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Information on damage sizes obtained from structural health monitoring (SHM) can be 
used to estimate remaining useful life (RUL). Damage growth information may also be used 
to reduce uncertainty in the material properties that govern damage propagation for the 
structure being monitored, turning aircraft into flying fatigue laboratories. These properties 
are often widely distributed between nominally identical structures because of 
manufacturing variability and aging effects. The reduced uncertainty in damage growth 
characteristics reduces in turn uncertainty in prediction of the RUL of the monitored 
structural component. It can also help in anticipating damage growth on similar 
components. Bayesian inference has been used for progressively reducing the uncertainty in 
structure-specific damage growth parameters in spite of noise and bias in sensor 
measurements. However, the approach to Bayesian updating we are using here can be 
computationally intensive, in particular when it comes to updating multiple variables. In this 
paper we compare updating the two parameters that characterize crack growth in Paris law 
to updating only one and taking advantage of the correlation between the two. We find that 
there is little to be gained by updating both parameters. 

Nomenclature 
K = Range of stress intensity factor 
 = Range of applied stress 
p = Pressure differential 
a =  Half damage size 
aC = Critical crack size 
ai = Initial crack size 
aN = Crack size at Nth inspection 

 = Measure crack size at Nth inspection 
 = Modeled crack size at Nth inspection 

b = Bias in measurements 
C = Paris law parameter 
KIC = Fracture toughness 
m = Paris law exponent 
N  = Number of cycles 
Nf = Remaining useful number of cycles 
r = Fuselage radius 
t = Panel thickness 
v = Noise in measurements 
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V = Amplitude of noise in measurements 

I. Introduction 

TRUCTURAL health monitoring (SHM) will have significant impact on increasing safety as well as reducing 
operating and maintenance costs by providing an accurate quantification of degradation and damage at an early 

stage to reduce or eliminate malfunctions. Furthermore, SHM will allow predictions of the structure’s health status 
and remaining useful life (RUL) without intrusive and time consuming inspections. Continual on-line SHM is based 
on dynamic processes through the diagnosis of early damage detection, then prognosis of health status and 
remaining life.  

Once damage reaches detectable size, various SHM techniques can be employed to evaluate the current state of 
structural health by measuring its size1. In physics-based prognosis techniques, it is necessary to incorporate the 
measured data into a damage growth model to predict the future behavior of the damage. 

The current technology of diagnosis and prognosis using SHM anticipates difficulties associated with 
uncertainties in sensor data, damage growth models, and material and geometric properties. The first is related to 
identifying the current health status, while the others are related to predicting the health status in the future. 
Uncertainties in sensor data can be classified in two categories: systematic departure due to bias and random 
variability due to noise. The former is caused by calibration error and device error, while the latter is caused by 
measurement environment.  

Compared to manual inspections, the accuracy of SHM is still poor. The minimum size of detectable damage by 
SHM is much larger than by manual inspection methods. In addition, the measured data have the above mentioned 
noise and bias. Thus, the major challenge in SHM-based prognosis is how to accurately predict the damage growth 
when the measured data include both noise and bias. Fortunately, unlike manual inspection, SHM can provide 
frequent measurement of damage, allowing us to follow damage growth. This in turn, should allow us to reduce the 
uncertainty in the material properties that govern damage growth. As illustrated in Figure 1 the uncertainty in these 
properties is normally large because of variability in manufacturing and ageing of the monitored structure2.  

 
Figure 1. Illustration of Paris law parameter in a plot of crack growth rate 

Another conclusion that can be drawn from that figure is that there is a very strong correlation between the 
parameters m and C. The goal of this paper is to compare the results obtained when using Bayesian inference to 
update both damage growth parameters to the results obtained when identifying only m. 

The approaches are compared for a through-thickness crack in an aircraft fuselage panel which grows through 
cycles of pressurization and de-pressurization. A simple damage growth model, Paris law, with two damage 
parameters is used. However, more advanced damage growth models can also be used, which usually comes with 
more parameters. Using this simple model we aim to demonstrate that SHM can be used to identify the damage 
parameters of a particular panel. This process can be viewed as turning every aircraft into a flying fatigue laboratory. 
Reducing uncertainty in damage growth parameters can reduce in turn the uncertainty in predicting remaining useful 
life (RUL); i.e., in prognosis. 

The paper is organized as follows. In Section 2, a simple damage growth model based on Paris model is 
presented. The current paper is based on data for the fatigue crack growth in a fuselage panel of 7075-T651 
aluminum alloy. In Section 3 the results are given for the identification of the damage parameter m using Bayesian 
inference and the estimate on remaining useful life. In Section 4 the similar results are given for updating both m  
and C in a similar way. Conclusions are presented in Section 5 along with future plans. 

S
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II. Damage growth and measurement uncertainty models 

A. Damage growth model 
Damage in a structure starts at the microstructure level, such as dislocations and gradually grows to the level of 

detectable macro-cracks through nucleation and growth. Damage in the micro-structure level grows slowly, is often 
difficult to detect, and is not dangerous for structural safety. Thus, SHM often focuses on macro-cracks, which grow 
relatively quickly under fatigue loadings.  

In this paper, we consider a fatigue crack growth in a fuselage panel with initial crack size ai subjected to fatigue 
loads with constant amplitude due to pressurization. The hoop stress varies between a maximum value of σ to a 
minimum value of zero in one flight. One cycle of fatigue loading represents one flight. Like many other 
researchers3, 4, we use the damage growth model5, Paris law, as   

 ( )m
da

C K
dN

= D  (1) 

where a is the half crack size in meter, N the number of cycles (flights), da/dN the crack growth rate in meter/cycle, 
and ΔK the range of stress intensity factor in √ . The above model has two damage growth parameters, C 
and m. The plot of log(da/dN) versus log(ΔK) becomes a straight line with m being the slope and log(C) being the y-
intercept at ΔK = 1. 

The range ΔK of stress intensity factor for a center-cracked fuselage panel is calculated as a function of the stress 
Δσ and the half crack length a in Eq. (2), and the hoop stress due to the pressure differential Δp is given by Eq. (3)   

 K as pD = D  (2) 

 ( )p r

t
s

D
D =  (3) 

where r is the fuselage radius, and t is the panel thickness. Equation (2) does not include a geometric correction 
factor due to the finite size of the panel, and Eq. (3) does not include corrections due to the complexity of the 
fuselage construction, so that they are both approximate. 

The number of cycles N of fatigue loading that grows a crack from the initial half crack size ai to the current half 
crack size aN  can be obtained by integrating Eq. (1).  
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Alternatively, the half crack size aN after N cycles of fatigue loading can be obtained by solving Eq. (4) for aN.  
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It is assumed that the panel fails when aN reaches a critical half crack size, aC. Here we assume that this critical 
crack size is when the stress intensity factor exceeds the plane-strain fracture toughness KIC. This leads to the 
following expression for the critical crack size (again neglecting finite panel effects) 
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Figure 2. Through the thickness crack illustration 
Typical material properties for 7075-T651 aluminum alloy are presented in Table 1. The applied fuselage 

pressure differential is 0.06 MPa, obtained from Niu6 and the stress is given by Eq. (3). Paris parameters m and C 
are obtained using a crack growth rate plot published by Newman, et al.7. Note that due to scatter in the data, the 
exponent m and log(C) are assumed to be uniformly distributed between the lower- and upper-bounds. In this 
section of the paper we ignore the correlation between the two Paris parameters8 because we try to identify one 
parameter assuming the other parameter is known. In the next section we will address identifying both parameters 
simultaneously. 

Table 1. Geometry, loading and fracture parameters of 7075-T651 Aluminum alloy 

Property 
Pressure* 
Δp (MPa) 

Fracture 
toughness 

KIC ( √ ) 

Fuselage radius 
r (meters) 

Paris law 
exponent 

m 

Damage parameter 
log(C) 

Distribution 
type 

Lognormal 
(0.06, 0.003) 

Deterministic 
30 

Deterministic 
3.25 

Uniform 
(3.3, 4.3) 

Uniform 
(log(5E-11), log(5E-10)) 

*Modeled as constant in simulations. 

B. Measurement uncertainty model 
In general, cracks in fuselage panels grow according to repeated pressurizations. Then, the structural health 

monitoring (SHM) system that is composed of sensors and actuators may detect these cracks. The fundamental 
function of SHM is to detect these cracks before they become unstable and dangerous.  

Since no airplanes are equipped with SHM systems yet, we simulate the measured crack sizes from SHM. In 
general, the measured damage includes the effect of bias and noise of the sensor measurement. The former is 
deterministic and represents a calibration error, while the latter is random and represents a white noise. The synthetic 
measurement data are generated by (1) assuming that the true parameters, mtrue and Ctrue, are known, (2) calculating 
the true crack growth according to Eq. (5) for a given N, and (3) adding a deterministic bias and random noise. Let 
aN be the true half crack size, b the bias, and v the noise. The measured half crack size, , is then given as 

 2 2meas

N N
ba a v= + +  (7) 

For subsequent measurements, the bias b remains constant, while the noise v is assumed to vary uniformly with 
maximum range V. If the measured crack sizes are uniformly distributed due to the noise, distribution of the 
measured crack size can be found below:  

 ( )/ 2 / 2; ; / 2 / 2meas

N N N N
U a b V a a b Va + - + +  (8) 

The objective is to identify the true crack growth parameters using the measured crack size and its growth in Eq. 
(8). Once these parameters are identified, they can be used to predict the remaining useful life. Since we simulate 
what we called measured data because of the lack of actual data, we repeat this process multiple times to simulate 
the actual data statistically. Accordingly, the results will also be presented in terms of probabilistic distribution. 
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III. Characterization of damage property m using Bayesian updating  

Depending on manufacturing and assembly processes, the actual damage parameters for individual panel can be 
different. For a specific panel, we assume that there exists a true value of deterministic damage parameters. In the 
following numerical simulation, the true damage will grow according to the true value of damage parameters. On the 
other hand, the measured damage size will have bias and random noise in the measurements. As a first approach to 
the problem we consider the distributions of m and C separately, which means that when we consider one variable as 
being uncertain, we assume that the other one is known. In the following section, both parameters will be identified. 

From a preliminary damage growth analysis, it was found that the effect of noise in pressure p has negligible 
effect on damage growth because the effect of randomness is averaged out. This is true for fuselage pressurization 
because the variation is small. Thus, in the following analysis, the applied pressure is assumed to be deterministic, 
0.06 MPa, the mean value of the distribution obtained from Niu6.  

In general, the minimum size of detectable damage using SHM is much larger than that of the manual inspection. 
Although different SHM techniques may have different minimum detectable size, we chose an initial half crack size 
a0 = 10 mm, which is large enough to be detected by most SHM methods.  In addition, this size of damage will 
provide significant crack growth data between the two consecutive inspections. 

The damage growth parameter m is a critical factor to determine the growth of damage. This parameter is 
normally measured using fatigue tests under controlled laboratory tests. However, uncertainty in this parameter is 
normally large not only at a material level because of variability in manufacturing and aging of the specific panel, 
but also on a specimen level because of variability related to testing process. It is possible to curve fit the data and 
estimate this parameter for the individual panel. However, curve fits do not take into account prior information on 
the distribution of these parameters or statistical information on the measurement uncertainty. In this paper, we use 
Bayesian inference to identify these parameters, which can take into account both effects. 

As can be seen in Figure 1, the exponent m is the slope of the curve in the log-log scale. As a first step in 
developing a prognosis methodology, we assumed that the accurate value of C is known, while that of m is 
uncertain. Since the range of the exponent m is generally known from literature or material handbooks, we assume 
that the exponent is uniformly distributed between the lower- and upper-bounds. Then, the goal is to narrow the 
distribution of the exponent using the Bayesian statistics with measured damage sizes. The data used for the 
updating of material properties are crack size with uncertainty defined in Eq. (8). 

Bayesian inference is based on the Bayes’ theorem on conditional probability. It is used to obtain the updated 
(also called posterior) probability of a random variable by using new information. In this paper, since the probability 
distribution of m given a is of interest, we used the following form of Bayes’ theorem9:  

 ( ) ( ) ( )
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where, fini the assumed (or prior) probability density function (PDF) of m, fupdt the updated (or posterior) PDF of m 
and l(a|m) is called the likelihood function, which is the probability of obtaining the measured damage size, a, for a 
given value of m.  

The likelihood function is designed to integrate the information obtained from SHM measurement to the 
knowledge we have about the distribution of m. The details of the derivation and calculation of the likelihood 
function are a simplified version of the one for the joint PDF that can be found in Appendix A. Instead of assuming 
an analytical form of the likelihood function, we propagate uncertainty in measured crack sizes and estimated using 
the Monte Carlo simulation (MCS). Although this process computationally expensive, it will provide accurate 
information for the posterior distribution (refer to Appendix A). Figure 3 shows the updated distribution of m at 
various steps. It can be observed that Bayesian inference narrows down the distribution of m very accurately. 
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Figure 3. Probability density functions of m, illustration with one simulated set of measurements 

Once the distribution of m has been identified at cycle N, it can be used to predict the remaining useful life 
(RUL). The distribution of RUL is calculated at every SHM measurement cycle N using MCS as well but with a 
larger sample than the one used to calculate the likelihood function, 50,000 true crack sizes are estimated using the 
following distribution in Eq. (10) and the RUL is estimated using Eq. (11) derived from Paris’ law. This allows us to 
estimate the distribution and from there obtain the 5th percentile.  
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Since we used synthetic data by adding random noise, the result may vary with different sets of data. Thus, the 
above process is repeated with 100 sets of measurement data and mean ± one standard deviation intervals are 
plotted. In order to show the value of our method we compare RUL calculated using the actual value of m, mtrue, and 
the distribution (mean ± one standard deviation) of the 5th percentile of the distribution of RUL obtained using the 
updated distribution of m at each inspection, for the case of a negative bias of 2mm, and a noise of amplitude 1mm, 
this is shown in Figure 4. Note that the bias is ignored is assumed to be 0 for the estimation of the RUL. It can be 
observed that Bayesian updating allows us to improve have an estimation of RUL that converges to the true RUL 
from the conservative side but it is sensitive to error in the data which can be observed by the width of the 
distribution of RUL shown in Figure 4.  
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Figure 4. Distribution (mean ± one standard deviation) of the 5th percentile of RUL for b = -2mm and 

V = 1mm, using Bayesian updating to update m assuming the right value of C 
One of the major advantages of SHM is that measurements can be performed frequently. Thus, the update in Eq. 

(9) can be performed as frequently as needed. However, since the damage grows slowly and the bias and noise of 
measurements are in general large, too frequent measurements may not help to narrow down the distribution of 
damage parameters because Bayesian inference does not give good results with large samples of data. 

The previous results were obtained making the strong assumption that we know the true value of C accuretly. In 
order to move away from that assumption let us look at the estimated RUL when C is assumed to be 1.0E-10 in both 
the Bayesian inference process and the estimation of the distribution of RUL, the true value of C being 1.5E-10. 
Figure 5 shows the distribution (mean ± one standard deviation) of the 5th percentile of the estimated RUL. It can be 
observed that the results are very similar to the ones obtained using the true value of C. This can be explained by the 
fact that Bayesian identifies a value for m that compensated for the error in C the mean of the final distribution of m 
is 3.97 with standard deviation 0.0094. 
 

 
Figure 5. Distribution (mean ± one standard deviation) of the 5th percentile of RUL for b = -2mm and 

V = 1mm, using Bayesian updating to update m assuming the wrong value of C 
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IV. Characterization of damage properties m and C using Bayesian updating  
In the previous section, Bayesian inference is used to identify a single damage growth parameter, m, and 

assumed the other parameter to be already known. In practice, when both parameters are unknown, Bayesian 
inference needs to update the joint PDF of both parameters. In general, this can be achieved by dividing the ranges 
of uncertain parameters into a grid and calculate the joint PDF value at each grid point. If the range is divided by 
100 100 grid, the updating process includes 10,000 times calculation of likelihood, requires uncertainty 
propagation for given parameter values.  

As can be seen in Figure 1, the exponent m is the slope of the curve in the log-log scale and C is value of da/dN 
at ΔK = 1. Due to noise and error in experiments, the exact values of these parameters are unknown. In this section, 
we assume both variables as being distributed. Since the range of the variables m and C is generally known from 
literature or material handbooks, we assume that they are uniformly distributed between the lower- and upper-
bounds generating a rectangle shaped distribution. It is assumed that these two parameters are initially uncorrelated. 
Therefore, the initial joint PDF is the product of individual PDFs. Then, the goal is to narrow the joint distribution 
using the Bayesian statistics with measured damage sizes. As to update m, the data used the joint PDF are crack 
sized with uncertainty defined in Eq. (8). 

The Bayesian inference equation used is the same as for m, note that we chose to update log(C) in the joint 
distribution instead of C because of the difference in the order of magnitude: 
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The likelihood function is designed to integrate the information obtained from SHM measurement to the 
knowledge we have about the distribution of the variables. The calculation of the likelihood function can be found in 
Appendix A. Figure 6 shows the final update of the joint distribution after 2,400 cycles, it can be observed that the 
correlation between m and C is very clear from that distribution even though no correlation was initially assumed. 
The correlation is so strong that it is possible to have an algebraic relation between the two damage growth 
parameters11. 

 
Figure 6. Final updated joint probability density function,  

illustration with one simulated set of measurements 

It can be observed that Bayesian inference identifies the correlation between the parameters m and C, it identifies 
an infinite number of combination of the parameters that would lead to similar damage growth behaviors. Figure 7 
shows the damage growth behavior for 5 combinations of m and C selected from the main final joint fistribution, it 
can be observed that they lead to very similar damage growth behavior. 
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Figure 7. Damage growth for different combination of m and C 

Once the joint distribution has been identified at cycle N, it can be used to predict the remaining useful life 
(RUL). The distribution of RUL is calculated at every SHM measurement cycle N using MCS as well but with a 
larger sample than the one used to calculate the likelihood function; 50,000 true crack sizes are estimated using the 
following distribution in Eq. (10), and the RUL is estimated using Eq. (11) with distributed parameters m and C the 
updated joint PDF is sampled using slice sampling. This allows us to estimate the distribution of RUL, and to obtain 
the 5th percentile from the distribution. 

Since we used synthetic data by adding random noise, the result may vary with different sets of data. Thus, the 
above process is repeated with 100 sets of measurement data, and the 68% confidence interval (mean ± one standard 
deviation) of 5th percentile at different N is shown in Figure 4 (gray area). In order to show the accuracy and 
conservativeness of the proposed method, we compare the estimated RUL with the true one, which is calculated 
using mtrue, and Ctrue without considering any uncertainty (solid diagonal line). The same bias of -2mm and noise 
amplitude of 1mm are used. It can be observed that Bayesian updating allows us to improve the estimation of RUL 
compared to the RUL obtained using the handbook distribution, that estimation converges to the true RUL from the 
conservative side but it is sensitive to error in the data.  

 
Figure 8. Distribution (mean ± one standard deviation) of the 5th percentile of RUL for b = -2mm and 

V = 1mm, using Bayesian updating 

0 500 1000 1500 2000 2500
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of cycles

D
a

m
a

g
e

 s
iz

e



10 
American Institute of Aeronautics and Astronautics 

 

Updating the joint distribution made the correlation between m and C very clear and one of the main conclusion 
that can be drawn from the updated distribution is that there is not a single combination of parameters that will lead 
to the observed damage growth behavior. That strong correlation is also why updating one parameter while updating 
the other one leads to very similar results 

V. Conclusions  

We presented here a comparison between updating the two damage growth parameters in Paris law and updating 
one while assuming the other one as being constant. The main conclusion is that we do not gain accuracy in the 
estimation of remaining useful by updating both parameters but it is computationally more expensive. This can be 
explained by the strong correlation between the parameters. 

That conclusion is also supported by the results obtained when updating m while making an error in the assumed 
value of C. In that case, the RUL is also very similar to the one obtained when updating both parameters, it is 
computationally much more efficient. 

Note that even though the results and conclusions presented in this paper are for a specific case of bias/noise 
combination similar results and conclusions have been obtained for other cases. 

Appendix A – Derivation of the likelihood for Bayesian inference 
The idea is to identify the damage parameters m or C from the measured half crack size that is contaminated by 

measurement errors. In order to do that, we compare the measurements to the simulated crack size defined above. In 
order to use the information in Bayes law, we need to estimate the likelihood | ,  that for a given set of 
material properties m and C, or in other words:  

 0sim meas

N N
a ad - ==  (13) 

If we have analytical expressions for the PDFs of  and  , and we use them to obtain the PDF of d, then 
the value of this PDF at 0 is the likelihood function. Since this rarely happens, we will use MCS, and we will 
use as likelihood function  

 ( ) ( )| ,a m Cl P d= £   (14) 

Note that the integration over  is just a normalizing constant that is taken care of by the normalization in the 
Bayesian formulation. 

If we calculate | ,  purely by sampling  and , then the tolerance  needs to be large enough to 
include enough sample points to reduce the sampling error to acceptable levels. On the other hand if  is large, we 
will incur errors due to nonlinearity in the likelihood function. 

We will assume now that the measurement error that controls  is independent of the modeling errors that 
control . In that case, separable sampling can be performed by comparing all possible combinations of two 
individual samples. 

The PDF of  is not available analytically, because it is obtained from propagation of uncertainties through an 
analysis code. On the other hand, the measurement errors are assumed rather than propagated, and they are here 
assumed to be uniform in a bounded region. We will now investigate how we can take advantage of the given 
distribution of  in order to improve the efficiency or accuracy of the sampling. In this case and  are 
scalar, such that 

 ( ) ( ) ( ) ( )0 0| 1,l P d d dC Pa m P= £ = - + £ - - ³    (15) 

Using conditional expectation on the second term on the right-hand side we obtain 
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where  is the PDF of  and  is the CDF of . The last relation is obtained from the 
definition of CDF; i.e., by considering  as the only random variable,  
	 . Similarly, the first term can be written as 
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Thus, by combining Eqs. (16) and (17), the likelihood can be written as 

 
( ) ( ) ( ) ( )

( ) ( )
,

2

|
sim
N

sim
N

sim sim sim sim

meas N meas N sim N Na

sim sim sim
meas N sim N Na

l F F fa m C a a a a

a

d

f f da a

é ù= -ê úë û
»

+ -ò
ò

 


 (18) 

where the central finite difference approximation is used in the second relation, which becomes exact when →
0. As explained before, since the posterior PDF will be normalized, the coefficient 2  can be ignored. The above 
expression is in particular convenient for separable MCS because the analytical expression of  is known, 
and  can be evaluated by propagating uncertainty through numerical simulation. Let M be the number of 
samples in MCS, the likelihood can then be calculated by  
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In the literature10, Gaussian function is often assumed for the likelihood function. In addition, the expression of 
this function remains unchanged throughout the entire process. However, Figure 9 shows that the likelihood function 
is quite different from the Gaussian function and it varies at different crack sizes. Since the uncertainty structure of 
the posterior distribution strongly depends on the likelihood function in Bayesian inference, the error in the 
likelihood calculation directly affects the accuracy of the posterior distribution. 

 
Figure 9. Likelihood function for one set of measurements at various number of cycles 

In the case presented here Δ ,  is the PDF corresponding to the triangular distribution defined in Eq. 
(9). We give below the detailed algorithm of the Bayesian procedure at the Nth inspection 
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