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ABSTRACT 
The purpose of this paper is to show equivalence between 
continuum and discrete formulations in sensitivity analysis 
when a linear velocity field is used. Shape sensitivity 
formulations are presented when the body forces and surface 
tractions depend on shape design variables. Especially, the 
continuum-discrete (C-D) and discrete-discrete (D-D) 
approaches are compared in detail. It is shown that the two 
methods are theoretically and numerically equivalent when the 
same discretization, numerical integration, and linear design 
velocity fields are used. The accuracy of sensitivity calculation 
is demonstrated using a cantilevered beam under uniform 
pressure and an arch dam crown cantilever under gravity and 
hydrostatic loading at the upstream face of the structure. It is 
shown that the sensitivity results are consistent with finite 
difference results, but different from the analytical sensitivity 
due to discretization and approximation errors of numerical 
analysis.  
 
Keywords: Shape optimization, shape sensitivity, continuum 
sensitivity, discrete sensitivity, design-dependent loading 

1. INTRODUCTION 
In structural sensitivity analysis, there are currently four broad 
categories of methods in common use for obtaining the 
derivatives of performance measures with respect to design 
variables1: (a) global finite differences, (b) discrete derivatives, 
(c) continuum derivatives, and (d) computational or automatic 
differentiation. The choice between the different options for 
calculating derivatives is influenced by three criteria: accuracy, 
computational cost and implementation effort. Since the global 
finite difference and computational differentiation are a black-
box type approach, they do not require much knowledge on 

structural analysis. However, the discrete and continuum 
derivatives require understanding the structural analysis 
procedure and differentiating the system of equations. The 
difference between these two approaches is when the structural 
equations are differentiated with respect to the design variables. 
The discrete method2,3 differentiates the system of equations 
after discretization, while the continuum method4,5,6 differen-
tiates the continuum equation first followed by discretization. 
The difference between these two methods is particularly 
important for shape design problems, because the shape design 
variables change the discretization, i.e., mesh or grid. The 
discussion for selecting appropriate sensitivity calculation 
method can be found in the literature, including possibility of 
using different numerical methods9,10,11 and possibility of 
implementing outside of finite element analysis programs using 
postprocessing data5,10,11. 
 Several comparisons between the continuum and discrete 
methods have been conducted in the literature2,7,8. Especially, 
Choi and Twu8 showed that both methods are equivalent when 
they have (1) same discretization (shape function), (2) exact 
integration (not numerical integration), (3) analytical (not 
numerical) finite element solutions, and (4) linear velocity field 
and consistent mesh perturbation. It was shown that the 
sensitivity results of both methods are different when quadratic 
and cubic design velocity fields are used. In the practical point 
of view, the requirements in (1) and (4) are reasonable, but the 
requirements in (2) and (3) can be significant. Most sensitivity 
calculations use the same finite element model with linear 
velocity field. Although nonlinear mesh perturbation can 
sometimes reduce mesh distortion (especially when it is 
integrated with solid models12), a consistent mesh perturbation 
with design velocity field is popular due to its simplicity. 
However, most finite element programs use numerical 
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integration and calculate numerical solutions. The reason for 
these two requirements is that Choi and Twu8 tried to remove 
any numerical errors in their comparison. The objective of this 
paper is to show that these two requirements are unnecessary, 
and the two formulations are equivalent in the discrete level. In 
fact, this paper is the first one that shows the equivalence of the 
two methods in the discrete level. Thus, as long as the same 
numerical integration method and matrix equation solver are 
used, the same sensitivity results are expected. However, it is 
noted that the results of the two methods are still different 
when nonlinear velocity fields are used. 
 In many complex problems, it is impractical to solve the 
sensitivity equations analytically. Numerical methods, such as 
finite element analysis, are employed to solve the sensitivity 
equations. Thus, it is appropriate that the comparison between 
sensitivity methods is performed in the discrete level. When 
both discrete and continuum methods calculate sensitivity using 
numerical methods, the former will be called a discrete-discrete 
(D-D) method, while the latter a continuum-discrete (C-D) 
method 8.  
 Most comparisons in the previous studies were focused on 
the stiffness part. The applied loads are often assumed to be 
conservative or design-independent. In this paper, shape 
sensitivity formulations are presented when body forces and 
surface tractions depend on the shape design variables. We 
showed that the final sensitivity expressions for both methods 
are identical if the same circumstances are applied. First, the 
same discretization must be used for finite element analysis. 
Second, the same numerical integration method must be carried 
out for all terms such as stiffness and loading parts in two 
approaches. The last condition is that movement of finite 
element grid points for shape design change in discrete method 
must be consistent with the parameterization method used for 
the linear design velocity field of continuum method. 

2. STRUCTURAL EQUATIONS FOR LINEAR 
ELASTICITY 
In this section, the structural equation for three-dimensional 
linear elasticity is introduced followed by discretization using 
the finite element method and numerical integration using 
Gauss quadrature. This section is necessary for the following 
sensitivity derivations. 
 Let z  be the displacement variation and ]  the space of 
kinematically admissible displacements that satisfy 
homogeneous, essential boundary conditions13. For given body 
force b  and surface traction t , the weak form of the 
structural equation in the continuum domain Ω  is to find 
displacement field z  that satisfies:  

( , ) ( ) ( )

( ),
s

T

T T

a d

d d
Ω Ω

ΩΩ Γ

≡ Ω

= Ω+ Γ ≡ ∀ ∈
∫∫∫

∫∫∫ ∫∫
z z z C z

z b z t z z

ε ε

A ]
 (1) 

where ( )zε  is the engineering strain vector, C  is the 
elasticity matrix, and 

s
Γ  is the traction boundary. In this 

paper, the superposed “–” denotes the variation of a quantity. 
For notational convenience, the forms ( , )a

Ω
z z  and ( )

Ω
zA  

are used for structural energy and external load, respectively. 
 In order to solve the structural equation (1) in general, it is 
first discretized by finite elements and then integrated using 
numerical integration. We will briefly illustrate the numerical 
integration of a single element. For more detailed explanation, 
the readers are referred to Hughes13. Consider an isoparametric, 
eight-node hexahedral element in Figure 1 in the physical and 
reference domains. In the finite element, the displacement is 
approximated using nodal displacements and shape functions 
as 
( , , ) ( , , )r s t r s t= ⋅z N d  (2) 

where ( , , )r s tN  is the matrix of shape functions and d  is the 
vector of nodal displacements. In the Galerkin approximation, 
the displacement variation, z , is approximated using the same 
shape function with displacement; i.e., = ⋅z N d  with d  
being the nodal displacement variation. In addition, the vector 
of strain in Eq. (1) can also be obtained by differentiating the 
displacement with respect to spatial coordinates as 
( )= ⋅z B dε  (3) 

where B  is the strain-displacement matrix. Note that the 
shape function in Eq. (2) is independent of shape design 
because it is defined in the reference domain, while the strain-
displacement matrix depends on the shape design because it 
contains the derivative with respect to the spatial coordinates. 

 

Figure 1: Isoparametric, eight-node hexahedron element 

 
 In this paper, we only consider numerical integration using 
Gauss quadrature. For a single element, the discretized 
structural energy form becomes 

( )
quad

( )( )
1

( , )
N

T T T
i ii

i

a w
Ω

=

⎡ ⎤
⎢ ⎥≅ =⎢ ⎥
⎢ ⎥⎣ ⎦
∑z z d B CB J d d Kd  (4) 

where 
quad
N  is the number of integration points, 

i
w  is the 

integration weight, [ / ]= ∂ ∂J x r  is the Jacobian relation 
between the physical and reference element, and K  is the 
element stiffness matrix. The subscribed ( )i  is the value of 
the function at the particular integration point. The 

(a) Finite Element (b) Reference Element 

r 

s

t

(1,1,–1) 

(1,1,1) 

(–1,1,1) 

(–1,1,–1) x1 

x2 

x3 x4 

x5 
x6 

x7 x8 

x2 
x1 

x3 
(1, –1,–1) 

(1, –1,1) 

(–1, –1,1) 



 3 Copyright © 2010 by ASME 

discretization of the load form will be discussed in Sections 5.2 
and 5.3. 

3. SHAPE DESIGN PARAMETERIZATION AND 
DESIGN VELOCITY FIELD 
In shape design, the shape of the domain that a structural 
component occupies is treated as a design variable. Suppose 
that the initial structural domain Ω  with boundary Γ  is 
changed into the perturbed domain τΩ  with boundary τΓ  in 
which the parameter τ  controls the amount of shape 
perturbation (see Figure 2). By defining the design changing 
direction to be ( )V x , the material point at the perturbed design 
can be denoted as ( )τ τ= +x x V x . Since the shape changing 
process is similar to the dynamic process with τ  being time, 
the design changing direction, ( )V x , is called a design 
velocity. Since every shape design variable changes domain, it 
must be represented by a design velocity field. In the following 
derivations, we will consider a single shape design variable. 

 

  
 

Figure 2: Variation of domain according to shape change 

 
 It is important to understand the relation between the shape 
design variable and the design velocity field. In addition, as the 
sensitivity equation is going to be solved numerically in the 
discrete domain, it is necessary to obtain the discrete design 
velocity from the above continuous design velocity field, 
( )V x . As an illustration, consider a two-dimensional domain in 

Figure 3 whose boundary is parameterized using parametric 
curves. A shape design variable is defined such that control 
point p1 moves in the horizontal direction. As the domain is 
changed according to the shape design variable, the locations of 
nodes will also be changed. The direction of coordinate change 
of each node is defined as a discrete design velocity vector. The 
comparison in this paper assumes that both the continuum and 
discrete methods use the same linear, discrete design velocity 
vector. 

4. SHAPE DESIGN SENSITIVITY EQUATIONS—
CONTINUUM DERIVATIVES 

4.1  Material Derivative Formulas 
 

  

Figure 3: Shape design variable and the corresponding design 
velocity vector at discrete domain 

 
In the continuum theory of design sensitivity analysis, the 
solution ( )τ τz x  of structural problems at the perturbed shape 
is assumed to be a differentiable function with respect to the 
shape design variable. Then, the total change in the solution is 
composed of the change at the fixed location (partial 
derivative) and the change caused by movement of the material 
point. Since this is similar to the material derivative concept in 
continuum mechanics, the terms material derivative has been 
adopted for shape sensitivity17. The material derivative of 
( )τ τz x  at ∈ Ωx  is defined as 

( )
0

( ) ( )
lim τ

τ

τ

τ→

+ −
=

z x V x z x
z�  (5) 

which is the rate of change in displacement as the shape of the 
domain is perturbed in the direction of ( )V x . Note that in a 
strict sense the material derivative in Eq. (5) is the variation of 
function ( )τ τz x   in the direction of V(x)6. If the variation of 
a function is continuous and linear with respect to V(x), then 
the function is differentiable. For rigorous discussion of 
differentiability, refer to Haug et al.16.  
 Useful formulas for deriving sensitivity expressions are 
presented first. The Jacobian relation between the initial and 
perturbed design can be written as 

τ τ τ
∂ ∂

= = + = + ∇
∂ ∂

x V
T I I V

x x
 (6) 

Note that the above Jacobian T  should not be confused with 
the Jacobian J  between the physical and reference domains 
in finite element discretization. The material derivative of the 
Jacobian and that of the determinant can be obtained as6 
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0

d
div

d
τ

τ
=

=T V  (8) 

 The design sensitivity equation is obtained by 
differentiating the structural equation (1). The derivative of the 
energy form then becomes  

0

( , ) ( , ) ( , )
d
a a a

d τ τ τ
τ

τ Ω Ω
=

′= + Vz z z z z z�  (9) 

The first term on the right-hand side represents implicit 
dependence on the design through the field variable, z , while 
the second term, the structural fictitious load, denotes explicit 
dependence on the design velocity ( )V x . In a similar way, the 
derivative of the load form becomes 

0

( ) ( )
d

d τ τ
τ

τ Ω
=

′= Vz zA A  (10) 

Note that there is implicitly dependent term in the derivative of 
the load form because all applied loads are explicitly dependent 
on the design variable. Detailed expressions of ( , )a ′V z z  and 
( )′
V zA  will be presented in the following subsections. 

 Using Eqs. (9) and (10), the design sensitivity equation is 
obtained as 

( , ) ( ) ( , ),a a
Ω

′ ′= − ∀ ∈V Vz z z z z z� A ]  (11) 

Note that by substituting z�  into z , the left-hand side of the 
design sensitivity equation (11) takes the same form as that of 
the structural analysis in Eq. (1). Thus, the same stiffness 
matrix can be used for sensitivity analysis and structural 
analysis, with different right-hand sides. 

4.2  Energy Form 
The explicitly dependent term in Eq. (9) is a linear function of 
design velocity, given in Kim et al.14 

( , ) [ ( ) ( ) ( ) ( )

( ) ( ) ]

T T

T

a

div d
Ω

′ = +

+ Ω
∫∫V V Vz z z C z z C z

z C z V

ε ε ε ε

ε ε
 (12) 

where ( )V zε  is the explicitly dependent term of ( )zε  on 
design velocity ( )V x . In Eq. (12), /

i i
div V x= ∂ ∂V  is the 

divergence of the design velocity, and [ / ]
i j
V x∇ = ∂ ∂V  is 

the gradient matrix of the design velocity. 
 The structural fictitious load in Eq. (12) can be 
approximated using the same finite element discretization with 
the structural equation. First, the design velocity field, ( )V x , 
should be discretized. Let us assume that the discrete design 
velocity vector is available at each node. Then, the divergence 
of the design velocity can be obtained using the derivative of 
shape functions as 

3 8

, ,1 1 ,2 2 ,3 3
1 1

( )k k k
i i k k k

i k

div V N V N V N V
= =

= = + ++∑ ∑V  (13) 

where 
,

/
k i k i
N N x= ∂ ∂  is the spatial derivative of the shape 

function and k
i
V  is the i-th component of design velocity at k-

th node. Note that we use linear design velocity field; i.e., the 
design velocity varies linearly within the element. The gradient 
matrix of the design velocity can be obtained using a similar 
way, as 

1 1 1

1 2 3

12 2 2

1 2 3

3 3 3

1 2 3

V V V r r r
r s t x x x
V V V s s s

r s t x x x
V V V t t t

x x xr s t

−

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎡ ⎤∇ = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

V JJ�  (14) 

Since the design velocity vector, ( )V x , has the same 
interpolation with the displacement, J�  term in the above 
equation can be easily calculated. 
 The explicitly dependent term of strain, ( )V zε , in Eq. (12) 
can be obtained from  

( )= −V z S Gdε Λ  (15) 

where 

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  (16) 

9 9×

⎡ ⎤∇⎢ ⎥
⎢ ⎥= ∇⎢ ⎥
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V 0 0
0 V 0
0 0 V

Λ  (17) 
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0 0 0 0 0 0

N N N
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N N N
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣ ⎦

G "

⎥
⎥
⎥
⎥
⎥

(18) 

The constant S  matrix maps the second-order tensor to the 
vector, and G  is the second kind of strain-displacement 
matrix.  
 Using Gauss quadrature and Eqs. (3) and (15), the 
explicitly dependent term in Eq. (12) can be approximated as  
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(

)
i=1

+

quad

( )( )

( , )
N

T T T T
i

T T

ii

a w

div

⎡
⎢′ ≅ − ⎢
⎢⎣

⎤− ⎥
⎦

∑V z z d G S CBd

B CS Gd B CBd V J

Λ

Λ  

(19) 

Equation (12) is the structural fictitious load in the continuum 
domain, while Eq. (19) is its counterpart in the discrete 
domain. 

4.3  Body Forces 
In the perturbed design, the load form for the body force can be 
written as 

T d
τ

τ
τ τ τΩ Ω

= Ω∫∫∫ z bA  (20) 

An important idea of the continuum approach is to transform 
first the perturbed domain into the original domain using 
transformation relation: d dτΩ = ΩT . The material derivative 
of the load form in Eq. (20) then becomes 

( ) ( )T T div d
Ω

⎡ ⎤′ = ∇ ⋅ + Ω⎢ ⎥⎣ ⎦∫∫∫V z z b V z b VA  (21) 

where /∇ = ∂ ∂b b x  is the gradient matrix of the body force 
and div = ∇⋅V V . Here we assume that that the body force 
does not change in the fixed spatial location. If the same 
discretization and numerical integration are used with the 
discrete structural equation, the above sensitivity expression for 
the body force can be discretized by 

quad

( ) ( ) ( )
1

( ) ( )
N

T T
i i i i

i

w div
=

⎡ ⎤
⎢ ⎥′ ≅ ∇ ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦
∑V z d N b V b V JA  (22) 

4.4  Surface Traction—Pressure Load 
For simplicity of comparison, we only consider the pressure 
load that applies to the normal direction to the surface; i.e., 
p=t n . In the perturbed design, the load linear form for the 

surface traction can be written as 

( ) ( )
s

T p d
τ

τ

τ τ τ τΩ Γ
= Γ∫∫z z nA  (23) 

In the material derivative of the above load linear form, we use 
the property that the pressure does not change in the fixed 
spatial coordinate. However, the normal direction and the area 
of the surface can be changed according to the shape design 
variables. In order to simplify the presentation, the material 
derivative of the infinitesimal surface element is derived first. 
Consider an infinitesimal surface element in the perturbed 
design (see Figure 4) as 

Td dτ τ
−Γ = Γn T T n  (24) 

where T  is the Jacobian matrix between the initial and 
perturbed design. Since only T  depends on the design in the 
above expression and =T I  when 0τ = , the material 
derivative of this surface element becomes6 

( )
0

( )

( )

T

T

d d d
d d d

d d d
div d d

τ τ
τ

τ τ τ
−

=

⎡ ⎤Γ = Γ + Γ⎢ ⎥⎣ ⎦

= Γ−∇ Γ

n T n T n

V n V n

 (25) 

 

  

Figure 4: Infinitesimal surface element in the initial and 
perturbed domain 

 
Using Eq. (25), the material derivative of Eq. (23) becomes 

( ) ( ) ( )
s

T T Tp pdiv p d
Γ

⎡ ⎤′ = ∇ + − ∇ Γ⎢ ⎥⎣ ⎦∫∫V z z V I V I V nA  (26) 

 Before discretization of the above sensitivity expression, we 
need to introduce a transformation between the physical surface 
and the surface in the reference domain because the surface 
traction is applied in the normal direction to the boundary of 
the domain (see Figure 4). An infinitesimal surface area with 
unit normal vector can be transformed into the reference 
domain as 

Td dr ds drds
r s

−∂ ∂
Γ = × = ⋅

∂ ∂
x x

n J J k  (27) 

where [0, 0,1]T=k  is a unit vector, and r and s are two 
coordinate directions in the reference domain. By substituting 
Eq. (27) into Eq. (26) and by applying numerical integration, 
the above sensitivity expression for the surface traction can be 
discretized by 

{

} ( )

quad

( )
1

( ) ( )

( ) ( ) ( )
N

T T T
i i

i

T T

i i

w p pdiv

p

=

−

⎡
⎢′ ≅ ∇ +⎢
⎢⎣

⎤− ∇ ⋅ ⎥⎥⎦

∑V z d N V I V I

V J J k

A
 (28) 

dr 

ds 

k 

Reference plane 

Initial surface Perturbed surface 

n
τn

dΓ d τΓ
T

J
τJ
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5. SHAPE DESIGN SENSITIVITY EQUATIONS—
DISCRETE DERIVATIVES 
In the discrete approach, the design sensitivity equation is 
obtained by taking the derivative of the discrete system of 
equations. A key idea here is that the differentiation takes place 
between discretization and numerical integration. If the 
differentiation occurs after numerical integration, it is called the 
semi-analytical method in which finite different derivative is 
used to approximate the derivatives of stiffness matrix and load 
vector.  

5.1  Stiffness Part 
For the stiffness part, we differentiate Eq. (4) to obtain 

( )T T T′ ′= +d Kd d Kd d K d�  (29) 

where the first term on the right-hand side is the implicitly 
dependent term through the nodal displacements, while the 
second term is the explicitly dependent term through the 
stiffness matrix, whose expression for a single element can be 
obtained as 

( ) ( )( )
1

( )
( )

quadN
T T T T

i ii
i

T
i

w
=

⎡′ = +⎢
⎣

⎤
+ ⎥

⎥⎦

∑d K d d B CBd B CBd J

B CBd J
i

� �
 (30) 

Since the strain-displacement matrix is composed of the 
derivative of the shape functions, which is independent of 
shape design, and the inverse of the Jacobian matrix, the core 
of the above expression is the material derivative of the 
Jacobian matrix and its determinant.  Indeed from the material 
derivative formula in Haug et al.6, it has been shown that  

0

d
div

d τ
τ

τ
=

=J V J  (31) 

1 1

0

d

d τ
τ

τ
− −

=

= − ⋅∇J J V  (32) 

Using Eq. (32), it is possible to show that the derivative of the 
strain-displacement matrix becomes = −B S GΛ� . Thus, by 
substituting this relation and Eq. (31) into Eq. (30), we can 
obtain the explicitly dependent term in the discrete approach as 

(

)
1

( )( )

quadN
T T T T T T

i
i

T T
ii

w

div div

=

⎡
⎢′ = − +⎢
⎢⎣

⎤− − ⎥
⎦

∑d K d d G S CBd B CS Gd

B CBd V B CBd V J

Λ Λ
 (33) 

which is identical with the continuum form after discretization 
in Eq. (19). In the following subsection, we will show that the 
same is true for the load forms. 
 The derivative of the applied load, ′F , will be presented in 
the following subsection. Then, the discrete design sensitivity 
equation is obtained as 

′ ′= −Kd F K d  (34) 

5.2  Body Forces 
After discretization and numerical integration, the load linear 
form corresponding to the body force can be written as 

( ) T
bΩ

≅z d FA  (35) 

where  
quad

( ) ( ) ( )
1

N
T

b i i i i
i

w
=

= ∑F N b J  (36) 

 In the discrete sensitivity formulation, the discrete force in 
Eq. (36) is differentiated with respect to the design. Since the 
shape function is defined in the reference element, it is 
independent of shape design. Thus, it is only necessary to 
differentiate the body force and the determinant of Jacobian. 
The derivative of the discrete body force becomes 

quad

( ) ( ) ( ) ( ) ( )
1

N
T

b i i i i i i
i

w
=

⎛ ⎞⎟⎜′ = ∇ + ⎟⎜ ⎟⎜⎝ ⎠∑F N b V J b J
i

 (37) 

In the above equation, we use the property of 0′ =b . It is 
also possible to show that div=J V J

i
. Then, by comparing 

Eqs. (22) and (37), the sensitivity expressions of the body 
force are identical for the continuum and discrete methods if 
the same discretization and numerical integration are used. 

5.3  Surface Traction—Pressure Load 
After discretization and numerical integration, the load linear 
form corresponding to the surface traction can be written as 

( ) T
sΩ

≅z d FA  (38) 

where  

( )
quad

( ) ( )
1

N
T T

s i i i
i

w p −

=

= ⋅∑F N J J k  (39) 

The above pressure load can be differentiated to obtain the 
following sensitivity expression: 

)

quad

( )
1

( )

( )

( )

N
T T T T

s i i
i

T

i

w p p

p

− −

=
−

⎛′ ⎜= ∇ ⋅ + ⋅⎜⎜⎝

+ ⋅

∑F N V J J k J J k

J J k

i

i
 (40) 

where we use the property of 0p ′ = . Now we can use the 
property of div=J J V

i
 and ( )T T T− −= ∇ ⋅J V Ji  to yield 

( )

quad

( ) ( )
1

( )

( ) ( )
N

T T T
s i i i

i
T

i

w p pdiv p
=

−

⎡ ⎤′ = ∇ + + ∇⎢ ⎥⎣ ⎦

× ⋅

∑F N V I V I V

J J k
 (41) 

It is obvious that Eq. (41) is identical with the expression in 
Eq. (28). 
 So far, we have shown that the discrete sensitivity 
expressions from both continuum discrete approaches are 
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identical. However, this conclusion is based on the fact that 
both approaches use the same discretization, numerical 
integration, and the same discrete linear design velocity vector. 
This is somewhat different from the observation by Choi and 
Twu8 in which additional requirements are suggested, such as 
exact integration and exact solution. 

6. NUMERICAL EXAMPLES 
In this section we present two numerical examples. The 
purpose of the first example is to show that the sensitivity 
results may be consistent with the numerical solution, but it can 
be different from the analytical one because the numerical 
solution has errors associated with approximation. The second 
example demonstrates the use of the sensitivity calculation with 
body force and surface traction loading simultaneously. 

6.1  Cantilever Beam under Uniform Pressure Load 
Consider a cantilevered beam under uniform pressure as shown 
in Figure 5. The following geometric and material properties 
are used: L = 5m, b = 0.25m, h = 0.4m, q = 10kN/m2, E = 20 
GPa, and ν = 0.2. From the classical beam theory, the 
displacement of the tip is given as 

4 4

tip 3

3

8 2

qL qL
w

EI Ebh
= − = −  (42) 

The shape of the beam is related to the length and height of the 
beam. By differentiating the above equation with respect to 
these two shape parameters, analytical sensitivities can be 
obtained as  

3
tip

3

6w qL

L Ebh

∂
= −

∂
 (43) 

4
tip

4

9

2

w qL

h Ebh

∂
=

∂
 (44) 

 For numerical solution, the beam structure is discretized 
using 240 eight-node hexahedral elements (see Figure 5). For 
structural analysis the EFEAPpv18 (Extended Finite Element 
Analysis Program for Personal Version) is used. Figure 6 
shows the transverse displacement from analytical solution and 
finite element solution. Due to approximation errors, the finite 
element solution is stiffer than the analytical one. 

  

Figure 5: Cantilevered beam under uniform pressure load 

 

Figure 6: Transverse displacements;   
— : analytical solution, - - - : finite element solution 

 For the purpose of comparison, sensitivity results are 
presented using three methods: sensitivity from global finite 
difference, sensitivity of discrete solution, and the sensitivity of 
continuous solution from Eqs. (43) and (44). After a series of 
trial-and-errors, a perturbation size of 0.001 is selected for the 
global finite difference. Since both the continuum and discrete 
approaches are identical, only one method is presented in the 
name of sensitivity of discrete solution. Table 1 and Table 2 
show the transverse displacement sensitivity with respect to 
beam length and height, respectively. It is noted that the 
sensitivity results from global finite difference and continuum 
approach are almost identical. This agreement will depends on 
perturbation size in finite difference calculation. Nonlinear 
effect will cause error for large perturbation size, whereas 
numerical noise will be dominated for too small perturbation 
size. This has been a major bottleneck of finite difference-
based sensitivity calculation.  

 
Table 1: Transverse displacement sensitivity with respect to 

beam length 

L (m) 
Finite 

difference 
sensitivity 

Sensitivity of 
discrete 
solution 

Sensitivity of 
continuous 

solution 
0.00 0.000E+00 0.000E+00 0.000E+00 
0.50 -7.506E-07 -7.506E-07 -5.859E-06 
1.00 -4.960E-05 -4.960E-05 -4.688E-05 
1.50 -1.603E-04 -1.603E-04 -1.582E-04 
2.00 -3.721E-04 -3.721E-04 -3.750E-04 
2.50 -7.152E-04 -7.153E-04 -7.324E-04 
3.00 -1.218E-03 -1.218E-03 -1.266E-03 
3.50 -1.904E-03 -1.904E-03 -2.010E-03 
4.00 -2.794E-03 -2.795E-03 -3.000E-03 
4.50 -3.909E-03 -3.910E-03 -4.271E-03 
5.00 -5.257E-03 -5.258E-03 -5.859E-03 

 

0.0              1.0              2.0

1.0
0.0

-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0

L (m) 

D
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ent (m
m

) 
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q 

b

h
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Table 2: Transverse displacement sensitivity with respect to 
beam height 

h(m) 
Finite 

difference 
sensitivity 

Sensitivity of 
discrete 
solution 

Sensitivity of 
continuous 

solution 
0.150 1.402E+00 1.402E+00 2.778E+00 
0.200 5.733E-01 5.734E-01 8.789E-01 
0.250 2.694E-01 2.695E-01 3.600E-01 
0.300 1.409E-01 1.409E-01 1.736E-01 
0.350 8.040E-02 8.043E-02 9.371E-02 
0.400 4.858E-02 4.860E-02 5.493E-02 

 
 It is also noted that both sensitivity results are different 
from the sensitivity of continuous solution obtained from Eqs. 
(43) and (44). The errors in sensitivity results are caused by 
discretization. Finite difference and discrete-discrete 
sensitivities are obtained by differentiating this erroneous 
discrete equation. On the other hand, the continuum-discrete 
sensitivity also has an error because the analytical sensitivity 
equation is solved through discretization. If the continuum 
sensitivity equation is analytically solved, then the sensitivity 
results will be identical to the exact one (last column) of the 
two table. This leads to the conclusion that the continuum-
discrete and discrete-discrete sensitivity results are consistent 
with the numerical solution, but that does not mean that the 
obtained sensitivity results are exact. They are obtained with 
the inherent errors in the numerical solution. The effect of these 
errors is magnified when the thickness of the beam is small. 

6.2  Arch Dam 
Consider a crown cantilever of an arch dam as shown in Figure 
7. For the crown cantilever of a double-curvature arch dam, as 
shown in Figure 7, a polynomial of mth-order (usually m = 2 or 
3) is used to determine the curve of the upstream face and 
another polynomial is used to determine the thickness. In this 
paper, the crown shape is defined using Hermit splines15. For 
the fixed four vertical locations in Figure 7, the horizontal 
locations of four reference points of up- and down-stream are 
as follows 

1 1

2 2

3 3

4 4

(1 )

(1 )

(1 )

0

u b b d b b

u m m d m m

u u u d u u

u d c

Y PT Y P T

Y P T Y P T

Y P T Y PT

Y Y T

= − = −
= − + = −
= − + = −
= =

,

 (45)  
where ,

ui di
Y Y  are upstream and downstream interpolation 

node coordinates, respectively. Thickness of the crown 
cantilever at desired level Z  is obtained from the following 
equation: 

( ) Spline( , , ) Spline( , , )
d u di i ui i

T z Y Y Y H Z Y H Z= − = − (46) 

 For this shape, design variables are the crown thicknesses 
( , , ,
b m u c
T T T T ) and the overhang parameters ( , ,

b m u
p p p ) at the 

interpolation stations (see Figure 7). For design sensitivity 
analysis, the values of the initial design variables are 
summarized in Table 3.  
 Two loadings are considered in the process of shape 
sensitivity analysis: (1) body force due to gravity and (2) 
surface traction due to the hydrostatic pressure (with full 
reservoir). The pressure load has triangular distribution along 
the height of the cantilever. For design sensitivity analysis and 
optimization purpose, hydrostatic and gravity loads are 
simultaneously applied to the finite element model. The 
following material properties of the arch dam are used: 
Young’s modulus E = 21 GPa, Poisson’s ratio ν  = 0.25, and 
specific weight 

c
γ  = 24,000 N/m3. 

 

 

Figure 7: The profile of crown cantilever and the finite element 
mesh at the initial design 

 
Table 3:  Initial values of shape design variables 

Hc(m) Tc(m) Tu(m) Tm(m) Tb(m) Pu Pm Pb 
80 10 20 34 50 .05 .10 .7 

 
 Design sensitivities of displacements and principal stresses 
are plotted in Figure 8 and Figure 9. In Figure 8, both the 
vertical and lateral displacement sensitivities are matched well 
with those from the finite difference method. Sensitivity results 
are presented along the height of the cantilever at the middle 
layer. A perturbation size of 0.005xΔ =  is used for the 
finite difference sensitivity. 

 



 9 Copyright © 2010 by ASME 

 

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

5.0E-04

1.0E-03

0 10 20 30 40 50 60 70 80
Height

U'y(FDM) U'z(FDM) U'y(Continuum) U'z(Continuum)

Pressure 

Body force

 

 Figure 8. Displacements sensitivity of body force and 
pressure load w.r.t 

u
T  
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 Figure 9: Principles stress sensitivity of body force and 
pressure load w.r.t 

u
T  

7. CONCLUSIONS AND DISCUSSIONS 
In this paper, we presented shape sensitivity formulations for 
structures under design-dependent loadings, such as body 
forces and surface tractions. It is shown that the discrete and 
continuum approaches are identical in the discrete level when 
the same discretization, numerical integration, and linear design 
velocity fields are used. These requirements are more flexible 
than the previous observation by Choi and Twu8 in which the 
exact integration and exact analytical solutions are required.  
It is also shown that the numerically calculated sensitivity 
results may be consistent with the finite difference sensitivity 
results, but they can be different from the analytical 
sensitivities because of approximation error.  
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