
 1 Copyright © 2011 by ASME 

 

Proceedings of the ASME 2011 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference

IDETC/CIE 2011
August 29-31, 2011, Washington, DC, US

DETC2011-48801

DRAFT: EQUIVALENT DAMAGE GROWTH PARAMETERS USING A SIMPLIFIED 
MODEL  

 
 

Alexandra Coppe 
Center for Advanced Life Cycle Engineering 

Department of Mechanical Engineering 
University of Maryland 

College Park, Maryland 32611 
Email: acoppe@umd.edu 

Matthew J. Pais, Raphael T. Haftka, Nam H. Kim 
Department of Mechanical and Aerospace Engineering 

University of Florida 
Gainesville, Florida 32611 

Email: mpais@ufl.edu, haftka@ufl.edu, nkim@ufl.edu 

 
 

ABSTRACT 
Most damage growth models require accurate stress 

intensity factor as well as model parameters for predicting 
damage growth. Depending on geometries and loading 
conditions, these models become complicated with additional 
model parameters. This paper shows that a simple model, such 
as the Paris model, can be used for complex geometries by 
compensating the error in stress intensity factor with the 
equivalent model parameters that are different from the true 
ones. Actual damage growth is simulated using the extended 
finite element method to model the effects of crack location and 
geometry on the relationship between crack size and stress 
intensity factor. The detection process of crack using structural 
health monitoring systems is modeled by adding random noise 
and a deterministic bias. The equivalent model parameters are 
then identified using the least-square-filtered Bayesian method, 
from which the remaining useful life is estimated. Using three 
examples, it is shown that the RUL estimates are accurate even 
when an inaccurate stress intensity factor is used.  

INTRODUCTION 
For last two decades, the structural health monitoring 

(SHM) technology has been significantly developed such that it 
is feasible to not only detect damage but also to characterize the 
significance of damage [1,2]. In the case of structural damage 
due to cracks, SHM systems can now continuously monitor the 
growth of cracks during the lifecycle of an aircraft. When the 
monitoring results are incorporated with crack growth models, 
it is possible to predict the future behavior of cracks, which is 
called model-based prognosis [3,4]. This is very valuable 
information in terms of providing safety of aircraft and 
estimating appropriate maintenance schedules. 

Although the model-based prognosis can be a powerful 
technology, it has a drawback that many physical models are 
limited to simple conditions. For example, the original Paris 
model [5] describes the rate of crack growth as a function of 
stress intensity factor. However, it is limited to a center crack in 
an infinite plate under mode I loading condition because the 
stress intensity factor is a complicated function of applied 
loading, boundary conditions, crack position, and geometry. 
There is an analytical equation available for the stress intensity 
factor for an infinite plate with a through-the-thickness center 
crack, and correction factors for taking into account for finite 
plate size or edge cracks [6,7]. These analytical equations are 
typically not available for complex engineering systems. Often 
numerical techniques, such as finite element analysis, are used 
to calculate accurate stress intensity factor [8]. This can cause a 
significant computational difficulty because the statistical 
nature of prognosis requires evaluations of stress intensity 
factor for numerous damage sizes. 

The objective of this paper is to demonstrate that in model-
based prognosis, one can use simple models to predict the 
remaining useful life even if the model differs from the true 
behavior. This is accomplished through the identification of an 
equivalent damage growth parameter that compensates for the 
difference between the simple model and the true stress 
intensity factor. An important question that is explored in this 
paper is if a simple, analytical stress intensity factor can be 
used for arbitrary crack geometries for the purpose of 
prognosis. The key concept in this paper is that the original 
Paris model can be considered as an extrapolation tool. Thus, 
even if the actual crack growth behavior is different from the 
one obtained with the analytical stress intensity factor, 
Bayesian inference can identify equivalent damage growth 
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parameters, different from the true ones, such that the model 
accurately predicts future damage growth behavior. 

The damage growth is simulated using the extended finite 
element method (XFEM) for calculating “true” stress intensity 
factors, and the Paris model is used to grow the crack. XFEM 
[9] allows for discontinuities to be modeled independently of 
the finite element mesh, which avoids costly remeshing as the 
crack grows. The stress intensity factors which are the driving 
force for crack growth are calculated within the XFEM 
framework using the domain form of the contour integrals [10]. 

In practice, the actual damage sizes are measured using 
SHM systems in which on-board sensors and actuators are used 
to detect damage location and size. In this paper, instead of 
using actual measurement data, synthetic data are generated 
using random noise and deterministic bias. First, true values of 
the Paris model parameters are assumed. Then, the true crack 
will grow according to the given model parameters, prescribed 
operating, and loading conditions by XFEM simulations. Thus, 
the true crack size at every measurement time is known. With 
the true crack size, the remaining useful life is defined when 
the crack size reaches the critical crack size, which is a function 
of material, operating, and loading conditions. It is assumed 
that the measurement instruments may have a deterministic bias 
and random noise. These bias and noise are added to the true 
crack sizes, which are denoted as synthetic measured crack 
sizes. Then, these data are used to predict the equivalent 
damage growth parameters and thus the remaining useful life. 
In this way, it is possible to evaluate the accuracy of prognosis 
method. 

Of the many methods available for parameter 
identification, the least-square-filtered Bayesian method 
(LSFB) [11] is used to identify damage growth parameters. 
This method applies nonlinear least-square method to the 
measurement data, so that the magnitude of noise can be 
reduced, followed by Bayesian inference [12] to identify a 
probability distribution for model parameters. The identified 
distribution of damage growth parameters can then be used to 
predict the distribution of RUL. 

The paper is organized into the following sections. In 
Section 2, the crack growth model is introduced along with the 
notion of equivalent model parameter. In Section 3, the model 
for measurement uncertainty that is used in this paper is 
explained. The least-square-filtered Bayesian method is 
summarized in Section 4. Three numerical examples with 
increasing difference between the simple and true stress 
intensity factor models are presented in Section 5, followed by 
concluding remarks and future work in Section 6. 

CRACK GROWTH MODEL 
A crack in a plate can grow due to repeated application of 

stress. For example, a crack in a fuselage panel of aircraft can 
grow due to repeated pressurizations. In this paper, the original 
Paris model [5] is used to predict the crack growth in a plate. In 
this model, the range of stress intensity factor K  is the main 

factor driving the crack growth with two parameters, C  and 
m , as 

  mda
C K

dN
    (1) 

where a  is the characteristic crack size and N  is the number 
of fatigue loading cycles. The range of stress intensity factor is 
calculated by the difference between maximum and minimum 
stress intensity factors; i.e., max minK K K   . Although the 

number of cycles is an integer, it is considered a real number as 
the crack grows over a great number of cycles. The two 
parameters, C  and m , are usually estimated from 
experiments. When a log-log scale plot is made for the growth 
rate versus the stress intensity factor, the slope corresponds to 
m , while the y-intercept at 1K   corresponds to C . 

It is well known that the original Paris model is good for a 
through-the-thickness center crack in an infinite plate under 
Mode I fatigue loading condition. In such a case, the stress 
intensity factor can be calculated as 

 K a     (2) 

where   is the range of applied nominal stress; i.e., stress 
far from the crack tip. By substituting Eqn. (2) into Eqn. (1), 
the differential equation can be solved for the crack size as a 
function of the number of cycles N  as  
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where 0a  is the initial crack size. Note that the initial crack 

size does not have to be the size of initial micro-crack in the 
pristine plate. When a structural health monitoring (SHM) 
system is used, 0a  can be the size of crack that is initially 

detected. Then, Eqn. (3) can be used to predict the crack size 

Na  after N  cycles starting from a crack with size 0a , 

assuming that the parameters, C  and m , are known. 
Considering Eqn. (3) can calculate crack size for a given 

cycle number, it is also possible to calculate the required 
number of cycles for a crack to grow to a certain size. 
Especially, it is important to estimate how many cycles remain 
before failure. In general, a critical crack size, Ca , is defined in 

which the crack grows rapidly and becomes unstable. Then, 
starting from the current crack size (let us say that it is Na ), 

the remaining cycles until the crack grows to the critical crack 
size can be calculated by 
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In SHM, Eqn. (4) can be used to predict the remaining useful 
life (RUL) before the crack needs to be repaired. Again, the 
prediction process requires the two Paris parameters. 
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When the plate is not infinite and the crack is not located at 
the center of the plate, the original Paris model needs to be 
modified. In general, the accuracy of Eqn. (2) depends on 
geometrical effects, boundary conditions, crack shape, and 
crack location. A more general expression [6,7] of the range of 
stress intensity factor can be written as  

 K Y K    (5) 

where Y  is the correction factor, given as the ratio of the true 
stress intensity factor to the value predicted by Eqn. (2). The 
correction factor depends on geometry of crack and plate and 
the loading conditions. Examples of the dependence of the 
correction factor on the crack size are shown in Figure 1 for a 
center crack in an infinite plate, a center crack in a finite plate, 
and an edge crack in a finite plate [6,7]. Many advanced 
models are also available that can consider the effect of crack 
tip plasticity as well as the effect of crack closure [13-15]. The 
advanced models normally come with more parameters that 
need to be identified. 

 
Figure 1. COMPARISON OF CORRECTION FACTORS FOR SEVERAL 
PLATE GEOMETRIES AND CRACK SIZES FOR A PLATE WIDTH OF 
200 MM. 

By comparing Eqns. (1), (2), and (5), an interesting, but 
critically important observation can be made. For example, it is 
possible to use the range of stress intensity factor in Eqn. (2) 
instead of the one in Eqn. (5) for the crack in a finite plate; i.e., 
it is possible to move the correction factor into the two Paris 
parameters. In such a case, the crack growth model in Eqn. (1) 
can be modified as 

    m mda
C K C K

dN

    (6) 

where C  and m  are ‘equivalent’ Paris parameters for using 
the stress intensity factor in Eqn. (2). Of course, the above 
relation does not exactly satisfy for all possible ranges of stress 
intensity factor, but it can make a good approximation when the 
variation of stress intensity factor is not significant. In the 
viewpoint of Eqn. (6), it is possible to interpret the two Paris 

parameters as curve-fitting parameters, not material properties. 
This observation is consistent with the fact that the Paris 
parameters become different when the road ratio 

min max/R K K  varies even if K is same [16]. The critical 

advantage of this viewpoint is that instead of making more 
advanced models for crack growth for SHM prognosis, the 
simple model in Eqn. (6) can be used as long as the equivalent 
parameters can be identified. In the numerical example section, 
this aspect will be tested using various examples. 

For complex geometries with combined loadings, 
analytical expressions as given in Eqns. (2) and (5) may not be 
sufficient. For example, when a crack growth changes its path, 
the analytical growth rate equations cannot predict the correct 
path and growth of the crack. In such a case, a numerical 
method can be used to calculate the stress intensity factor as 
well as the direction of crack growth. In this paper, the 
extended finite element method (XFEM) is used to calculate 
the stress intensity factor K  for complex geometry and 
loadings, and Eqn. (6) is used to numerically integrate the 
crack size as a function of the number of cycles. 

MEASUREMENT UNCERTAINTY MODEL 
The crack growth model in the previous section can be a 

powerful tool in providing safety of the system and predicting 
maintenance schedules. However, the usefulness of the method 
depends on the accuracy of the parameters. For example, a 10% 
error in the exponent, m , can cause more than 100% 
difference in the predicted RUL from Eqn. (4). Therefore, it is 
critical to accurately estimate these parameters. However, 
challenges exist when these parameters are measured from 
laboratory experiments. Firstly, the variability in different 
batches of materials is too large to make useful predictions. 
Secondly, different loading and boundary conditions of 
practical panels affect these parameters. The premise of SHM is 
that frequently measured crack sizes can be used to identify 
‘panel-specific’ damage growth parameters under given 
loading and boundary conditions, which is the main purpose of 
this paper. Then, these parameters can be used to predict the 
RUL before which the crack should be repaired. 

Since no airplanes are equipped with SHM systems yet, 
synthetic data are used in this paper; i.e., crack sizes are 
simulated and assumed to have been measured by SHM. In 
general, the crack sizes measured from SHM systems include 
the effect of bias and noise of sensor signals. The former is 
deterministic and represents a systematic departure caused by 
calibration error, while the latter is random and represents a 
noise in the signal. The synthetic measurement data are 
generated by (a) assuming that the true parameters, truem  and 

trueC , are known, (b) calculating the true crack growth, true
Na , 

using the crack growth model in the previous section for a 
given N , and (c) adding a deterministic bias and random 
noise.  
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Let true
Na  be the true half crack size at cycle N , b  the 

bias, and v  the noise. The measured half crack size meas
Na  is 

then generated from  

 meas true2 2 NNa a b v    (7) 

For subsequent measurements the bias b  remains constant, 
while the noise v  is assumed to vary uniformly between V  
and V ; i.e., U[ ; ]v V V   where U  represents a uniform 

distribution between lower and upper bounds. It is noted that 
the current assumption on bias and noise is for convenience. In 
general, it is possible that the bias can vary as a function of 
time, and the noise can have different distribution types. Under 
the given models of bias and noise, the measured half crack 
sizes are uniformly distributed as 

 true truemeas ;
2 2

U
2 2N NN

b V
a

b
a

V
a    

  
 . (8) 

Once the synthetic measurement data are generated, the 
true half crack size true

Na  is not used any further, nor are the 

true values of parameters, truem  and trueC . The questions that 

need to be addressed are (a) if it is possible to accurately 
estimate the two parameters using the synthetic data that have 
bias and noise, and (b) what would happen if different 
geometry or boundary conditions are used for the actual panel. 
Figure 2 shows the measured crack sizes at every 100 cycles 
with a deterministic bias of 2.0mmb    and the bounds of 

random noise 1.0mmV  , which is used in the numerical 
examples in Section 5. Note that due to the bias, the trend of 
data is shifted from the true crack growth curve. 

 
Figure 2. MEASURED CRACK SIZE AT EVERY 100 CYCLES WITH 
NOISE AND BIAS. 

LEAST-SQUARE-FILTERED BAYESIAN (LSFB) 
METHOD 

The least square method [17] and Bayesian inference [18] 
are often used for identifying unknown model parameters from 
data. The former minimizes errors between data and model 
predictions, while the latter progressively improves the 
knowledge on the parameters using data, starting from the 
initial knowledge. It is generally observed that the least square 
method is powerful in identifying deterministic parameters and 
also has a capability of reducing noise in the data. On the other 
hand, the Bayesian inference is customized to incorporate the 
initial knowledge of the parameters and statistically identifies 
model parameters. In this section, the advantages from both 
methods will be utilized to identify model parameters using 
SHM data.  

In estimating the RUL, the statistical information of 
parameters is important because a conservative estimate is 
required for the maintenance schedule. Coppe et al.11 used 
Bayesian inference to estimate the distribution of Paris model 
parameters, from which the distribution of the RUL is 
estimated. It was shown that the Bayesian inference was 
sensitive to the level of noise—the convergence of model 
parameters was slow when the measured crack size data have 
large noises. Therefore, the main contribution of this paper is to 
reduce the noise in the data using the least square method, 
followed by Bayesian inference to statistically identify model 
parameters. In the mean time, some deterministic parameters, 
such as bias and initial crack size can also be identified from 
the least square method. This proposed method is thus named 
the ‘least-square-filtered’ Bayesian (LSFB) method. 

Filtering data using least square method 
For the convenience of explanation, it is assume that the 

true value of parameter trueC C  is known with its true value, 

while the exponent m  is unknown and needs to be identified. 
For the case that both parameters are unknown, readers are 
referred to Coppe et al. [19]. Therefore, unknown variables are 
the Paris model exponent m , bias b , and initial crack size 

0a . As mentioned before, 0a  is the true crack size at the cycle 

at which it is detected for the first time. Due to noise and bias, 
the true value of 0a  is also unknown. 

The LSFB method processes information collected at every 
cycle using the least square method in order to reduce the 
noise, and identify the bias b  and initial crack size 0a . The 

least square problem is expressed as 

 
0

2
meas

0
, ,

Minimize ( , )
2i i

a m b
i

b
a a m a
   
 

  (9) 

where meas
ia  are the synthetic measured crack sizes with bias 

and noise model to simulate measurement data. Since the SHM 
process is time-dependent, the above least square method 
should use measured data up to the current time. Therefore, 
initially the identified results may not be accurate because only 
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a limited number of data are used, but the accuracy will be 
improved as more data are available in the later time. In 
addition, the initial data may not provide valuable information 
because the crack growth rate is very small at this stage. As the 
crack starts growing fast, the process will identify parameters 
more accurately. 

In this paper, the LSFB method utilized K  calculated 
from Eqn. (2), and an equivalent value of m  is identified 
resulting in the same solution to Eqn. (1) as if the true K  
were used. The values of 0a , m  and b  identified from Eqn. 

(9) are then used to generate a new estimate of the damage size 
at the current cycle using Eqn. (3); they are referred to as 
filtered data. These filtered data are then used in Bayesian 
inference in order to narrow down the distribution of m  and 
obtain a more accurate prediction. The identified 0a  and b  

are considered to be deterministic. Only uncertainty in m  is 
considered in the Bayesian inference. 

Bayesian inference for parameter identification 
Bayesian inference is based on the Bayes' theorem on 

conditional probability[20]. It is used to obtain the updated 
(also called posterior) probability of a random variable by 
using new information. In this paper, it is used to improve the 
statistical distribution of unknown parameter m  using SHM 

measured crack size a (indeed, this is the same as meas
Na  in 

Eqn. (8)). Therefore, the Bayes' theorem is extended to the 
continuous probability distribution with probability density 
function (PDF), which is more appropriate for the purpose of 
the present paper. Let ( )Xf m  be a PDF of Paris model 

parameter X m . The measured crack size Y a  is also 
random due to the noise, whose PDF is denoted by ( )Yf a . 

Then, the joint PDF of X  and Y  can be written in terms of 

Xf  and Yf , as 

 ( , ) ( | ) ( ) ( | ) ( )XY X Y Y Xf m a f m Y a f a f a X m f m     (10) 

When X  and Y  are independent, the joint PDF can be 
written as ( , ) ( ) ( )XY X Yf m a f m f a   and Bayesian inference 

cannot be used to improve ( )Xf m . Using the above identity, 

the original Bayes' theorem can be extended to the PDF form as 

[21,22] 

 
( | ) ( )

( | )
( )

Y X
X

Y

f a X m f m
f m Y a

f a


   (11) 

Since the integral of ( | )Xf m Y a  should be one, the 
denominator in Eqn. (11) can be considered as a normalizing 
constant. In Eqn. (11), ( | )Xf m Y a  is the posterior PDF of 
Paris model parameter given measured crack size Y a , and 

( | )Yf a X m  is the likelihood function or the PDF value of 
obtaining the measured crack size a  for a given parameter 
value of X m . 

When the analytical expressions of the likelihood function, 
( | )Yf a X m , and the prior PDF, ( )Xf m , are available, the 

posterior PDF in Eqn. (11) can be obtained through simple 
calculation. The likelihood function is designed to integrate the 
information obtained from SHM measurement to the 
knowledge about the distribution of m . Instead of assuming an 
analytical form of the likelihood function, uncertainty in 
measured crack sizes is propagated and estimated using the 
Monte Carlo simulation (MCS). Although this process is 
computationally expensive, it will provide accurate information 
for the posterior distribution. The derivation of the likelihood 
function can be found in Coppe et al. [4]. 

When multiple, independent measurements are available, 
Bayesian inference can be applied either iteratively or all at 
once. When K  number of measured data are available; i.e., 

1 2{ , , , }Ka a aa  , the Bayes' theorem in Eqn. (11) can be 

modified to 

  
1

1
( | ) ( | ) ( )

K

X Y i X
i

f m Y f a X m f m
V 

  a  (12) 

where V  is a normalizing constant to satisfy the PDF 
property. In the above expression, it is possible that the 
likelihood functions of individual measurements are multiplied 
together to build the total likelihood function, which is then 
multiplied by the prior PDF followed by normalization to yield 
the posterior PDF. On the other hand, the one-by-one update 
formula for Bayes' theorem can be written in the recursive form 
as 

 ( ) ( 1)1
( | ) ( | ) ( )i i

X i Y i X
i

f m Y a f a X m f m
V

    (13) 

where iV  is a normalizing constant at i-th update and 
( 1) ( )i

Xf m  is the PDF of m , updated using up to (i-1)th 

measurements. In the above update formula, (0) ( )Xf m  is the 

initial prior PDF, and the posterior PDF becomes a prior PDF 
for the next update. 

An important advantage of Bayes' theorem over other 
parameter identification methods, such as the least square 
method and maximum likelihood estimate, is its capability to 
estimate the uncertainty structure of the identified parameters. 
These uncertainty structures depend on that of the prior 
distribution and likelihood function. Accordingly, the accuracy 
of posterior distribution is directly related to that of likelihood 
and prior distribution. Thus, the uncertainty in posterior 
distribution must be interpreted in that context.  

Although the least square process uses all data that are 
measured at every cycle, the Bayesian inference uses data only 
every 100 cycles. This is partly because the Bayesian inference 
process is computationally expensive and it works well when 
the crack growth is large.  

Conservative prediction of remaining useful life 
Once the distribution of m is identified at a given cycle N, 

it can be used to calculate the distribution of RUL Nf using 
Eqn. (4). The distribution of RUL represents the possibility of 
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remaining cycles before the crack size becomes the critical one. 
In this paper, the critical crack size is defined as when the half 
crack size become ac = 24 mm. This is different from the 
conventional definition of critical crack size, which depends on 
the fracture toughness. Rather, it is a threshold of crack size 
that an airline company may want to repair. Therefore, the 
threshold should be less than the critical crack size.  

Since the updated distribution of m does not follow any 
analytical distribution, MCS is used to estimate the distribution 
of RUL. In addition, the measured crack size is also randomly 
distributed according to Eqn. (8). From the RUL distribution, 
the 5th percentile is used as a conservative estimate of RUL. 
Therefore, the estimated RUL will be less than the true RUL 
with a 95% confidence. 

An important advantage of using synthetic data is that it 
allows predicting the statistical characteristic of predicted 
results. In this paper, random noises are added to the true crack 
sizes. Due to this randomness, different RUL distributions are 
expected if another set of synthetic data are used. The same 
will happen during actual experiments. Therefore, in order to 
cover actual experimental variability, the process of identifying 
damage parameters and predicting the conservative RUL is 
repeated 100 times with different sets of synthetic data. In the 
numerical examples, 68% confidence interval of 5th percentiles 
is plotted, which corresponds to mean ± one standard deviation. 

NUMERICAL EXAMPLES 
In this section, three numerical examples are presented in 

the order of increasing difference between the true and 
assumed stress intensity factor model. For all examples, an 
aluminum 7075 square plate with dimension of 0.2 m × 0.2 m 
and thickness of 2.48 mm is used with Young’s modulus E = 
71.7 GPa, Poisson’s ratio  = 0.33, and Paris model parameters 
Ctrue = 1.5x10-10 and mtrue = 3.8. Mode I fatigue loading is 
applied to the plate with the range of stress  = 78.6 MPa at R 
= 0, which corresponds to the case of fuselage pressurization 
loading. The relatively large initial crack size a0 = 10 mm is 
chosen because many SHM sensors cannot detect small cracks. 
In addition, there is no significant crack growth when the size 
is small. This size of crack is still too small to threaten the 
safety of aircraft.  

‘True’ crack growth data were calculated using XFEM 
simulations, which were performed on a structured mesh of 
square linear quadrilateral elements with characteristic length 
of 1 mm. Each cycle of fatigue crack growth was modeled until 
the half crack size reaches a threshold size of 24.0mm; i.e., the 
crack will be repaired beyond this size. Synthetic measurement 
data are then generated by adding a deterministic bias and 
random noise to the true crack size according to Eqn. (8). The 
crack size at each iteration was then used to identify the 
equivalent Paris model exponent through the use of the least-
square-filtered Bayesian (LSFB) method with the simplified 
stress intensity formula in Eqn. (2). Lastly, the RUL is 
estimated as the number of remaining cycles that the current 
crack size reaches the threshold one. 

Center crack in a finite plate 
The first example considered is that of a center crack in a 

finite plate as shown in Figure 3A. Only the right half of the 
plate was modeled with XFEM through the use of symmetry. 
The corresponding curve of the correction factor Y for the 
center crack in a finite plate is given in Figure 3B. In this 
example, it is clear that the effect of the correction factor is less 
than 5%. Therefore, it is expected that the identification of 
damage growth parameter will be close to the true one. 

A

B 

Figure 3. THE CENTER CRACK IN A FINITE PLATE MOMDEL AND 
THE CORRECTION FACTOR. (A) INITIAL CRACK GEOMETRY 
AND LOADING CONDITION, (B) CORRECTION FACTOR AS A 
FUNCTION OF CRACK SIZE. 

The crack growth went up to 2,100 cycles, and the crack 
size at 2,200 cycles becomes larger than the threshold size. 
Figure 4A shows the updated distribution of m using LSFB at 
2,100 cycles. The initial distribution was assumed to be 
uniformly distributed; i.e., m-U[3.3;4.3]. The standard 
deviation at the final update turns out to be about 0.01, which is 
significantly reduced from the initial value of 0.29. For 
comparison, the true value, mtrue, is also shown as a vertical 
dashed line. Although the true crack grows according to the 
range of stress intensity factor in Eqn. (5), the LSFB assumes 
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that it is given in Eqn. (2). The maximum likelihood value, 
3.82, is slightly overestimates the true one in order to 
compensate for the error in K. This is expected because the 
correction factor is slightly larger than one, which makes the 
crack to grow faster than it would if it was in an infinite plate. 
Figure 4B shows the distribution of crack size obtained using 
the identified parameter m. The bounds of the final distribution 
of m (e.g. 3.80 and 3.86 in Figure 4A) are used as input into 
Eqn. (3) to calculate crack lengths to the cycle of the last 
LSFB analysis. These two a-N curves are the upper and lower 
bounds of the grey region in Figure 4B which corresponds to 
the possible crack growth curves corresponding to the final 
distribution of m. For comparison, the true crack sizes 
calculated from XFEM is plotted with a solid curve. It is noted 
that the true crack sizes (black line) fall within the bounds of 
the LSFB identification (gray region). 
 

A

B 

Figure 4. COMPARISON OF XFEM CRACK GROWTH DATA WITH 
CRACK GROWTH PREDICTED FROM LSFB ANALYSIS FOR 
CENTER CRACK IN A FINITE PLATE. (A) UPDATED PDF OF 
PARAMETER M AT CYCLE 2,100, (B) DISTRIBUTION OF IDENTIFIED 
CRACK SIZE (68% CONFIDENCE INTERVAL). 

Figure 5(a) shows the 5th-percentile conservative estimates 
of RUL. The black solid line represents the true RUL—it starts 
with 1,700 because the crack will grow to the threshold size 
after 1,700 cycles from the first detection. A single life is 
consumed at every cycle. The true RUL is calculated using the 
range of stress intensity factor in Eqn. (5). In the same plot, the 
dashed line is the estimated RUL when the correction factor is 
assumed to be 1Y  ; i.e., the range of stress intensity factor is 
calculated using Eqn. (2). Due to the slight underestimate of 
correction factor, the dashed RUL is also slightly higher than 
the true one, which is an unconservative estimate. However, 
both RULs eventually meet toward the end of life. Both lines 
use the information of true parameter truem . The gray area in 

Figure 5(a) represents the 68% confidence interval (mean ± 
standard deviation) of the estimated RUL using LSFB method. 
It can be observed that the estimate of RUL converges to the 
true RUL from the conservative side. It is note that even if Eqn. 
(2) is used, the error in the stress intensity factor is 
compensated by identifying equivalent parameter m  that is 
slightly larger than the true one. 

Figure 5(b) shows the error between the maximum 
likelihood estimation of the estimated RUL distribution, max

fN , 

and the true RUL, true
fN  defined as 

 max trueerror f fNN   (14) 

The positive error means an unconservative estimate. It can be 
observed that the estimate is very conservative at the beginning 
(because the distribution of m  is initially wide), and it then 
becomes unconservative but with a smaller amplitude. 
Therefore, the maximum likelihood is consistently 
unconservative, but the 5th-percentile is always conservative. It 
is also noted that the maximum error in the unconservative side 
is less than 100 cycles, which is the inspection interval. 
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A

B 

Figure 5. ESTIMATED RUL AND ERROR FOR A CENTER CRACK IN A 
FINITE PLATE. (A) 68% CONFIDENCE INTERVAL OF 5TH-
PERCENTILE CONSERVATIVE RUL ESTIMATES, (B) 68% 
CONFIDENCE INTERVAL OF ERROR BETWEEN THE TRUE RUL 
AND THE MAXIMUM LIKELIHOOD OF THE ESTIMATED RUL 
DISTRIBUTION. 

Edge crack in a finite plate 
Next, an edge crack in a finite plate is considered as shown 

in Figure 6(a). For this case the boundary conditions were 
fixing the lower right hand corner and allowing the top right 
corner to only move in the vertical direction. It was found that 
the threshold crack size was reached at 1,018 cycles. Therefore, 
the LSFB was applied only 10 times (one at every 100 cycles). 
The correction factor corresponding to the finite effect which 
this edge crack represented is given in Figure 6(b). In this case, 
the correction factor can contribute up to 35% to the stress 
intensity factor. Therefore, it is expected that the equivalent 
damage growth parameter m  will overestimate the true one in 
proportion. 

A

B 

Figure 6. THE EDGE CRACK IN A FINITE PLATE MODEL AND THE 
CORRECTION FACTOR. (A) INITIAL CRACK GEOMETRY, (B) 
CORRECTION FACTOR AS A FUNCTION OF CRACK SIZE. 

Figure 7(a) shows the updated distribution of m  using 
LSFB at 1,000 cycles after the first detection. As expected, it 
compensates for the error in ΔK by overestimating m  by 
5.5%. It can be observed that the larger the error in ΔK 
compared to the center crack case increases the overestimation 
of m  to compensate for it. The effect of correction factor is 
moved to the damage growth parameter. The standard deviation 
of the final distribution of m  is about 0.03, which is wider 
than the case of a center crack in an infinite plate. This is 
probably caused by the increased difference between the actual 
and assumed models for the stress intensity factor. 

As the LSFB analysis results in a final distribution of m , 
the predicted crack sizes with this distribution are plotted and 
compared directly to the XFEM data in Figure 7(b). The 
XFEM data fall within the bounds of the LSFB identification. 
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A

B 

Figure 7. COMPARISON OF XFEM CRACK GROWTH DATA WITH 
CRACK GROWTH PREDICTED FROM LSFB ANALYSIS FOR EDGE 
CRACK. (A) UPDATED PDF OF PARAMETER M AT CYCLE 1,000, (B) 
DISTRIBUTION OF IDENTIFIED CRACK SIZE (68% CONFIDENCE 
INTERVAL). 

Figure 8(a) shows the 5th-percentile conservative estimates 
of RUL, similar to Figure 5(a). In this case, there was a large 
difference between the true RUL and the RUL with 1Y   
assumption. The error of up to 35% in the correction factor 
leads to an overestimation in the RUL of almost 100%. 
However, both RULs eventually managed to meet toward the 
end of life. Even if the RUL with 1Y   leads to a large 
overestimation, the 68% confidence interval of the conservative 
estimated RUL using LSFB method (gray area) stays in the 
conservative side and converges to the true RUL. Again, the 
large error in the correction factor has successfully been 
compensated by identifying equivalent parameter m  that is 
about 5.5% larger than the true one. 

Figure 8(b) shows the error between the maximum 
likelihood of the estimated distribution of the RUL and the true 
RUL. As observed previously, LSFB leads to a somewhat 

unconservative estimate of the RUL if the maximum likelihood 
data is used, but it converges to the true value fairly accurately. 

A

B 

Figure 8. ESTIMATED RUL AND ERROR FOR AN EDGE CRACK IN A 
FINITE PLATE. (A) 68% CONFIDENCE INTERVAL OF 5TH-
PERCENTILE CONSERVATIVE RUL ESTIMATES, (B) 68% 
CONFIDENCE INTERVAL OF ERROR BETWEEN THE TRUE RUL 
AND THE MAXIMUM LIKELIHOOD OF THE ESTIMATED RUL 
DISTRIBUTION. 

Center crack in a plate with holes 
The final example considers differences between the actual 

and predicted model that may be caused by localized stress 
concentrations in the plate. Four holes are inserted into the 
plate as shown in Figure 9(a). Only the right half of the plate 
was modeled with XFEM through the use of symmetry. 
Different from the two previous examples, there is no 
analytical expression of the correction factor; therefore it is 
obtained from XFEM is shown in Figure 9(b). The effect of 
holes is converted into 30 – 39% error in the stress intensity 
factor. Due to such a large stress intensity factor, the crack 
grew fast and reached the threshold size at 625 cycles. 
Therefore, only six updates were available for the LSFB 
method. 
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B 

Figure 9. THE CENTER CRACK IN A FINITE PLATE WITH HOLES 
AND THE CORRECTION FACTOR. (A) INITIAL CRACK GEOMETRY, 
(B) CORRECTION FACTOR AS A FUNCTION OF CRACK SIZE. 

Figure 10(a) shows the updated distribution of m  using 
LSFB at cycle 600. As expected it compensates for the error in 

K  by over estimating m  by 8.7%. The same conclusion can 
be drawn as previously, the larger the error in K  the more 
m  is overestimated to compensate for it. Due to this error, the 
standard deviation of m  becomes about 0.03, which is still a 
significant reduction from the initial standard deviation of 0.29. 

As the LSFB analysis results in a final distribution of m , 
the predicted crack lengths for this distribution are plotted and 
compared directly to the XFEM data in Figure 10(b). The 
XFEM data fall within the bounds of the LSFB identification. 
The identified crack size distribution is wider than the previous 
two examples, which is because the model is increasingly far 
away from the center crack in an infinite plate mode. In 
addition, the fact that only six inspections have been performed 
before reaching the threshold size may also contribute to the 
relatively wide distribution.  

A

B 

Figure 10. COMPARISON OF XFEM CRACK GROWTH DATA WITH 
CRACK GROWTH PREDICTED FROM LSFB ANALYSIS FOR A PLATE 
WITH HOLES. (A) UPDATED PDF OF PARAMETER M AT CYCLE 600, 
(B) DISTRIBUTION OF IDENTIFIED CRACK SIZE (68% CONFIDENCE 
INTERVAL). 

Figure 11(a) shows the 5th-percentile conservative 
estimates of RUL, similar to Figure 5(a). Since there is no 
analytical approximation of correction factor is available, only 
the true RUL and the 68% confidence interval of the 
conservative estimated RUL using LSFB method (gray area) 
are plotted. Note that the predicted RUL stays close to the true 
one from the conservative side. Again, the large error in the 
correction factor has successfully been compensated by 
identifying equivalent parameter m  that is about 8.7% larger 
than the true one. 

Figure 11(b) shows the error between the maximum 
likelihood of the estimated distribution of the RUL and the true 
RUL. As observed previously, despite the fact that a simplistic 
model is used in which the range of stress intensity factor does 
not account for the complexity of the geometry, the LSFB 
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method was able to estimate the RUL not only with accuracy 
but also fairly conservatively. 

A

B 

Figure 11. ESTIMATED RUL AND ERROR FOR A PLATE WITH 
HOLES. (A) 68% CONFIDENCE INTERVAL OF 5TH-PERCENTILE 
CONSERVATIVE RUL ESTIMATES, (B) 68% CONFIDENCE INTERVAL 
OF ERROR BETWEEN THE TRUE RUL AND THE MAXIMUM 
LIKELIHOOD OF THE ESTIMATED RUL DISTRIBUTION. 

CONCLUDING REMARKS 
In this paper, equivalent damage growth parameters were 

identified, which can compensate for complex geometric 
effects for SHM prognosis. The error in stress intensity factor 
was moved to the equivalent damage growth parameter, such 
that the prediction of remaining useful life is accurate. Three 
numerical examples showed that the deviation of damage 
growth parameter is proportional to the error in stress intensity 
factor. All three examples, however, showed that the estimated 
conservative remaining useful life converges to the true one 
from the safe side. Therefore, it is concluded that a simple 
model can be used to predict the behavior of complex problems 
by calculating equivalent parameters.  

The least-square-filtered Baysian (LSFB) method was 
proposed in identifying unknown model parameters. This 
method took advantages from both least-square and Bayesian 
methods. The whole idea was to use the least-square method to 
reduce the level of noise and to identify deterministic 
parameters, and then Bayesian method is used to identify 
statistical parameters. In this way, it was possible to reduce the 
number of variables that need to be updated in the Bayesian 
method. 

The method is demonstrated here updating only one 
parameter m  of Paris model the same idea can be applied to 
the parameters m and C together. This should allow for even 
more accurate results because it would allow for more 
flexibility in fitting the equivalent model. The feasibility of 
using XFEM in the calculation of the likelihood function will 
also be explored which may identify the true m and C.  
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