , ,( | )e Ptrue e Ptrue c Ptruef  

,c test
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(2) Predicting the prior distribution of the standard deviation of element failure stress 

In predicting the mean failure stress, we considered the error in failure theory and the effect of finite number of 

specimens. However, in the case of standard deviation, the same standard deviation is used from the coupon test, 

neglecting the effect of additional scatter from the failure theory. When a random variable is normally distributed, 

the sampling distribution of standard deviation follows a chi-distribution [10] as shown in Eq. (4).  Standard 

deviation of element failure stress
,e true can be directly obtained from the

,c true as 

 , , ,(1 )e true true c truee    (17) 

where 
,truee is the true error between 

,e true and 
,c true . Due to the lack of knowledge of the relation between 

,e true

and 
,c true  (epistemic uncertainty), and the finite number of specimens, the possible true standard deviation of 

element failure stress 
,e Ptrue  can be obtained by Eq. (18) in terms of two possible true variables.  

 
, , ,(1 )e Ptrue Ptrue c Ptruee    (18) 

In Eq. (18), 
,Ptruee  is used because of the lack of knowledge of the relation between the true element standard 

deviation of failure stress
,e true and the true coupon standard deviation of failure stress

,c true  and the possible true 

standard deviation of failure stress 
,c Ptrue is used due to the finite number of specimens. The 

,Ptruee  is assumed to be 

uniformly distributed with zero mean. Again, due to the finite number of specimens, 
,c Ptrue  has a form of a 

distribution. The distribution is estimated as in Eq. (4) which is the chi-distribution with order of 1cn  . 

The process of obtaining the possible standard deviation of failure stress of structural element 
,e true  based on 

Eq. (18) is shown in Fig. 5. It is assumed that the possible true distribution  , ,e Ptrue Ptruef e is a uniform distribution 

with mean of zero and bound b . Here, it was assumed that the analyst can estimate the bounds b


of the possible 

true PDF  , ,e Ptrue Ptruef e  on the magnitude of the error.  

The possible true distribution of standard deviation of failure stress of structural element  , ,e Ptrue e Ptruef  is the 

Chi-distribution which defined by Eq. (4). Using the two possible distributions, the distribution of possible true 

element failure stress of standard deviation  , ,e Ptrue e Ptruef  is obtained. 

Figure 4. Illustration of distribution of element mean 

failure stress and its dependence on the number of 

coupons with 10% error bounds
cf

true

 =0.85, 
cf

true

 =0.068, 

and 2

calc

dk =1. As the number of coupon tests increases, 

the distribution converges to uniform distribution 

because of reduced uncertainty about the true mean 

coupon failure stress. 
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Figure. 5: Process of estimating standard deviation of failure stress 

In the same manner as Eq. (12), the combined possible true distribution  , ,e Ptrue e Pturef   is obtained as 

 
     , , , , , , , ,| de Ptrue e Pture e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue c Ptruef f f      




 

 
(19) 

In the following, the two PDFs in the integrand will be explained as it was done for estimating the mean value. 

For given
,c Ptrue , 

,e Ptrue has a uniform distribution which is centered around
,c Ptrue . The possible true 

distribution of 
,e Ptrue

  for given 
,c Ptrue  is defined as a conditional PDF:  

 

 
,

, , , , ,

1
if 1

| 2

0 otherwise

e Ptrue

e Ptrue e Ptrue c Pcalc c Ptrue c Ptrue

b
f b



 



   


 

 

  

(20) 

However 
,c Ptrue is varying because of the finite number of specimens. Chi-distribution is used to define PDF of

,c Ptrue for the given number of coupon tests
cn and the test standard deviation of coupon test

,c test . The PDF of chi-

distribution is defined as 

 

 
 

  

21 1 2 2 22
| 1

1 2

c c
n n

c

c

e
f n

n








   

 
 

 

(21) 

where the notation  | 1cf n   denotes the value of chi PDF with  and the number of coupon tests 
cn . From Eq. 

(21), the PDF of 
,c Ptrue  for the given number of specimens 

cn  is obtained as  

 

   , ,

,

1
| 1

c

c Ptrue c Ptrue c

c test

n
f f n  




  and

 

,

,

1c

c Ptrue

c test

n
 






 

(22) 

In Eq. (19),  , , ,|e Ptrue e Ptrue c Ptruef   has finite integrand range so that Eq. (19) can be rewritten as 
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, , , , ,

,1

1
d

2

e Ptrue

e Ptrue

b

e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue

c Ptrueb

f f
b







 


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





  .

 

(23) 

This PDF is an initial distribution of standard deviation of element failure stress. 

C. Bayesian Updating Approach 

Element tests are used to update the prior distribution. Bayesian updating is used to reduce the uncertainty from 

failure theory and finite number of coupon tests.  The updated joint distribution of the mean and standard deviation 

of the element failure stress is given as 

  
   

   
1, , , , ,

, ,

1, , , , , , ,

, ,
,

, ,

init

test e Ptrue e Ptrue e Ptrue e Ptrueupd

e Ptrue e Ptrue
init

test e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue

f f
f

f f d d

   
 

     







 (24) 

where , ,( , )init

e Ptrue e Ptruef   is the prior PDF of the element parameters. Because the prior of the mean and the prior of 

the standard deviation were obtained independently, the prior of the joint distribution is the product of the individual 

distributions 

      , , , , , ,,init

e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f f        (25) 

 , ,c Ptrue c Ptruef 

 , ,e Ptrue e Ptruef 
,

,

c test

c test





cn

 , ,e Ptrue Ptruef e
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in Eq. (24)  1, , ,,test e Ptrue e Ptruef   is the likelihood of obtaining the first element test results for given 

, ,,e Ptrue e Ptrue  . It reflects the assumption that the element failure stress is normally distributed, so that the probability 

of obtaining the first test result 
1

,e test , is  

    1

1, , , , , ,, ; ,test e Ptrue e Ptrue e test e Ptrue e Ptruef N      (26) 

Note that it is not a probability distribution but conditional probability distribution. Subsequent tests are handled 

by the same equation with the updated distribution as the initial one. 

III. Illustrative Examples  

In these examples, the effects of the number of coupon tests and the number of element tests on the remaining 

uncertainty will be illustrated. True distributions of coupon test and element test are assumed to be normal. 

Structural test results are generated by sampling the true distributions. 201×201 grid is used to calculate a PDF of 

the possible true mean and standard deviation of coupon tests with regard to the number of coupon tests. In this 

study, a joint PDF of the possible true coupon mean and standard deviation are calculated so that analysis of the 

joint PDF is needed. 

 

Table 1. True distributions of structural tests 

Test Distribution Parameters 

Coupon test Normal  = 1.1,  = 0.077 (cov=0.07) 

Element test Normal  = 1.1,  = 0.099 (cov=0.09) 

 

Table 2. illustrates the effect of the  number of coupon tests on the remaining uncertainty for a single set of 

samples. s.  

 

Table 2. Analysis of the joint PDF of coupon mean and standard deviation; obtained from a single set of samples 

Number of coupon tests 10 30 50 70 90 

Estimated mean of ,c Ptrue  1.0696 1.1053 1.1042 1.0852 1.1014 

Estimated mean of ,c Ptrue  0.0974 0.0783 0.0803 0.0736 0.0763 

Sample mean 1.0696 1.1053 1.1042 1.0852 1.1014 

Sample standard deviation 0.1001 0.0790 0.0807 0.0738 0.0765 

True mean ,c true  1.1 

True standard deviation ,c true  0.077 

Estimated std. of ,c Ptrue  0.0317 0.0144 0.0114 0.0088 0.0081 

Estimated std. of ,c Ptrue  0.0232 0.0103 0.0081 0.0063 0.0057 

Sample std. of ,c Ptrue a
 0.0244 0.0141 0.0109 0.0092 0.0081 

Sample std. of ,c Ptrue b
 0.0179 0.0101 0.0078 0.0065 0.0058 

a 
Sample std. of ,c Ptrue is calculated using Eq. (5) replacing ,c test with ,c true  for comparison. 

b 
Sample std. of ,c Ptrue is calculated using Eq. (6) replacing ,c test with ,c true  for comparison, see appendix B for 

detail. 

 

In Table 2, for the particular samples used, 30 samples provide more accurate estimate of the mean (estimate is 

equal to sample mean) than 70 samples, and more accurate estimate of the standard deviation than 50 samples. 

However, the estimates of the uncertainty are is substantially smaller for 70 than for 30. In addition, the estimated 

mean of ,c Ptrue  converges to the true value of 1.1 as the number of coupon tests ( )cn  increases. The estimated 

standard deviation of the ,c Ptrue  and the estimated standard deviation of ,c Ptrue  converge to the true value so that it 

can be said that the quality of estimated uncertainty is good. When cn =10, uncertainty in the mean of ,c Ptrue is 

almost three times larger than uncertainty in the mean of ,c Ptrue of cn =90. Also uncertainty in the standard deviation 
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of ,c Ptrue (
cn = 10) is three times larger than uncertainty in the standard deviation of ,c Ptrue (

cn =90); it means that 

large number of tests can give good estimation. The estimated uncertainty of  ,c P t r u e  reduces as the number of 

specimens increases. In the same manner as the mean, estimated uncertainty of ,c Ptrue  is more than four times of the 

standard deviation of ,c Ptrue (
cn = 90). Also the estimated standard deviation of the mean ,c Ptrue and mean ,c Ptrue  

are shown and the estimated standard deviations can be a good approximated uncertainty of the estimated mean 

,c Ptrue and mean ,c Ptrue . 

In this study, parameters of element test are estimated from the joint PDF of coupon test parameters. Due to the 

imperfect failure theory in estimation, the estimation has error. Each estimated element mean and element standard 

deviation has error, distributions of e and e are given below in Table 3.  

 

Table 3. Error distributions of element tests 

Error Distribution Bounds 

ce  Uniform 10%  

e  Uniform 50%  

 

201×201 grid is used to calculate a PDF of the possible true mean and standard deviation of element tests 
en with 

regard to the number of coupon tests
cn . In this study, a joint PDF of the possible true element mean and standard 

deviation are calculated so that analysis of the joint PDF is needed. Mean of coupon mean, mean of coupon standard 

deviation, standard deviation of coupon mean, and standard deviation of coupon standard deviation are shown in 

Table 4 for one particular set of element test results per coupon sample size. For the particular set used with 10 

coupoon tests, the third element test with failure stress of 1.0927 happens to be very accurate, while the first and 

fifth tests are very inaccurate. . Contents are sorted by the number of coupon tests and the number of element tests. 

True parameters are used to generate random variables and used as a reference value for assessment purpose in 

Table 4.  

Since the element parameters are estimated from coupon test results, the estimated parameters have less 

uncertainty than the sampling uncertainties of element test. In Table 4, mean of ,e Ptrue converges to the true value of 

1.1 as the number of coupon tests ( )en  increases. As the number of element tests increases, the mean of ,e Ptrue

converges to the true value of 0.099 as well. It is observed that the estimated parameter with large number of coupon 

tests is less accurate than the estimated parameter with small number of coupon tests for the same number of 

element tests due to the randomness.  

As a matter of course, analyst does not know the true element mean ,e true  and standard deviation ,e true  so that 

standard deviations of estimated parameters have to be estimated as a quantified uncertainty of the estimated mean 

and standard deviation of element failure stress and the estimated standard deviation of the estimated mean ,e true

and the estimated mean ,e true are given in Table 4. 

 

Table 4. Analysis of the joint PDF of coupon mean and standard deviation (
cn =10, 50, and 90) for a single set 

of element test results. 

Number of 

coupon 

tests 

Number of  

element tests 
1 2 3 4 5 

10 

Element failure stress 0.9646 1.0606 1.0927 1.1910 1.2609 

Estimated mean ,e Ptrue  1.0250 1.0327 1.0458 1.0750 1.1029 

Estimated mean ,e Ptrue  0.0935 0.0892 0.0869 0.0990 0.1112 

Estimated std. of ,e Ptrue  0.0555 0.0476 0.0428 0.0433 0.0425 

Estimated std. of ,e Ptrue  0.0342 0.0314 0.0290 0.0274 0.0260 

50 Element failure stress 0.9668 1.1434 1.1948 1.0713 1.2334 
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Estimated mean ,e Ptrue  1.0476 1.0725 1.1021 1.0953 1.1200 

Estimated mean ,e Ptrue  0.0828 0.0900 0.0947 0.0914 0.0956 

Estimated std. of ,e Ptrue  0.0470 0.0483 0.0474 0.0424 0.0402 

Estimated std. of ,e Ptrue  0.0242 0.0209 0.0189 0.0191 0.0176 

90 

Element failure stress 1.0410 0.9756 1.1130 1.2001 1.2643 

Estimated mean ,e Ptrue  1.0680 1.0380 1.0535 1.0846 1.1171 

Estimated mean ,e Ptrue  0.0736 0.0713 0.0755 0.0876 0.0956 

Estimated std. of ,e Ptrue  0.0504 0.0367 0.0370 0.0409 0.0403 

Estimated std. of ,e Ptrue  0.0226 0.0221 0.0206 0.0174 0.0146 

 True mean ,e true  1.1 

 True std. ,e true  0.099 

 

Since the results in Table 4 refelct the idiosyncrasies of the single samples used, we repeated the calculations 

500,000 times, and the results are shown in In Table 5. RMS error and MA (mean absolute) error of the mean 

,e Ptrue and mean ,e Ptrue are shown. Coupon test and element test are needed to estimate mean and standard deviation 

of element failure stress. The errors reduce as the number of coupon test and the number of element tests increase. 

However, the effect of the number of element tests is more noticeable. This reflects the fact that even after 10 

coupon tests, the error due to inaccurate mean coupon failure stress is much smaller than the error in the failure 

theory that is addressed by element tests.  The standard deviation of the mean of the coupon failure stress is seen in 

Table 3 to reduce from 0.024 to 0.008 by going from 10 coupons to 90.  The element failure calculation is uniform 

with 10% bounds, which corresponds to a standard deviation of  0.058, and so it dominates the total error, and it can 

be reduced only by element tests. Consequently, for this case,  

With large MCS, the RMS error is a very close value to the true standard deviation of estimated mean ,e Ptrue and 

standard deviation of ,e Ptrue . It is observed that the estimated standard deviations in Table 4. give approximate 

values of the RMS errors, comparison between the estimated standard deviations in Table 4 and RMS errors from 

500,000 MCS is shown in Table 5. The estimated standard deviation of the mean ,e Ptrue gives conservative 

estimation of RMS error, the estimated standard deviation of the mean ,e Ptrue  gives slightly un-conservative 

estimation of RMS error from time to time.  

 

Table 5. Comparison between estimated uncertainties for a single set of element test results and measured errors 

from 500,000 MCS ( cn =10, 50, and 90) 

Number 

of coupon 

test 

Number of  

element tests 
0 1 2 3 4 5 

10 

Estimated std. of ,e Ptrue  - 0.0555 0.0476 0.0428 0.0433 0.0425 

Estimated std. of ,e Ptrue  - 0.0342 0.0314 0.0290 0.0274 0.0260 

RMS error of mean ,e Ptrue a
 0.0724 0.0480 0.0455 0.0420 0.0391 0.0366 

RMS error of mean ,e Ptrue b
 0.0419 0.0316 0.0294 0.0272 0.0252 0.0235 

MA error of mean ,e Ptrue c
 - 0.0400 0.0373 0.0342 0.0317 0.0297 

MA error of mean ,e Ptrue d
 - 0.0277 0.0253 0.0228 0.0208 0.0193 

50 
Estimated std. of ,e Ptrue  - 0.0470 0.0483 0.0474 0.0424 0.0402 

Estimated std. of ,e Ptrue  - 0.0242 0.0209 0.0189 0.0191 0.0176 
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RMS error of mean ,e Ptrue a
 0.0653 0.0417 0.0426 0.0409 0.0388 0.0369 

RMS error of mean ,e Ptrue b
 0.0336 0.0246 0.0237 0.0224 0.0210 0.0198 

MA error of mean ,e Ptrue c
 - 0.0359 0.0358 0.0340 0.0321 0.0303 

MA error of mean ,e Ptrue d
 - 0.0231 0.0212 0.0192 0.0174 0.0160 

90 

Estimated std. of ,e Ptrue  - 0.0504 0.0367 0.0370 0.0409 0.0403 

Estimated std. of ,e Ptrue  - 0.0226 0.0221 0.0206 0.0174 0.0146 

RMS error of mean ,e Ptrue a
 0.0646 0.0409 0.0423 0.0408 0.0388 0.0369 

RMS error of mean ,e Ptrue b
 0.0326 0.0238 0.0230 0.0217 0.0204 0.0192 

MA error of mean ,e Ptrue c
 - 0.0354 0.0358 0.0340 0.0322 0.0304 

MA error of mean ,e Ptrue d
 - 0.0227 0.0207 0.0186 0.0169 0.0154 

a 
Root mean square error of the mean µe,Ptrue using Eq. (27), the RMS error with large number of samples can be 

used as a true standard deviation of µe,Ptrue, it is a target value of the estimated std. of the mean µe,Ptrue. Results are 

based on 500,000 MCS. 
b 
Root mean square error of the mean σe,Ptrue using Eq. (28), the RMS error with large number of samples can be 

used as a true standard deviation of σe,Ptrue, it is a target value of the estimated std. of the mean σe,Ptrue. Results are 

based on 500,000 MCS. 
c 
Mean of absolute error sum of the mean µe,Ptrue using Eq. (29). This value can be used to determine how biased the 

estimated mean µe,Ptrue is. Results are based on 500,000 MCS. 
d 
Mean of absolute error sum of the mean σe,Ptrue using Eq. (30). This value can be used to determine how biased the 

estimated mean σe,Ptrue is. Results are based on 500,000 MCS. 
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

  (30) 

Figure 6. shows that ME error and RMS error associated with the number of element tests (1, 2, 3, 4, and 5) and 

the number of coupon tests (10, 50 and 90). It is observed that effect of the number of element is sufficient for 

reducing uncertainty in both the estimated mean ,e Ptrue and standard deviation ,e Ptrue . Increasing the number of the 

coupon tests is an effective way to reduce uncertainty in the estimated mean ,e Ptrue . However increasing the number 

of the coupon tests is less effective way to reduce uncertainty in the estimated mean ,e Ptrue  is substantial with 1 or 2 

element tests but the effect becomes a little with more than 2 element tests. 
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(c) RMS error of mean ,e Ptrue                         (d) RMS error of mean ,e Ptrue  

  
(a) MA error of mean ,e Ptrue                         (b) MA error of mean ,e Ptrue  

Figure 6: Calculated errors with 500,000 MCS  

(ne is the number of element tests, and nc is the number of coupon tests) 

IV. Concluding remarks 

In aircraft design, some selected parameters are based on our engineering judgment rather than published data. 

We have been trying to quantify the effects of structural tests which has been done. The effects of aircraft structural 

tests on aircraft structural safety particularly the effects of the number of coupon tests and the number of structural 

element tests are explored. In this study, following conclusions can be drawn. 

As the number of coupon tests is increased, initial prediction of mean failure stress of structural element becomes 

accurate and it provides a good prior. Also the estimated uncertainties can be given and the estimated uncertainties 

become accurate as the number of coupon tests increases. 

Error in the estimation of mean and standard deviation of element failure stress can be substantially reduced with 

element tests. Effect of the number of element tests is substantial for reducing error in prediction of mean failure 

stress of structural elements.  

In this paper, accuracies of the estimated mean and standard deviation failure stress of structural tests are 

estimated through estimating the standard deviation of the estimated element parameters.  

APPENDIX A: Estimating Failure Stress of Coupon Test 

A. Estimating failure stress of coupon test using Bayesian updating 

A maximum likelihood distribution of coupon failure stress is used to estimate a distribution of coupon failure 

stress. 

  , ,,c Maxl c MaxlN    (A1) 

where ,c Maxl and ,c Maxl are a maximum likelihood mean of coupon failure stress and a maximum likelihood standard 

deviation of coupon failure stress, respectively. The maximum likelihood parameters is calculated using the possible 

true distribution of mean and standard deviation of coupon failures stress which obtained by Bayesian updating as 
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


 (A2) 

Initial distribution 
initf is assumed a uniform distribution; the range is wide enough because no information was 

given before the tests. Likelihood function of i
th

 test is defined as Eq. (A3). 

    , , , , , ,, | ,i

i test c Ptrue c Ptrue c test c Ptrue c Ptruef N      (A3) 

Here 1, , ,( , )test c Ptrue c Ptruef   is a function reflecting possible variability of the first test of
1

,c test . Note that it is not a 

probability distribution but conditional probability distribution. Subsequent tests are handled by the same equation 

with the updated distribution as the initial one. After updating as the number of coupon tests, the final joint PDF

, , ,( , )c Ptrue c Ptrue c Ptruef   is obtained and then maximum likelihood mean ,c Maxl  and standard deviation ,c Maxl  are 

obtained from the joint PDF.  

The maximum likelihood distribution of coupon failure stress is most likely estimation of failure stress but it is 

one possibility and the other distribution might be true so that consideration of possible true distributions is needed. 

The possible true distribution of the coupon failure stress 
, ,( )

c Ptrue c Ptruef  is a distribution of all possible true failure 

stress and the possible true distribution is defined as  
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, d d
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 

 
  

 (A4) 

It was already assumed that the true distribution of failure stress have a normal distribution, one expected failure 

stress distribution can be constructed using a normal distribution with a pair of 
,c Ptrue and

 ,c Ptrue  come from 

, , ,( , )c Ptrue c Pture c Pturef   .
 
The distribution of the one expected failure stress distribution

 
for given

,c Ptrue and
 ,c Ptrue  is 

defined as a conditional PDF:  

    , , , , , ,,
| , | ,

c Ptrue c Pture c Pture c Ptrue c Pture c Pturec Ptrue
f N


       (A5) 

The possible true distribution of the coupon failure stress  
, ,c Ptrue c Ptruef  in Eq. (A4) can be calculated using 

numerical integration. However, the integration range in Eq. (A4) is infinite so that wide enough integration range 

(>5 of each parameters) was used instead of the infinite range. Gaussian integration was used for the numerical 

integration. 

B. Estimating failure stress of coupon test using sample data 

An approximation was used to simply estimate a distribution of coupon failure stress. 

  , ,,c test c testN    (A6) 

where ,c test is a test mean and ,c test is a test standard deviation. It is the best choice for given sample however this 

estimation is one of possibility so that consideration of possible true distributions is needed. The possible true 

distribution of the coupon failure stress 
, ,( )

c Ptrue c Ptruef  is a distribution of all possible true failure stress and the 

possible true distribution and defined as  
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 (A7) 

It was already assumed that true distribution of failure stress is a normal distribution so that Eq. (A5) is also used 

for the conditional PDF in Eq. (A7). Due the true distribution is a normal distribution, a sample mean of coupon 

failures stress is according to a normal distribution and a sample standard deviation is according to chi-distribution. 

The possible true distribution of sample mean is defined by 

  
,

,

, , ,| ,
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c
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 

  (A8) 

The possible true distribution of standard deviation of coupon failures stress is defined using chi-distribution. 
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where ( 1)cn  is chi distribution with 1cn  degrees of freedom. 

C. Numerical example 

Comparisons of two approaches will be given in this section. As assumed, 90 coupon test results are generated 

from a normal distribution with mean of 1.1 and standard deviation of 0.077. The estimated failures stress 

distribution using two approaches will be shown in one graph with true distribution. Eq. (A1) is used for Bayesian 

approach, and Eq. (A6) is used for sampling approach to estimate failure stress of coupon test, the estimated 

distributions are shown when the number of coupon tests (
cn ) is 10, 30, 50, 70 and 90. Samples are sequentially 

chosen, for 
cn =10 first 10 samples are used. In Fig. A1, blue broken line is for the Bayesian approach, blue solid 

line is for the sampling approach, and red solid line is for the true distribution of failure stress. 
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Figure. A1. Comparison between true distribution of failure stress (red line),  

estimated distribution of failure stress from Bayesian approach (blue broken line),  

and estimated distribution of failure stress from sampling approach (blue line). 

 

Table A1. Estimated mean and standard deviation using Bayesian approach 

 10 30 50 70 90 

Maxl µc,Ptrue
 a
 1.1780 1.1472 1.1226 1.1146 1.1102 

Maxl σc,Ptrue
 b
 0.0814 0.0924 0.0892 0.0846 0.0824 

Mean µc,Ptrue
c
 1.1780 1.1472 1.1225 1.1146 1.1103 

Mean σc,Ptrue
d
 0.1006 0.0983 0.0925 0.0868 0.0841 

Std. µc,Ptrue
e
 0.0331 0.0181 0.0132 0.0104 0.0089 

Std. σc,Ptrue
f
 0.0288 0.0137 0.0097 0.0076 0.0064 

a 
Maximum likelihood of possible true mean  

b 
Maximum likelihood of possible true standard deviation  

c 
Mean of possible true mean 

d 
Mean of possible true standard deviation  

e 
Standard deviation of possible true mean  

f 
Standard deviation of possible true standard deviation  

 

Table A2. Estimated mean and standard deviation of failures stress using sampling approach 

 10 30 50 70 90 

,c test  1.1780 1.1472 1.1225 1.1146 1.1103 

,c test  0.0859 0.0940 0.0901 0.0852 0.0829 

Std.
,c test

a
 0.0271 0.0172 0.0127 0.0102 0.0087 

Std. ,c test b
 0.0199 0.0123 0.0091 0.0072 0.0062 

a 
standard deviation of sample mean (standard deviation of Eq. (8) / cn ) 

b 
standard deviation of sample standard deviation (standard deviation of Eq. (9) ) 

 

Table A1. and Table A2. show that there are little differences between the maximum likelihood mean and 

standard deviation in Table A1. and sample mean 
,c test and sample standard deviation ,c test in Table A2. So that it 

is interpreted that performances of estimating parameters are almost the same for both approaches. In comparison 

graph, little differences are observed between them and they are very close to the true distribution when the number 

of coupons is 1000. 

Comparisons of two approaches will be given in Figure A2. The possible true distribution of failures stress using 

two approaches will be shown in one graph with true distribution. Eq. (A4) is used for Bayesian approach, and Eq. 

(A7) is used for sampling approach to estimate failure stress of coupon test. Gaussian integration was used with 

wide enough integration range. 
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cn =50                                                                  
cn =70 

  

cn =90                                                                
cn =1000 

  
Figure. A2. Comparison between possible true distribution of failure stress (red line),  

possible true distribution of failure stress from Bayesian approach (blue broken line),  

and possible true distribution of failure stress from sampling approach (blue line). 

 

In comparison graph, little differences are observed between them and they are very close to the true distribution 

when the number of coupons is 1000. The possible true distributions of failure stress from both approaches are 

almost the same distribution. 

APPENDIX B: Chi-distribution 

Let ix be a random sample from  ,N   where both  and are true mean and standard deviation. Define two 

statistics sample mean and sample standard deviation as 

Sample mean: 

 
1

1 n

i

i

x x
n 

   (B1) 

Sample standard deviation: 
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  (B2) 

From [9],  
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In the same manner [10],  

 

1

1
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n
s 







 

(B4) 

where 1n   follows the chi-distribution with n-1 degrees of freedom. The probability density function of chi is 

defined [11] 
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where  is the Gamma function. Mean of the chi-distribution is  
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Standard deviation of the chi-distribution is  . 
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(B7) 

The chi-distribution is a function of 
1n 
, if the function is changed as a PDF  | 1sf s n  with respect to s, 
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 Mean of the  | 1sf s n is  
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Standard deviation of the sample standard deviation is 
s .

 

 

 
 

 

  

22
2

2

2
2

1 1 2
s

n

n n


 


 

  
 (B10) 

Eq. (B10) is uncertainty of sample standard deviation with regard to the number of samples. 

APPENDIX C: Using Bayesian network instead of MCS 

Bayesian network can be used to obtain a convolution function of PDFs. Here is a distribution of distribution; a 

normal distribution has two parameters which are random variables. Simply MCS is used to obtain a PDF of the 

distribution of distribution. However obtaining a PDF through MCS is not desirable because of calculation for curve 

fitting after MCS and uncertainty of MCS itself so that the PDF though MCS cause undesirable computation cost for 

curve fitting and uncertainty from MCS. Here, Bayesian network is used as an alternative way of MCS. 

For the distribution of distribution, two random variable’s distributions and final distribution which uses two 

random variables as parameters are known; the Bayesian network can be used to calculate the PDF of the 

distribution of distribution. Fig. C1 shows structure of the distribution of distribution.  

 

 
Figure C1. Bayesian network example: Distribution of distribution 

 

A Bayesian network containing continuous random variables and the Bayesian network is given as Fig. C1, PDF 

of y is defined as 

        | ,Y Yf y f y f f d d
 

          (C1) 

The possible true distribution with sampling in Appendix A is exactly the same Bayesian network with Fig. C1. 

The possible true distribution is defined as 

 | ,Yf y    

 f   X1 

Y 

 f   X2 
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Conditional PDF of calculated failure stress of coupon test is  

    , , , , , ,,
| , | ,

c Ptrue c Pture c Pture c Ptrue c Pture c Pturec Ptrue
f N


       (C3) 

Eq. (C3) is a conditional probability density function for given mean and standard deviation. Distribution of the 

sampling mean is given as 
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Distribution of the calculated standard deviation is defined as 
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Distribution of the calculated failure stress can be rewritten as 
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Here is a simple example. A sample mean of coupon test ,c test =1.1780, and a sample standard deviation of 

coupon test ,c test =0.0858. The number of coupon tests
cn =10. With the given values, PDF  

, ,c Ptrue c Ptruef  can be 

simply calculated using Gaussian integration and it is compared with MCS of 10
7 

samples. For the MCS, 1000 

random variables are generated for each sample mean and sample standard deviation and generated 10000 random 

variables from 1000 normal distributions which were constructed with the generated 1000 means and standard 

deviations.  

 

  
Figure C1. Comparison between the estimated failure stress using Bayesian network (red solid line), and the 

estimated failure stress using MCS (blue shaded area) 
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