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Abstract 

A segmentation technique based on Bayesian updating framework is developed for structural damage diagnosis in the 

context of structural health monitoring (SHM). This probabilistic framework enables taking into account the prior 

information such as spatial constraints and image smoothness in the segmentation process. Markov random field is 

employed to model the prior due to the spatial constraint in the neighboring SHM images. Results show that the 

Bayesian segmentation method has potential to differentiate damage region from the background for SHM images. 

Compared to the ad-hoc k-means clustering method, it yields more accurate damage sizes automatically than by 

eliminating random noises and inhibiting fuzzy edges.  

Keywords: Damage Segmentation, Damage Sizing, Damage Diagnostics, Bayesian Updating, Structural Health 

Monitoring. 

 

1. Introduction 

Most engineering materials and structures contain micro-defects due to the imperfection of manufacturing [1]. Micro-

defects will nucleate and form macro-defects, e.g. cracks, after many fatigue loading cycles. Structural components 

with macro-defects or damage do not need to be replaced before the damage reaches a critical size. Early stage 

diagnosis is essential for subsequent structural prognosis and health management (PHM) in estimating the remaining 

useful life (RUL) of the structure. Diagnosis is to determine the current status of the structures, while prognosis is to 

predict its future status, and confident prognosis is based on accurate diagnosis.  

Visual images that portray the location, size, and shape of the damage provide a direct intuitive way to reflect the 

condition of structures. Recently, damage imaging has been developed for monitoring plate-like structures with a pre-

installed sensor array. The imaging results provide not only evidence on damage existence but also the quantitative 

information of damage size and location. In previous research, Lin and Yuan [2-3] employed a migration technique 

originating from seismic imaging to detect point-like and circular-shaped damage on aluminum plates. Wang and 

Yuan [4] extended the migration technique to composite plates. Zhao et al. [5] developed a computed tomography 

imaging algorithm, which is based on calculating the difference coefficient of the signals between the damaged and 
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pristine structures. Sicard  et al.[6] employed a synthetic aperture focusing technique (SAFT) for damage imaging on 

isotropic plate structures. Liu and Hong [7] applied a sixteen-element piezoelectric phased array to image the  damage 

in a three dimensional space. Wang et al. [8] developed an imaging algorithm based on the time reversal concept of 

wave propagation for distributed sensor arrays. In spite of different degrees of image resolution and accuracy of these 

methods, the imaging results provide a two-dimensional damage distribution map, in which the pixel value of each 

location represents the severity of damage. Thus the distribution not only reflects the existence but also the shape and 

severity of damage.  

The objective of this study is to separate the damaged region in SHM images and obtain more accurate estimation of 

crack size. The image segmentation used in the medical imaging[9] is applied to segment the damaged region from the 

damage distribution map that can be obtained from various damage imaging algorithms. This segmentation procedure 

is robust against noise and allows eliminating fuzzy edges. An imaging algorithm employed in this study is a 

migration technique developed in a previous study [2] because it provides clear images reflecting the damage in 

structures. The appearance of the image provides a gross indication of the damage state, yet it is not less quantifiable 

to determine the damaged region. While damage imaging algorithms have been investigated [2, 8, 10-11], knowledge 

extraction from damage images remains elusive. Zhao et al. [5] used a thresholding method to segment the damaged 

region from its background. In this paper, without a threshold, a damage segmentation method in the context of 

Bayesian framework with Markov random field (MRF) is developed for discerning the damage region from the 

background. Images generated from the migration technique are contaminated with simulated random noises to 

simulate testing noise in environments.  

The remaining of the paper is organized as the following. Section 2 introduces the basic concept of image 

segmentation, and reviews frequently used segmentation algorithms. Section 3 introduces the theory of Bayesian 

updating for the purpose of damage segmentation. Section 4 defines the prior knowledge, MRF, for the image 

segmentation. Section 5 deduces the formulation of mathematical model for the image segmentation under the 

Bayesian framework, and achieves the damage segmentation result with maximizing a posterior (MAP) criterion. 

Section 6 briefly introduces an f-k migration technique and applies the Bayesian image segmentation method to an f-k 

migration image. The effect of prior information in the whole image segmentation procedure is investigated. Cracks 

located at different positions are used to validate the robustness of the Bayesian based damage segmentation method. 

Further accuracy enhancement is achieved by carrying out multiple-frequency excitation in Bayesian framework. 

Section 7 provides concluding remarks. 

2. Image segmentation 

Image segmentation refers to the process of partitioning an image into multiple regions with different class labels. The 

goal of segmentation is to simplify an image into several divisions (classes), each of which possesses distinct 

attributes. Figure 1 shows illustrative image intensity (a) in grey scale and a possible segmentation (b) into two 

classes, in which Class 1 is separated as an object from the background (Class 2). Although well-trained human naked 

eyes with experience can identify the segmented regions from the original images, it is a daunting task for a computer 

to automatically divide an observed image into meaningful regions, especially when it is contaminated by noise. 

Researchers have developed many methods based on clustering concepts such as k-means clustering [12], fuzzy 

mathematics, neural network, and statistical models [13-15]. Bayesian based segmentation is a viable approach [16], 

which takes advantage of a statistical model to combine the current observed data with prior knowledge, such as 

spatial constraints and smoothness level. 
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Figure 1. Illustrative example of image segmentation, (a) Image intensity and (b) its binary segmentation  

The segmentation technique based on Bayesian updating has been successfully applied in several fields including 

medical image analysis [17-18], satellite image analysis, and computer vision [19-20]. For the application of 

identifying damaged region, this technique primarily aims at segmenting out the damaged region(s) from a damage 

distribution map provided by image pixels. In the Bayesian updating procedure for image segmentation, the prior can 

represent any information available to the analyst. The first type of prior information used in this paper is the fact that 

the size of pixels is small compared to that of damage. Consequently, if a pixel is in the damaged region, the 

probability of neighboring pixels to be in the damaged region is higher than for other pixels. This property is 

represented here by a Markov random field (MRF) [Reference here], which describes the relationship between the 

neighboring pixels. With the MRF, the segmented labels tend to be the same as its neighbors. As a result, the imaged 

pixels of damaged regions are highlighted, the noise is eliminated, and the fuzzy tails (Refer to Figure 5) which are 

caused by the limited number of sensors and may lead to faulty estimation of damage size, could be well suppressed. 

3. Bayesian updating  

Bayesian updating is statistical inference in which evidence or observations are used to update or to newly infer the 

probability that a hypothesis may be true. It uses aspects of the scientific inference, which involves collecting evidence 

that is meant to be consistent or inconsistent with a given hypothesis. When the collected evidence is in accordance 

with the hypothesis, the hypothesis will be reinforced, on the other hand, if the collected evidence is not in conformity 

with the hypothesis, the hypothesis will be distorted or modify gradually to a new version. Therefore, as evidence 

accumulates, the degree of belief in a hypothesis will change.  

Bayesian theorem [21] relates the posterior probability density function (PDF) to the likelihood function and the prior 

function (a marginal PDF) in a form as, 

 
( | ) ( )

( | )
( )

p y x p x
p x y

p y
  (1) 

in which ( )p x is the prior PDF of event x before the observation. It is ‘prior’ in the sense that it does not take into 

account any information about the current observation y. ( | )p x y is a conditional PDF of x after the observation, given 

new data y. In Bayesian statistics, it is the posterior PDF because it is inferred from the prior and observed data. 

( | )p y x  is a likelihood function, which is the conditional PDF of y given x. ( )p y  is a marginal PDF for 

normalization. 
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Figure 2. Bayesian updating framework for segmentation 

In damage segmentation, the prior PDF ( )p x  

represents prior information about the SHM images. 

For instance, the assumption includes a spatial 

constraint on pixels, correlation among pixels, noise 

level in measurement environments, images from 

other SHM system, geometry or boundary conditions 

of the structure, and previous detected damage 

images. The likelihood function represents the 

observed information, which is the pixel value of the 

detected image intensity. Figure 2 shows the Bayesian 

updating framework for damage segmentation. In this 

paper, the spatial constraint, which is described by 

MRF, will be considered as prior. The Bayesian updating framework for other types of priors is similar to that of the 

spatial constraint. 

4. Prior model 

In the SHM image segmentation, the relationship between pixels in the grid is emphasized. Markov random field is 

employed to model the correlation between neighboring pixels. MRF image modeling has been used successfully in 

many image processing applications[22-24]. The success of MRF modeling mainly arises from its systematic and 

flexible treatment of the contextual information in the image and prior knowledge for the segmentation procedure can 

be easily quantified by MRF model parameters [19, 25]. Image segmentation processes the property of contextual 

smoothness of the class labels in the image space so that a pixel with a particular class label is likely to share the label 

with its immediate neighbors. Moreover a Bayesian framework using spatial local MRF make the segmentation 

procedure computational feasible [20]. Following are some basic definitions and derivations for the image 

segmentation based on Bayesian updating framework with MRF prior. 

4.1 Neighborhood  

In image processing, a neighborhood system η associated with the whole image domain  is a collection of 
neighborhoods, where each neighborhood of the pixel at the site of s satisfying following two conditions. 

(1) The pixel s does not belong to its own neighborhood;  

(2) The pixel s belonging to the neighborhood of pixel t implies that pixel t belongs to the neighborhood of pixel s. 

4.2 Cliques in neighborhood 

Considering an image defined on a Cartesian coordinate, a clique is a subset C of the whole image  if two different 
elements of C are neighbors. Figure 3 gives the second-order neighborhood [25], all the available cliques, and several 

illustrative non-clique pixels in this 8-element neighboring system. The definition of clique system makes the 

neighboring pixels correlated with each other.   
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( )a ( )b ( )c  

Figure 3 Illustration of cliques in the second-order neighborhood, (a)2nd order neighborhood and (b) its cliques and (c) 

non-cliques 

4.3 Markov Random Field 

A Markov random field (MRF) on (Ω, η) is a random field with its probability property of each pixel in the whole 

field satisfying the Markovian property described as following two equations, 
 ( ) 0 for all p X x x    (2) 

 ( | , , ) ( | , ), ,s s t t s s t t sp X x X x t t s p X x X x t t s            (3) 

where Ω represent the whole image domain, η is the predefined neighboring system formulation of s (In this paper, the 

8-element second order neighboring system is used due to computational complexity). s is the evaluated pixel/site, ηs 

is the neighboring system of s. Xs is the event which cluster the evaluated pixel should be, and the xs is the possible 

cluster value(in damage segmentation, it may be a Boolean variable 0 or 1, which indicate undamaged or damaged) of 

the evaluated pixel. p(·) is the PDF of events stated in the bracket. Eq. (2) indicates that in all the configuration space 

the labeling procedure assigns a positive probability to all the images in the configuration space. Eq. (3) shows that 

when labeling a pixel, the probability of the label given all the labels in the whole image equals to the probability of 

label given the labels in its neighborhood. Thus, MRF is locally dependent random field. 

4.4 Gibbs Random Field 

A random field X with (, , C), is a Gibbs random field (GRF) if its distribution has the following form[25], 

 

( )1
( )

c
c C

V x

p x e
Z



 
  
 


  (4) 

where C is the set of all cliques in , Z is the normalizing constant, and Vc(x) is the clique potential associated with 
clique c. There is no particular restriction on the clique potential definition. As long as the resulting Gibbs distribution 

satisfies the definition of the probability, the associated clique potentials are valid. The Gibbs potential can be defined 

such that some specific features of the image can be identified and emphasized. In addition, it is not necessary to use 

all types of cliques for a given neighborhood system; that is, specific set of clique types can be selectively used for 

specific problems, such as texture image segmentation. 

Prior knowledge of the Bayesian based image segmentation, e.g. the spatial constraint on the class label, can be 

incorporated into the Gibbs distribution by the choice of specific clique types and their potentials. The smoothness of 
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the class label in image space can be measured by defining the clique potential such that a high positive clique 

potential is assigned only when all class label in the clique are identical. 

4.5 Hammersley-Clifford Theorem 

Hammersley-Clifford Theorem [25] builds a bridge between MRF and GRF. It indicates that a random field X, on (, 

, C), is a MRF with respect to  if and only if p(x) has a Gibbs distribution with respect to. Thus, it is possible to 
express the conditional probability of a MRF in terms of clique potentials. This is useful in practice because it is easy 

to choose the clique types and their potentials to describe the desired local behavior. For example, spatial relationships 

such as smoothness and continuity of the neighboring pixels can be specified by clique potential . It is crucial for the 

theorem to share the same neighborhood system  and the associate clique c  for both MRF and GRF.  

The SHM image is constructed by the pixels in the square lattices, which is considered as a MRF as described above 

for its close-neighboring correlation. Those damage areas are with high grey level pixels in its lattice. Through the 

GRF, which reflects the property of MRF and has concrete representation – Gibbs potential, this information will be 

transmitted to the probability of damage, which will affect the determination of whether the pixel belong to the 

damaged class or undamaged class. The prior density represents the strength of correlation between the pixels in 

cliques through the formulation of Gibbs potential. 

5. Formulation for damage segmentation 

The damage image created by the signals from sensor array is usually noisy and with fuzzy tails due to measurement 

environment and the limited number of sensors. The image is composed of small lattice blocks, in which correlative 

potential is preset with the form of MRF. In the crack contained images, noise can be canceled and fuzzy tails can be 

suppressed by assigning those pixels with similar neighbors to a high probability and those pixels with different 

neighbors to a low probability. Thus, the segmentation procedure depends not only on the detected image intensity but 

also on the spatial relation with the neighboring system.  

The maximum a posteriori (MAP) criterion [26] is used in this paper to make a decision for problems which need to 

include the prior knowledge and current observation. According to the MAP criterion, given a realization of a random 

field, the goal is to find an optimal realization of x


, which maximizes the a posteriori probability ( | )p x y  for all 

possible realizations of x. The maximization procedure can be equivalently expressed as:  

 arg max ( | )
x

x p x y


   
 


 (5) 

where argmax is an operation to achieve estimation of the given argument for which the value of the given expression 

attains its maximum value. 

The image segmentation problem can be achieved by estimating x


though maximize the posterior conditional 
probability function, ( | )p x y , which indicate the probability of the pixel belong to a specific segmentation class x  

given the current observation y . Substitute Eq. (1) into Eq. (5), the estimation of x can be rewrite as, 

 
( | ) ( )

arg max
( )x

p y x p x
x

p y

 
  

 


 (6) 
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Since the marginal probability ( )p y  is a normalization item, which will not affect the affect the comparison of 

probability of the observed pixel belonging to a given class. Therefore, for the purpose of pixel classification, Eq. (6) 

can be simplified. 

 arg max ( | ) ( )
x

x p y x p x


   
 


 (7) 

In Eq.(7), the estimation of class for each pixel are determined by two factors, ( )p x  and ( | )p y x . ( )p x is the prior 

information, which in the image segmentation problem is the assumed segmentation class label. ( | )p y x  is the 

observed information, which indicate the probability of the pixel equal to the observed value given the pixel belonging 

to a specific class. Equivalently, the estimation of x can be achieved by maximizing the natural logarithm of the 

posterior, 

 

 arg max ln ( | ) ln ( )
x

x p y x p x


   
 


 (8) 

Gaussian distribution [20], as in Eq. (9), is employed to model the likelihood, which represents the noise-polluted 

SHM images. The intensity of the region is modeled as a signal s  plus white Gaussian noise with variance 2 . 

 
 22

1

2

2

1
( | )

2

xs
s sy

p y x e






   
   (9) 

where s indicates the location of pixel. The superscript xs of s is index, not an exponent. Substitute Eq. (4) and Eq. (9) 

into Eq. (8), the segmentation problem can finally be described as in Eq. (10). 

 

 
2

2

1

2( | )
xs

s s C
C

y V x

p x y e




 
      

 
 

  (10) 

where x is the segmentation label ranging from 1 to k. s is the position of the estimated grid. ys is the observed value 

(gray-value of segmented images). And s  is the mean value in the window with a certain size centered at the 

observed pixel s.  

From Eq.(10), the posterior PDF is composed of two parts: Gaussian distribution likelihood and prior density function 

(Gibbs potential). The first part is essentially a k-means clustering algorithm, which calculates the distance between 

the evaluated pixel and the clustering center. If the evaluated pixel value is close to one cluster center, the posterior 

energy function will be enhanced. The second part is the adjustable part according to the Gibbs potential guided 

neighboring system. If the neighbor clique member is in the same label, then the Gibbs potential Vc(x) should be 

negative, and the posterior energy density will be enhanced. On the other hand, if the clique members are at different 

labels, the posterior energy density will be weakened. For a specific case, neglecting the prior distribution by setting 

all as, this algorithm degenerates to a k-means clustering method which only counts the distance between each 
pixel with the clustering centers.  
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For computational efficiency, the 2nd-order clique is adopted, which contains an 8-element neighborhood as shown in 

Figure 3. According to the MRF-GRF equivalence described by Hammersley-Clifford theorem, the clique potential is 

given in the form of Gibbs density as in Eq. (2). The Gibbs potential value is defined as [20] 

 
if and ,

( )
if and ,

s q

C
s q

x x s q C
V x

x x s q C





             
 (11) 

where  is positive potential parameter, which reflect the possibility of a pixel being damaged if the neighboring pixel 
in the clique set is damaged. For example, 

 {  | =  }s damaged q damagedx x x x    (12) 

where, xdamaged is the cluster label of damaged region. The choice of  will affect strength of the spatial constraint in 

the GRF. Larger  results in stronger spatial constraint; that is, neighbors are more likely to have the same label. This 
tendency will lead to the conservation of real damage area and cancellation of random noise area in the segmentation 

procedure for SHM images. 

6. Application to SHM images 

6.1 f-k migration imaging and its segmentation 

The f-k migration technique can effectively interpret the sensor data recorded by a distributed linear array sensor 

system and makes it possible to establish an active, in-service, and intelligent monitoring system. The image for 

segmentation is obtained from an active diagnostic linear array of actuators/sensors, which is used to excite/receive 

flexural waves[3]. The wave field scattered from the damage and sensor array data are synthesized using a two-

dimensional explicit finite difference algorithm to model wave propagation in plates. The damage image can be 

represented by the cross-correlation in the frequency domain as 

 
     , , , , ,e sx y x y x y


 I w w  (13) 

in which, I is the intensity matrix, and I(x, y) is intensity value of each pixel at location with coordinate (x, y), we*and 

ws are the extrapolated excitation and scattered wave-fields[3] in frequency domain, respectively.  
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Figure 4. f-k migration simulation model 

The numerical simulation is modeled as in Figure 4, in which the center of the crack is set at location (x, y) with crack 

size l = 20mm, and the dots are A1~A7  are simulating piezoelectric transducers acting as both actuators and sensors. 

Mesh size of the f-k migration is 2.5mm. 

 

Figure 5 (a) is a f-k migration imaging result polluted with random noise (the SNR of the image is 10dB, where the 

SNR is defined as in Eq. (14)) with a seven-sensor array for an aluminum plate structure using 150kHz excitation 

frequency.  

 

10

2

1 1
10

2

1 1

10log

10log

s

n

m n

s
i j
m n

n
i j

P
SNR

P

I

I

 

 

 
  

 
 
 
 
 
 
 





 (14) 

 

where Ps is the power of image intensity and Pn is the power of image noise. Is is the intensity value of single and In is 

the intensity value of noise. Figure 5(b) gives the segmentation result and its region resulting from Bayesian updating 

framework. The distance between the left and right boundary is assigned as the crack size. As a comparison, for a 20 

mm crack, the crack length estimated from the k-means clustering[27] based segmentation is 30 mm, while the 

estimated crack size obtained from Bayesian updating algorithm is 25 mm, providing more accurate crack size 

estimation. Furthermore, the crack size estimated is larger than the true crack size, ensuring the conservative measure 

of the damage. 



10 
 

 

                                                       (a)                                                                     (b) 

Figure 5. (a) An image by f-k migration technique and (b) the Bayesian based segmentation result 

6.2 Validation at multiple locations 

Simulations are carried out at different crack locations to examine the accuracy and robustness of the Bayesian based 

image segmentation method. With the same simulation as in Figure 4, the coordinate of the crack centers are set as the 

location column in Table 1. The f-k migration imaging procedure is carried out for each crack, and then Bayesian 

based image segmentation is applied to extract the area of damage. The resulting crack lengths, given in Table 1 

shows that the estimated crack sizes are very close to the true crack sizes, and the estimated crack location by the peak 

position of the 2-D distribution map is highly close to the true crack center location. Note that the spatial resolution of 

the resulting image of the two-dimensional damage distribution map is the mesh size of the simulation being 2.5mm in 

both horizontal and vertical directions. 

Table 1 Center location and damage size for multi-location simulation (Unit: mm) 

Crack  
Index 

True values Estimated values 
Size  Location Size Location 

d1 20 (0,80) 27.5 (0,80) 
d2 20 (60,80) 25 (60,80) 
d3 20 (120,80) 22.5 (117.5,80) 
d4 20 (0,110) 27.5 (0,110) 
d5 20 (60,110) 27.5 (57.5,110) 
d6 20 (120,110) 22.5 (117.5,107.5) 
d7 20 (0,140) 27.5 (0,140) 
d8 20 (60,140) 25 (57.5,137.5) 
d9 20 (120,140) 22.5 (117.5,137.5) 

d10 20 (0,170) 27.5 (0,170) 
d11 20 (60,170) 22.5 (57.5,167.5) 
d12 20 (120,170) 22.5 (117.5,167.5) 

6.3 Effects of prior information 

The essential idea of Bayesian image segmentation using MRF is by introducing the relationship described with 

Markov random field to eliminate noise and fizzy disturbance. The MRF affects the segmentation procedure through 

applying Gibbs potential as the prior in the Bayesian updating framework, thus the Gibbs potential  plays an 
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important role of the segmentation procedure. It determines how strongly the neighboring pixels affect the labeling of 

the estimated pixels. With the original image as shown in Figure 6 (a), when  = 0, the Bayesian segmentation only 
uses the likelihood function, thus reducing to the k-means clustering based segmentation, which suffers from noise as 

shown in Figure 6(b). It is difficult to determine the crack length with such segmentation. With increasing , the noise 
is suppressed, and the apparent damage area shrinks closer to the real damaged area, as shown in the Figure 6(c) and 

Figure 6(d).  Results show that the segmentation does not change when varies from 0.5 to 100, which reflects the 
stability of the segmentation procedure. The reason for the convergence phenomenon is that the Gibbs potential 

provides plays only an adjustment role in the Bayesian updating procedure, but not a dominating role. 

 

 
                           (a)                                      (b)                                       (c)                                       (d) 

Figure 6. Bayesian image segmentation with different Gibbs potentials 

6.4 Improvement with multiple-frequency excitation 

Reliable damage segmentation can be achieved by updating the segmentation with other priors such as the previous 

posterior distribution and damage imaging from different modalities. Different damage imaging techniques can be 

implemented for the same diagnosis task. Bayesian updating frame updates the segmentation continually, providing 

more reliable and accurate damage estimation. For the damage model simulated in the Section 6.1, the center 

frequency of excitation is 150 kHz. High frequency excitation yielding smaller wavelengths generates high resolution 

images, but with more fuzzy tails due to the complex modes of Lamb wave propagation. On the other hand, low 

frequency excitation generates low resolution but clear images.  

The segmentation contains more information when a frequency range is applied for excitation rather than by one 

center frequency. It is more reliable for diagnosing a complex structure by choosing a frequency range as the 

excitation, because it is difficult to choose a priori the center frequency suited to the structure duo to its complex 

geometries and crack sizes.  For the previous 20mm crack length case, the segmentation result for individual excitation 

center frequency being 150 kHz is 25mm. While the images generated from low frequencies the resolution can be low, 

the high frequencies generate fuzzy images. When Bayesian updating framework is used to update these images (with 

excitation frequencies, 50kHz, 100kHz, 150kHz, 200kHz, 250kHz, 300kHz) by taking the previous image intensity as a 

prior distribution, and the following detected image as a likelihood function one by one, and segmenting the posterior 

after all images are applied, the estimated crack size from the final segmentation is 22.5mm, which is closer to the true 

crack size than the result from a single excitation frequency of 150kHz. 

7. Conclusions 

A damage segmentation method in the context of structural health monitoring for sizing the damage is developed by 

taking advantage of prior information via Bayesian updating. Markov random field and its equivalent Gibbs random 
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field (GRF) are introduced as a prior to model the desired correlation between neighboring pixels. The migration 

technique is used for generating the raw image. The segmented damage region from the image obtained by 

segmentation has been demonstrated to be noise tolerant and the method is capable of providing accurate damage size 

estimation. The studies of Gibbs potential and damage at different locations show the stability of the damage 

segmentation method. The Bayesian based damage segmentation has the following merits: 

(1) Spatial constraint using the neighboring pixel system is shown to be better than the k-means clustering based 

segmentation, which only considers the distance between the pixels and the clustering centers. As a result, the damage 

area is more focused by suppressing the fuzzy tails that often appear on both crack tips due to limited aperture covered 

by the sensors.  

(2) The segmentation result gives damage shape and region estimation of the damaged area, discerning damaged 

regions from the background.  

(3) More priors (e.g. multiple frequency excitations) can be easily introduced to enhance damage segmentation in the 

Bayesian updating framework. 
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