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1. Abstract  

Conventional aircraft structural design is followed by the building-block test process to detect failures in early 

stage due to manufacturing variability and errors in calculations. This more than fifty-year old process has been 

implemented heuristically without quantifying its contribution to the reliability  

Safety-factor-based design uses the conservative failure stress with conservative load such as limit load with 

safety factor to design the structural element. We propose to estimate the probability of failure of the structural 

element to quantify safety of the designed structure. The probability of failure is probability that manufactured 

structure from the design is cannot sustain its design load. This paper demonstrates accuracy of the estimated 

probability of failure and the effects of the number of element tests. To illustrate the effects of the number of 

element tests, we calculate the average weight of structures designed with different number of element tests but 

have the same expected probability of failure for the same design load. For typical values of material variability 

and calculation errors we find that a design based on no element tests is 3.7% heavier for the same expected 

probability of failure than a design based on 3 element tests. A design with 5 element tests allows 1.3% additional 

weight reductions. In addition, we examine the dependence of the probability of failure on the load levels, for loads 

that exceed the design load. 

2. Keywords: Safety-factor-based design, Probability of failure, The number of element tests. 

 

3. Introduction 

To achieve acceptable safety of aircraft structures, design of an airliner proceeds through the building block 

testing framework. The building block testing is multi-level testing, with each stage reducing the uncertainty in the 

design. Although the effect of the tests of each stage on safety is relatively well known, few papers have quantified 

the effect of the test to the aircraft structure. (e.g., Acar et al. [3] and [4]). In previous papers, the process was 

examined from the viewpoint of a researcher who is looking to estimate how much safety is obtained on average in 

the design of large number of structural components. Such quantification will be useful, for example, for a 

government regulatory agency, such as the FAA, who may want to examine how regulations govern design and 

testing affect airliner safety. A single analyst designing a single structural element would have a different 

perspective. The present paper looks at the process from the standpoint of an analyst estimating the probability of 

failure of a structural element, taking into account the effect of future element tests. 
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Figure 1: Building-block approach for testing aircraft structural components. At each stage, analytical models can be adjusted 

to account for discrepancies between the model and test and, thus, reduce the errors in the analytical model used to estimate the 

response at the next level. 



 

 

2 

The Federal Aviation Administration requires using A-basis (or B-basis) allowable strength that is below 99% 

(or 90%) of the tested strength with 95% confidence. The allowable is a conservative estimate of mean test result 

using knockdown factor. Also strength estimate of a structural element needs knockdown factor, it is obtained 

from element tests. The above processes are parts of the building block test process, which compensates for 

uncertainties from the material variability and estimation processes by using knockdown factors. There is a push to 

replace safety-factor-based design with probabilistic design (e.g, Lincoln [5] , Wirsching [6], [7], and Long et 

al.[8]). However, the latter cannot readily replace the former because current probabilistic design frameworks do 

not incorporate various uncertainty reduction measures (URMs), such as building-block tests, undertaken during 

the lifecycle. Therefore, it is important for probabilistic design to include the effects of URM on structural safety. 

As a first step toward quantifying the effect of URMs, the present paper adopts the probabilistic design method 

into the safety-factor-based design processes. It allows estimating probability of failure of a design at the design 

stage (before the tests are performed). After the tests, the probability of failure is estimated again so that 

expectation of the effect of the tests can be made. The present paper focuses on quantifying the effect of the 

building block test at design stage using probabilistic approach. Also the effect of extreme loading on the structural 

element is illustrated. 

There are several papers that investigate the effect of tests on structural safety. Guillemard [1]analyzed the role 

of tests in the successive stages of design, construction, and exploitation of a nuclear facility, Jiao and Moan [2] 

investigated the effect of proof tests on structural safety using Bayesian updating. They showed that the effect of 

the proof testing reduces the uncertainty in the strength of a structure; therefore it leads substantial reduction in 

probability of failure. Acar et al. [3] invests the effect of tests on reducing uncertainty in strength estimate using 

the Bayesian updating. Acar et al. [4] proposes a methodology that modeling the building block test which is 

multi-stage test procedure and showing uncertainty reduction effect of each test stage on probability of failure of 

the design in terms of the number of tests. Park et al. [10] models the building block test, however it applies fully 

probabilistic approach instead of knockdown factor to estimate strength of the structural element and analyze 

uncertainty reduction effect of the tests on the estimated strength in terms of the number of tests. 

Here, the building block test procedure is modeled, structural element design process using the building block 

tests is simulated, probability of failure estimate is calculated and the estimate is compared to the true probability 

of failure for evaluating discrepancy between the estimate and the true probability. Also the effect of extreme load 

case is investigated using the model. 

 

4. Structural Element Design and Test Procedure 

In this section, the element design and test procedure are described. The procedure can be divided two stages: 

(i) the initial design stage based on coupon test results; (ii) and redesign based on element tests. We also consider 

the possibility that element test stage can be skipped at the discretion of the designer.   

 

4.1. Structural Element Design and Test Procedure before Element Test 

The design of an aircraft structural element is based on two test stages: coupon tests and element tests. 

Estimating strength of the structural element is required to design the structural element. Allowable strength is 

calculated based on coupon tests done under uni-axial loads. FAA regulations requires to use the B-basis (or 

A-basis) allowable that is calculated such that 90% of measured strengths from coupon tests should exceed the 

B-basis allowable with 95% confidence, which can be calculated by 

  ,allow ,test ,testc c B ck s    (1) 

where ,testc  and sc,test are, respectively, the mean and standard deviation of strength from nc coupon tests. The 

tolerance limit factor, kB, is a function of nc calculated to ensure the 90% population with the 95% confidence 

requirement. Alternatively, the allowable strength at the coupon level can be defined using a knockdown factor, 

dk , as 

  ,allow ,testc d ck   (2) 

In terms of the tolerance limit factor, the knockdown factor can be expressed as 

  
,test

,test

1 
c

d B

c

s
k k


 (3) 

Because of the confidence requirement, the knockdown factor decreases as the number of coupons decreases; 

i.e., a large penalty is applied for a small number of coupons. The element allowable strength has to be estimated 

using failure theory (i.e. von Mises) since the structural element is under multi-axial stresses. Allowable strength 

of the element is function of the allowable strength of coupon as, 

  , ,( )calc

e allow c allowf   (4) 

It is obtained from the failure envelope under the combined loads constructed from a failure theory using uni-axial 
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strengths from coupon test. Based on the allowable, initial design of load carrying area is calculated as below 

  lim

,

1.5calc

e calc

e allow

p
a


  (5) 

where plim is limit load of the structural element. The ultimate load is the safety factor times the limit load and 

initial design area is supposed to be sustainable the ultimate load.  

 

4.2. Structural Element Design and Test Procedure after Element Test 

After the initial design is completed, several nominally identical elements are made to perform the element test 

then measuring strength of those elements. Here we assume that the typical number is three element tests. Then we 

assume that the re-design proceeds based on the lowest strength of the elements, and applying the knockdown 

factor kd to update element strength allowable.  

  , ,

upd lowest

e allow d e testk   (6) 

In practice, lowest element strength replaces the mean strength as Eq. (6). The element test, taking the lowest 

strength, is modeled using a probabilistic approach as equivalent to an additional knockdown factor to the mean 

test strength. If we simulate element test, taking the lowest element strength, and repeat the simulation infinite 

number of times, then the mean value of the lowest strengths to compare it to the true mean element strength will 

provide an explicit knockdown factor. The derivation and explanation of explicit knockdown factors can be found 

in the work of Acar et al.[3]. The Bayesian updating is used to obtain the mean strength and its benefit is availed in 

this study. Eq. (6) in common practice is replaced by 

  , exp ,

upd

e allow d e Bayesk k   (7) 

In Eq. (7), it is assumed that 
,e Bayes is mean value of mean strength distribution of the structural element from 

the Bayesian updating. The most likely value of the distribution of the mean strength is the most probable true 

mean strength. However, the mean of the distribution gives a better estimate for the mean strength than the most 

likely value because it is less sensitive to poor test results. 

The redesigned area is calculated using the updated element strength allowable. 

  lim

,

1.5upd

e upd

e allow

p
A


  (8) 

 

5. Variabilities and Errors  

 

5.1. Variability and Errors in coupon test 

Coupon tests results display variability in strength; analyst needs conservative strength to compensate for the 

variability. To calculate the conservative strength, if the type of distribution of the strength and its parameters are 

known, desired conservativeness can be calculated accurately. However, with only finite number of samples, these 

parameters have errors.  

In the present paper, it is assumed that coupon strength follows a normal distribution and then the distribution 

of error in estimating the mean and standard deviation of strength are can be calculated from the normalcy 

assumption. 

 

5.2. Errors in failure theory 

Coupon tests yield uni-axial strength, but the structural element is usually subject to combined loads, and a 

failure theory such as von Mises is used to predict its strength. There is error associated with the use of the failure 

theory and the sampling error mentioned earlier for the input to this theory from the coupon tests. These errors are 

combined in the present analysis.   

 

5.3. Variability and Errors in element test 

In order to reduce the effect of the combined error in prediction of the mean element strength, element tests are 

conducted, which also have variability, and consequently sampling has error. Because of the high cost of the 

element test, the number of these tests is very limited so that error in sampling of the element test is greater than the 

error in sampling of the coupon test. It is assumed that variability of the element test is independent to the 

variability of the coupon test. 

It is assumed that the element strength is normally distributed around its mean with a coefficient of variation ce. 

 

6. Modeling Structural Element Design and Test Procedure Using Statistical Methods 

 

6.1. Element Strength Estimation 
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Since structural elements are in a multi-axial stress state, it is necessary to use the failure theory (e.g. von 

Mises), which converts the multi-axial stress into an equivalent stress. In order to simplify the following we make 

the assumption that the coupon test results for all strength components have the same coefficient of variation and 

are perfectly correlated. That is, for example, if the sampling error in the compressive strength is 10% we will have 

10% sampling error in the shear strength. In that case, the true element strength can be represented as proportional 

to one representative coupon strength. The relation between coupon and element strengths can be represented by 

  
,true true ,truee c    (9) 

where αtrue is the ratio between the uni-axial strength and the failure strength under multi-axial stress using a failure 

theory (e.g., von Mises theory for isotropic material or Tsai-Wu theory for composites) illustrated in Fig. 2. The 

subscript 'e' stands for structural elements. Since the failure theory is not perfect, the exact value of true  is 

unknown (epistemic uncertainty). Instead, the following error model is used to represent the epistemic uncertainty 

in the failure theory: 

   true calc1  e   (10) 

where calc  is the ratio calculated from the failure theory, and e  represents the error in the failure theory. In Fig. 

2, showing two uncertainties combined in the estimated element strength, both are epistemic uncertainties. 
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(a) Perfect failure theory and perfect sampling: The 

tested and estimated values are equal to the true values 

(the envelope is the true failure envelope, it will be 

shown as dashed line in the other figures) 

(b) Sampling error due to coupon test  :discrepancy 

between blue and empty circles, Solid line is computed 

failure envelope and dashed line is the true failure 

envelope. Error in failure envelope leads to error in 

estimatedelement failure strength (discrepancy between 

green and empty circle)  
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(c) Error only in failure theory: Solid line shows 

calculated failure envelope and dashed line shows true 

failure envelope  

(d) Errors in both failure theory and sampling: The error 

in sampling (discrepancy between blue and empty 

circles) and error in failure theory are combined to an 

error in the estimated value (discrepancy between green 

and empty circles). 

Figure. 2: Four cases of estimation element strength 

 

The sign in Eq. (10) is chosen such that a positive error implies a conservative estimate. Without loss of 

generality, the case of calc 1  is considered in this paper. In addition, even if the error might be a deterministic 

value, since the analyst does not know its value, it is considered as a random variable; i.e., both epistemic and 

aleatory uncertainties are modeled as random variables. Using the coupon test results, the mean failure strength of 

elements can be estimated by  

   
,calc calc ,teste c    (11) 

The calculated mean element failure strength includes two sources of epistemic uncertainty: one from the 

sampling error due to finite number of coupons and the other from the error in the failure theory. As an equivalent 

process of Eq. (4), the allowable strength of elements can be calculated as  
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   ,allow calc ,allow

calc

e c    (12) 

The superscript 'calc' is used because it will be updated using element tests in the following subsection. 

Substituting Eqs. (2) and (11) into Eq. (12), the initial allowable strength of elements can also be expressed using 

the knockdown factor as 

  ,allow ,calc

calc

e d ek   (13) 

 

6.2. Element Tests 

Taking the lowest test result is equivalent to apply the explicit knockdown factor to the mean of the updated 

mean strength of the structural element. To obtain the updated allowable strength, we apply the knockdown factor 

kd to it as in Eq. (7).  

   

6.2.1 Bayesian Updating for the Mean Element Strength 

This section shows how Bayesian updating is used to obtain the mean strength of the element. Uncertainty in 

the mean element strength is represented as a distribution In this paper, the updated distribution is called a possible 

true distribution and the random variable represented by the distribution is the possible true mean strength. In the 

previous section, mean of the possible true distribution of the mean strength 
,e Bayes is used to obtain the allowable 

strength of the element in Eq. (7). 

The calculated mean strength of the structural element is obtained using the calculated mean coupon test and 

the failure theory so that it its error comes from sampling and failure theory errors. The possible true distribution 

has to be convolution function of these two errors. However, in [10], we found that the sampling error has little 

effect, if the number of coupon tests exceeds 50. So that only error in the failure theory is considered in this paper.  

It is assumed that the error in failure theory has a uniformly distributed between error bounds that represent our 

confidence about the calculation. 

     
,

, ,,

1
if 1

2

0 otherwise

e Ptrue

einit

e Ptrue e calce e calc

b
f b



 


 

 



 (14) 

where
,e Ptrue is possible true mean strength of structural element. This initial distribution  ,

init

e Ptruef  is a 

probability density function value and it can be interpreted as an initial prediction of the true mean of element 

strength, 
,e true based on confidence in the failure theory. .  Test results allow the analyst to reduce the uncertainty 

in the failure theory. The initial distribution is updated using the Bayesian technique with element tests. 

   
   

   

, , ,

1

,

, , , ,

1

e

e

n

init

e Ptrue i test e Ptrue
upd i

e Ptrue n

init

e Ptrue i test e Ptrue e Ptrue

i

f f

f

f f d

 



  













 (15) 

 Likelihood function is defined as conditional probability density function and it represents likelihood of the 

true mean strength for given i
th

 sample ,

i

e test . 

      ,test ,Ptrue ,test ,Ptrue ,PtrueNormal | ,i

i e e e e ef c     (16) 

where ec is coefficient of variation of the strength of structural element. No element tests case, the random variable 

of the possible true mean strength ,e Ptrue follows the initial distribution in Eq. (14). If the element tests are 

performed, the initial distribution is updated, ,e Ptrue follows the updated distribution defined by  ,test ,Ptruei ef  . 

 

6.3. Design of the Structural Element 

To design the structural element, designers use conservative allowable stress and conservative design load. We 

use ultimate load that is composed of limit load and 1.5 factor of safety. Limit load is a maximum load per fleet 

lifetime. The present paper simplifies the design process as designing load carrying area under combined load as 

  lim

,

1.5
e

e allow

p
a


  (17) 

where plim is the limit load and
,e allow is the allowable element strength. Two options to design the load carrying 

area are considered here. 
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1) Using the calculated design allowable stress ,

calc

e allow  in Eq. (4) as , ,

calc

e allow e allow  . It is a reasonable choice 

when the failure theory is very accurate, but it does not protect against unexpected large error. 

2) Using the updated design allowable stress ,

upd

e allow in Eq. (7) as , ,

upd

e allow e allow  . This approach benefits from 

the additional information provided by element tests. 

 

7. Calculating Probability of Failure of the Element Design 

There are two types of probability of failures that estimated probability of failure and true probability of failure. 

Each design has its own true probability of failure that corresponds to the true value of the errors. The probability 

of failure can be calculated for each set of errors. Assuming that the errors have the assumed distribution, we can 

obtain a distribution of possible probabilities of failure. This is a single analyst's point of view. the analyst can 

estimate the probability of failure but the true probability of failure is unknown for the analyst. 

 

7.1. Estimated Probability of Failure 

To estimate the probability of failure, the possible true mean strength distribution from the Bayesian updating 

is used. For each value of the mean strength value 
,e Ptrue we can calculate the corresponding probability of failure 

,e Ptruepf using a conditional random variable on the mean strength distribution as 

  lim

, , , ,

1.5
|

(1 )
e Ptrue e Ptrue e Ptrue e Ptrue

e m

p
P pf

a V


 
     

 
 (18) 

It is assumed that the variability is measured accurately with little uncertainty and it follows uniform 

distribution with margin ±3%, also the element strength is normally distributed around its mean with a coefficient 

of variation ce. ,e Ptrue  is a random variable, follows the possible true mean strength distribution, and mean of the 

distribution is random variable that follows the updated possible true mean strength distribution in Eq. (15), (e.g., 

probability density function of , ,e Ptrue e Ptrue  is ,( )upd

e Ptruef  ). That is, , , ,|e Ptrue e Ptrue e Ptrue   is a random 

variable from a distribution that mean value of the distribution is equal to , ,e Ptrue e Ptrue  .  

   , , , , ,| ~ ,e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue eNormal c      (19) 

The probability of failure has a form of a distribution because mean value of the mean strength distribution is a 

random variable due to variability in element tests. 

  lim

, , ,

1.5
|

(1 )
e Ptrue e Ptrue e Ptrue

e m

p
P PF

a V

 
    

 
 (20) 

Since random variables 
,e PtruePF  is strictly decreasing monotonically as function of ,e Ptrue , the probability that 

the random variable 
,e PtruePF is greater than a value 

,e Ptruepf  is equal to probability of the random variable ,e Ptrue is 

less than a value   for 
, ,e Ptrue e PtruePF pf at ,e Ptrue   . 

     , , ,e Ptrue e Ptrue e PtrueP PF pf P      (21) 

Using complementary law of probability, Eq. (21) can be expressed as 

  
,( ) 1 ( )Pf e Ptrue MF pf F    (22) 

   , , ,( )Pf e Ptrue e Ptrue e PtrueF pf P PF pf  and  ,( )M e PtrueF P     (23) 

Using Eq. (18) and Eq. (22), the cumulative distribution function of the probability of failure can be calculated. 

Also probability density distribution is derived from the cumulative distribution and it is an estimated probability 

of failure distribution. 

 

7.2. Estimated Probability of Failure for Arbitrary Load  

The probability of failure discussed so far is the probability of failure of the element under ultimate load. The 

aircraft company may be also interested in the probability of failure under higher or lower loads. The probability of 

failure under limit load is close to the probability of the element failing in service (neglecting errors in the load 

calculation). The probability of failure for higher loads may be of interest if the mission of the aircraft changes, 

leading to higher loads. For the estimated probability of failure for given arbitrary load pi were placed the 

lim1.5 p term in Eq. (20) by pi,. 

  i

, , ,|
(1 )

e Ptrue e Ptrue e Ptrue

e m

P
P PF

A V

 
    

 
 (24) 
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7.3. True Probability of Failure 

True probability of failure is defined as probability that stress on the manufactured structural element section is 

greater than actual strength of the structural element for the given load. The manufacturing variability is included 

to calculate the probability of failure and it is assumed that measurement of the manufacturing is very accurate. 

True probability of failure is calculated as 

  lim

, ,

1.5

(1 )
e true e true

e m

p
P pf

a V

 
   

 
 (25) 

where mV is a random variable for manufacturing variability. Note that the true distribution of the strength of the 

structural element in Eq. (25) is unknown for analyst’s view. 

To keep the same mean probability of failure with 3 element cases, we adjust the allowable strength and 

calculate average weight of design according to the number of element tests. The additional knockdown factor is 

applied as 

  
, exp ,e allow d add e Bayesk k k   (26) 

Also the true probability of failure as a function of load pi  is calculated in terms of the arbitrary load to see the 

true probability of failure at load pi which is not the design load. 

  , ,
(1 )

i

e true e true

e m

p
P pf

a V

 
   

 
 (27) 

where the area is designed to be sustainable ultimate load as 
lim ,1.5 /e e allowa p  . 

 

8. Simulation Procedure 

(i)-1. Generate coupon test results as the # of coupon tests

(i)-2. Calculate allowable strength with the test results

(i)-3. Calculate knockdown factor

No

Yes

Perform element tests?

(ii)-1. Estimate element strength

(ii)-2. Calculate element strength allowable

(ii)-3. Calculate design area

Collect design areas

Collect estimated Pfs

Collect true Pfs

MCS loop 

(repeating inside 

procedures)

Estimate Pf

Calculate true Pf

# of coupons, # of elements

(iv)-1. Update the allowable element strength

(iv)-2. Update design area

,c allow

, ,

init

e allow d e calck 
, ,e calc calc c test  

lim ,/ init

e e allowA SF P  

lim ,/ upd

e e allowA SF P  
, exp ,

upd

e allow d e calck k 

(iii)-1. Generate element test results as the # of element tests

(iii)-2. Calculate explicit knockdown factor and calculate 

average strength of element using Bayesian updating 

expk ,e calc

, ,/d c allow c testk  

 
Figure. 3: Flowchart of simulation procedure  

 

In this section, simulation for the design and test procedure is shown. The simulation is carried out from two 

points of view: an analyst’s point of view corresponds to a single set of errors and test result; the  FAA  (or possibly 

aircraft company) point of view considers many analysts, each designing a different element with different test 

results. From the FAA point of view, the errors are no longer epistemic uncertainties, because they are truly 

randomly distributed between a large numbers of designers. 

From an analyst’s point of view, we simulate the design of a load carrying area tests, and the estimate of its 

probability of failure of the structure. Simulation of the design and test processes is largely composed of simulating 

four steps: (i).coupon test, (ii).initial design (iii).element test and (iv).updated design. Final outcomes of this 
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simulation are designed area and the estimated probability of failure. All processes in dashed line box in Fig. 3 

represent a single design process by a single analyst who decides whether to perform element tests or skip the tests. 

For the FAA’s point of view, the procedure in the dashed box of Figure 3 is repeated for many sets of test 

results corresponding to the errors. 

 

9. Illustrative Example 

In this section, a simple problem of design of a load carrying area design is used. The number of coupon tests is 

fixed to 50 tests and 2, 3, or 5 element tests are considered. The limit load plim=1, the safety factor of 1.5. 

Coefficient for the failure theory is α=1.0 as it includes error in estimation and the B-basis coefficient for 50 

coupon tests is kB=1.6455. The calculation of the explicit knockdown factor refers Acar et.al. [3].  kexp=0.9018, 

=0.8776, and =0.8506 for the number of element tests 2,3,and 5, respectively. It implies that taking the lowest 

results of 5 is more conservative than the lowest results of 3 and 2. kexp=1 is used for the no element test case. 

 

Table 1: Distributions of tests for simulation 

Test Distribution Parameters 

Coupon Test Normal μ=1.0 σ=0.07 (cc =0.07) 

Element Test Normal μ=0.95 σ=0.09 (ce =0.0855) 

 

9.1 Analyst's point of view 

A single analyst has to design by given coupon test results and element test results, also he is obligate to use 

FAA rules such as using of B-basis or A-basis and then he estimate the probability of failure of the design. The 

analyst's view follows the simulation processes described in dashed box of Fig. 3 to design a load carrying area. 

The probability of failure is defined as probability that ultimate load exceeds capacity of the load carrying area 

(strength times area). The analyst estimates a distribution of the probability of failure; the analyst also has to decide 

how to translate this distribution to a single nominal probability of failure. In the present paper, we set mean of the 

distribution as the nominal probability of failure. In this case, the estimated probability of failure is compared to 

the true probability of failure. Note that the true probability of failure is unknown for the analyst.  

Here, three typical situations are considered; conservative element tests, nearly no conservativeness, and 

un-conservative element tests. 

  

       (a) Conservative test results      (b) Nearly no conservativeness test results     (c) Un-conservative test results 

 

Figure. 4: Distribution of the probability of failure for three typical cases 

(50 coupon tests, 3 element tests: red line indicates true probability of failure and blue line indicates the probability 

of failure distribution of a single design) 

   

From the three cases, the estimated probability of failure and the true probability of failure are calculated. The 

estimated probability of failure is given for both distribution and nominal value in Fig. 4 and Table 1, respectively. 

The nominal value is the mean value of the probability of failure distribution. From the Table 1, the mean 

probability of failure gives conservative estimate than the true probability of failure, except in the case of 

un-conservative test result. It is also observed that the probability of failure is quite sensitive to the design area. 

The mean of the coupon test varies slightly while the mean of the element test varies a lot and this phenomenon is 

caused by the number of the samples. The number of coupon tests is 50 so that standard deviation of the mean of 

the coupon tests is,
, / 50c true , 0.0099 whereas the standard deviation of the mean of the element tests is 0.5485. 

Here, the Bayesian method is used for effective mean to reduce uncertainty with the small samples. Efficiency of 

0 0.005 0.01 0.015 0.02 0.025
0

10

20

30

40

50

60

70

0 0.01 0.02 0.03 0.04 0.05 0.06
0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80



 

 

9 

the Bayesian method to reduce uncertainty is already shown through comparing to the conventional method of 

taking the lowest result [9]. 

 

Table 2: Three cases of element test results 

 

Conservative 

test results 

(Fig. 4a) 

Nearly no 

conservativeness 

test results 

(Fig. 4b)  

Un- 

conservative 

test results 

(Fig. 4c) 

True Pf 0.0033 0.0089 0.0347 

Mean Pf 0.0101 0.0099 0.0168 

Mean Coupon 1.0027 1.0104 0.9905 

Std. Coupon 0.0673 0.0742 0.0629 

Element test1 0.8914 0.9638 1.0714 

Element test2 0.9271 0.9477 0.9780 

Element test3 0.8484 0.9648 0.9907 

Element Mean 0.8889 0.9588 1.0133 

Design Area 2.0958 1.9839 1.8927 

 

9.2 FAA's point of view 

FAA governs the analysts by regulation such as B-basis value or A-basis value as strength allowable. In this 

point of view, we simulate 10000 analysts and their estimation of the probability of failures. The mean of the true 

probability of failure of the 10,000 analysts at the ultimate load with 3 element tests case is 0.011. Obviously, the 

probability of failure depends on the number of element tests. Using an additional knockdown factor to adjust 

conservativeness of the allowable strength of the structural element, the mean probability of failures of 10000 

analysts can be controlled. 

 

Table 3: True probability of failure and estimated probability of failure from analyst 

 No element tests 
2 element tests 

(k
add 

= 0.962) 
3 element tests 

(k
add 

= 1) 
5 element tests 

(k
add 

= 1.045) 

Pi / 

Plim 
Mean of the 

True Pfs 

Mean of the 

Nominal Pfs 

Mean of the 

True Pfs 

Mean of the 

Nominal Pfs 

Mean of the 

True Pfs 

Mean of the 

Nominal Pfs 

Mean of the 

True Pfs 

Mean of the 

Nominal Pfs 

1.0 1.0×10
-7

 1.5×10
-7

 1.1×10
-7

 1.3×10
-7

 1.3×10
-7

 1.1×10
-7

 1.3×10
-7

 1.5×10
-7

 

1.35 0.0008 0.0010 0.0008 0.0009 0.0009 0.0010 0.0009 0.0011 

1.4 0.0022 0.0024 0.0020 0.002 0.002 0.0025 0.0023 0.0027 

1.45 0.0053 0.0053 0.0046 0.005 0.005 0.005 0.0054 0.0063 

1.5 0.011 0.009 0.011 0.011 0.011 0.011 0.011 0.013 

1.55 0.024 0.021 0.019 0.022 0.022 0.022 0.023 0.026 

1.6 0.045 0.038 0.036 0.042 0.041 0.042 0.043 0.049 

1.65 0.081 0.063 0.064 0.073 0.073 0.073 0.076 0.085 

 

Table 3 provides the probability of failure with the external force Pi and the additional knockdown factor kadd. 

The additional knockdown factor adds more conservativeness to the design to decrease its probability of failure 

whereas its average weight is increased. The mean of the true probability of failures with 3 element tests with the 

ultimate load case is referred as a standard. Note that the mean of the true probability of failure is unknown in 

FAA's point of view; it is only used to see the true effect of the tests to achieved. The mean of the nominal 

probability of failures is known in FAA's point of view by gathering 10000 analysts' nominal probability of 

failures corresponding to their design. This result shows that the nominal probability of failure gives slightly 

conservative estimate compare to the true probability except no element tests.   

The probability of failure increases exponentially as the external force Pi increases linearly. The ratio Pi/Plim 

=1.5 case is equivalent to the certification test condition under the ultimate load. The ratio of 1.0 is reflecting flight 

condition with limit load Plim. Under the limit load without variability, the probability of failure has 10
-7

 order of 

magnitude so that the probability of failure in actual flight is very low and structural failure is very rarely expected 

during flight.  

Table 4 compares the average structural weights in terms of the number of element tests relative to the average 

weight with 3 elements and it calculated from the Table 3 results.  The average weight of the design with no 

element tests is 3.7% heavier than the design with 3 element tests, 5 elements provide 1.3% lighter design which 

implies that importance of the element tests. 
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Table 4: Relative weight for the same probability of failure level 

 No element tests 
2 element tests 

(k
add 

= 0.962) 

3 element tests 

(k
add 

= 1) 

5 element tests 

(k
add 

= 1.045) 

Pi / Plim 

1.5 1.037 (+3.7%) 1.012 (+1.2%) 1 0.987 (-0.3%) 

 

10. Conclusion 

 The current practice in aircraft structural design employs two methods for improving structural safety. Using 

knockdown factors and safety factors to compensate uncertainties in design or reducing the uncertainties in the 

design by performing structural tests. The former leads weight increase and the latter requires cost to perform tests. 

In this paper, the two effects have been quantified. 

A method to estimate the probability of the failure is proposed using the Bayesian method and statistical 

method. It makes the analyst possible to provide the probability of failure distribution of the design as a function of 

load. According to the probability of failure, the analyst modifies the design that having the less probability of 

failure by increasing conservativeness in the design. 

To achieve a design specification for the safety, two aspects are considered, the number of element tests and 

additional conservativeness for strength estimate. Also no element test case is considered to show importance of 

the structural tests. As the number of element tests increases, weight of the design decreases while the probability 

of failure is being kept. A design with 5 element tests allows 1.3% lighter design than a design with 3 element tests 

for the same expected true probability of failure. A design with 2 element tests requires 1.2% heavier design.  

Especially sacrifice of the weight without element tests to keep the same level of the probability with element 

tests is substantial. No element case requires 3.7% heavier design to expect the same probability of failure with 3 

element tests case. 

In the present paper, the estimated probability of failure is compared to the true probability of failure to verify 

the accuracy of the estimated probability. The importance of tests on the structural design is shown in aspect of 

weight. 
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