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In this paper, we proposed a two-stage hybrid reliability analysis framework based on 
the surrogate model, which combines the first-order reliability method and Monte Carlo 
simulation with a doubly-weighted moving least squares (DWMLS) method. The first stage 
consists of constructing a surrogate model based on DWMLS. The weight system of 
DWMLS considers not only the normal weight factor of moving least squares, but also the 
distance from the most probable failure point (MPFP), which accounts for reliability 
problems. An adaptive experimental design scheme is proposed, during which the MPFP is 
progressively updated. The approximate values and sensitivity information of DWMLS are 
chosen to determine the number and location of the experimental design points in the next 
iteration, until a convergence criterion is satisfied. In the second stage, MCS on the 
surrogate model is then used to calculate the probability of failure. The proposed method is 
applied to four benchmark examples to validate its accuracy and efficiency. Results show 
that the proposed surrogate model with DWMLS can estimate the failure probability 
accurately, while requiring fewer original model simulations. 

Nomenclature 
n  = number of input random variables 
N = number of experimental points 
x  = vector of input random variables 
  =  reliability index 

HL  =  reliability index by Hasofer-Lind algorithm 

  =  mean 

  =  standard deviation 
( )g X  =  limit state function 

ˆ ( )g X  =  approximate limit state function/ response surface function 

addX  =  new added experimental points in any iteration 

MLS =  moving least square 
DWMLS =  doubly weighted moving least square 
SVR =  support vector regression 
ANN =  artificial neural networks 
MPFP =  most probable failure point 
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MCS =  Monte Carlo Simulation 
FORM =  first order reliability method 
SORM =  second order reliability method 
H-L =  Hasofer-Lind algorithm 
RSM =  response surface method 
LHD =  Latin hypercube design 
FEA =  finite element analysis 
CFD =  computational fluid dynamics 
COV =  coefficient of variation 
 

I. Introduction 
T has been well recognized that uncertainties in engineering systems (e.g., applied loads, material properties and 
geometric tolerances) can result in catastrophic failure and should be managed appropriately. The traditional 

factor-of-safety approach to compensate for uncertainties often leads to either un-conservative or too-conservative 
designs. Reliability analysis takes into account these uncertainties in evaluating system’s safety, which has become 
an important part of recent engineering design. There has been a growing interest in the use of reliability methods 
for structural design and safety assessment1-4. 

However, with the development of advanced numerical simulation methods, which commonly take several hours 
to perform a single evaluation, classical reliability methods can easily become impractical. Monte Carlo Simulation 
(MCS) and its variants demand tremendous computational resources that prohibit its practicality. On the other hand, 
approximation methods, such as first-order reliability method (FORM) and second-order reliability method 
(SORM), have issues with relatively poor performance in accuracy. Therefore, it seems reasonable to use a response 
surface or surrogate model to approximate the performance function and apply either MCS to calculate reliability.  

However, reliability analysis is different from approximation problems, from which the surrogate model 
originated. In conventional approximation problems, the general criterion of a surrogate model is to minimize the 
error between the true function and the surrogate model in the entire domain of interest. In reliability analysis, 
however, it is important to identify a limit state, which is the boundary between safe and failed regions, especially 
near the most probable failure point (MPFP). In this paper, a doubly weighted moving least squares (DWMLS) 
method is proposed, which takes into account the characteristic feature of reliability analysis. The proposed 
DWMLS method consists of two weighting schemes—the first weight considers the distance between the sampling 
point and the prediction point, while the second considers the distance between the sampling points and the MPFP. 
A hybrid, two-stage reliability analysis framework is proposed, which takes full advantage of the FORM/SORM, 
MCS, adaptive experiment design and DWMLS to achieve both accuracy and efficiency. 

The remainder of this paper is organized as follows. In Section II, a brief literature review of various surrogate 
models in reliability analysis is presented. In Section III, a general principle of the moving least squares method is 
stated, after which the newly added weighting system of DWMLS is detailed. In Section IV, a new adaptive 
experimental design procedure is illustrated in detail. A complete flowchart of the proposed hybrid reliability 
analysis framework is then presented in Section V. Four numerical examples are presented in Section VI, which 
highlight the capabilities of the proposed method and demonstrate its accuracy and efficiency, followed by a 
summary and conclusions in Section VII. 

II. Review on surrogate models in reliability analysis 
The increased complexity of simulations on real systems stimulates the development of surrogate models that 

approximate the behavior of complex systems, improve their validation process, and aid optimization of the system7. 
Surrogate models are developed in order to analyze experimental data and to build empirical models based on 
observations. These models were first introduced in design optimization and applied to reliability analysis and 
design because of their merits in efficiency. 

Wong5 first proposed a complete, quadratic form polynomial and applied it to reliability analysis. In his work, 
the number of polynomials and the required sampling points increase rapidly with the number of random variables. 
In order to reduce the number of sampling points, Bucher and Bourgund3 proposed a two-iteration quadratic 
polynomial without cross-terms. Rajashekhar and Ellinwood6, and Liu and Moses42 improved this approach by 
updating the surrogate model parameters until a convergence criterion was satisfied. Kim and Na8 proposed a 
sequential approach to the surrogate model where the gradient projection method is used to ensure that the sampling 
points are located near the failure surface. Zheng and Das9 proposed an improved surrogate model and applied it to 
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reliability analysis of a stiffened plate structure. Guan and Melchers10 evaluated the effect of surrogate model 
parameter variation on reliability. Kaymaz and McMahon11 suggested a new surrogate model, in which a weighted 
regression method was applied instead of normal regression. Inspired by Kaymaz and McMahon’s method, Nguyen 
and Sellier12 improved the weighted regression method where the fitting points were weighted according to their 
distance from the true failure surface and the estimated design point. 

However, when the limit state function is highly nonlinear, polynomial-based surrogate models can perform 
poorly because they try to approximate the performance function globally. Thus, advanced surrogate modeling 
methods were introduced to replace traditional global polynomial-based models. Choi and Grandhi13, and Kim and 
Wang14 introduced polynomial chaos expansion for reliability analysis and design. Papadrakakis et al. 15, and 
Hurtado and Alvarez16 used Neural Networks to reliability analysis in conjunction with Monte Carlo Simulation. 
Gomes and Awruch17 compared Neural Networks with FORM, MCS, and the Importance Sampling technique. 
Kaymaz18, and Panda and Manohar19 proposed the Kriging method to reliability analysis and compared it with the 
most common surrogate models. Echard and Gayton20 presented a Kriging enhanced MCS method in reliability 
analysis and the test problems have demonstrated its efficiency and accuracy. Most21 presented an efficient adaptive 
response surface approach for reliability analysis, where support vector machines were used to classify the failure 
and safe domain. Guo and Bai22 proposed a least squares support vector machine for regression into reliability 
analysis and the results demonstrate excellent accuracy and smaller computational cost than the reliability method 
based on support vector machines. 

Moving least squares (MLS) is a local weighted least squares method, originally introduced by Lancaster and 
Salkauskas23 for smoothing and interpolating data. After that, it is widely used to obtain approximations in meshfree 
methods and structural optimization because of its ‘localized’ approximation property24. Unlike other surrogate 
models, the MLS has no expensive inner parameter optimization during the adaptive modeling process. Therefore, 
Krishnamurthy25 compared the MLS method with other local methods, such as Kriging, and found it to be more 
accurate and computationally effective for the examples considered. Bucher26 carried out research aimed at 
comparing the performance of these response surfaces and its application in reliability analysis. In Kang and Koh’s 
research27, MLS has made it possible to derive the approximation function closer to the limit state function and 
exhibited improved performance in terms of significant reduction of the number of structural analyses and 
sensitivity accuracy of the reliability index to the random variables. Youn and Choi41, and Song and Lee28 have 
applied the moving least squares method to reliability based design optimization and MLS performed well in 
uncertainty design.  

III. Doubly weighted moving least squares (DWMLS) 
The basic idea of surrogate modeling in reliability analysis is to replace the performance function with an 

approximate function, whose value can be computed easily. Compared with the global polynomial regression 
method, the moving least squares (MLS) method is a local regression and a relatively new surrogate modeling 
technique. The MLS method can be found extensively in the element-free Galerkin method and computer graphics. 
In this Section, the basic principle of the MLS method is presented first, followed by an introduction to a new 
weighting scheme that works better for reliability analysis. 

A. Basic principle of moving least squares 
We consider a performance function )(xg in an n-dimensional space of random variables, in which the vector of 

random variables is defined as T
nxxx ],...,,[ 21x . In the MLS method, the performance function is approximated 

by 

 Tˆ ( ) ( ) ( )g x p x a x  (1) 

where T
1 2( ) [ ( ), ( ),..., ( )]mp p pp x x x x is a vector of m  polynomial basis functions, and 

1

T
2a( ) [ ( ), ( ),..., ( )]ma a ax x x x is a vector of corresponding coefficients. It is noted that in global regression methods, 

the coefficients are constant, while they are functions of x in MLS. In this paper, the basis function ( )p x  is defined 

using polynomials up to the second order without cross terms, as 

 2 2 2 T
1 2 1 2( ) [1, , ,..., , , ,..., ]n nx x x x x xp x  (2) 
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where the dimension of ( )p x  is m = 2n + 1. However, it is possible that the basis function can include cross-terms, 

as well as higher order terms. 
The unknown coefficients in (1) can be calculated by minimizing the error between the performance function 

and its approximation at discrete points. In order to do that, N sample points are first selected from the input space; 
these samples are denoted by , 1, ,I I Nx  . Then, the performance functions, ( )Ig x , are calculated at these sample 

points. This process may involve numerical simulations, such as finite element analysis or computational fluid 
dynamics. At a given prediction point x, the MLS technique determines the unknown coefficients by minimizing the 
error between actual and approximated values of the performance function with weights, as 

 T 2

1

( ) ( )[ ( ) ( ) ( )]
N

I I I
I

R w g


  x x x x p x a x  (3) 

The above formula can also be written in a matrix form as: 

 T( ) [ ( ) ] [ ( ) ]R   x Pa x g W Pa x g  (4) 

where g, P and W are defined as: 

 T
1 2[ ( ), ( ),..., ( )]Ng g gg x x x  (5) 

 

T
1

T
2

T

*

( )

( )

( )N N m

 
 
 
 
 
  

p x

p x
P

p x


 (6) 
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 (7) 

In (7), the weight ( )Iw x x takes the following Gaussian form: 

 

2 2

2

( || ||/ )( )
if || ||

( ) (1 )

0 otherwise
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I

e e
D

w e

 



  



 
 

   



Ix x

I
I

x x
x x  (8) 

where the parameter is used to control the weight function curve, ID defines the domain of the influence of point 

Ix , Ix x is the Euclid distance between sampling point Ix and prediction point x, and /I Ir D x x is a 

normalized distance. In Fig.1, the shape of Gaussian weight function w(r) with different values of   is 
demonstrated. 
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Figure.1. Shape of the Gaussian weight function with different control parameter 
 

 
The minimum of the square error ( )R x can be achieved by vanishing the partial derivatives with respect to 

unknown coefficients, as 

 ( )
0, 1, ,

i

R
i m

a


 


x   (9) 

The conditions in Eq. (9) yield the following system of linear equations:  

 ( ) ( ) ( )A x a x b x  (10) 

where A(x) and b(x) are defined by: 

 T( ) ( )A x P W x P  (11) 

 T( ) ( )b x P W x g  (12) 

Once the unknown coefficients, a(x), are calculated by solving Eq. (10), Eq. (1) is used to approximate the 
performance function. 

As can be seen from the weight scheme in Eq. (8), the weight Iw , which is associated with sampling point Ix , 

decreases as x moves away from Ix . The contribution of those points whose distance from x is greater than 

ID vanishes, and thus, there is no need to include them in the regression process. Therefore, the dimension of the 

matrices in the MLS process is much smaller than the total number of sample points N. It is important to note that at 
a given prediction point x, there must be enough sample points xI such that the coefficient matrix A(x) should be 
non-singular. Also, it should be noted that the coefficients, a(x), must be calculated at every prediction point. 

B. Doubly weighted moving least squares 
In MLS, it is rational to impose a heavy weight to the points that are close to the prediction point and a light 

weight for more distant points in order to better approximate the performance function. In reliability analysis, 
however, the most important region is around the MPFP, because it contributes most to the probability of failure. 
Thus, we introduce an additional weighting scheme into MLS where the distances of sampling points to the 
prediction point x and to the MPFP are considered simultaneously. As discussed in the previous section, the first 
weighting scheme is based on the distance of sampling points xI to the prediction point x: 
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 ( ) ( )I I Iw w x, x x x  (13) 

The second weighting scheme takes into account the distance between the sampling points and the current 
MPFP. It aims to penalize points located far from the current MPFP. The second weight factor is expressed as: 

 * 2( , ) exp( )II I Iw d x x  (14) 

where Id is the distance between the I-th sampling point and the current MPFP. It should be noted that since there is 

no information on the position of MPFP in the first stage, the conventional MLS is applied to the first surrogate 
model. 

Then, through the advantage of the above-mentioned two weighting schemes, we find the following expression 
suitable to obtain the weight for each sampling point: 

 ( , ) ( , )* ( )I I I II Iw w wx x x x x  (15) 

In this paper, the weight matrix in (4) is replaced with this double weight matrix and the new surrogate model 
considers both the distance from the prediction point and the MPFP. 

IV. Adaptive Design of Experiments (DOE) 

A. Discussion on DOE in reliability analysis 
The quality of probability estimates using a surrogate model depends on not only the surrogate model itself, but 

also the location of the points chosen to build the surrogate model (design of experiments). In the context of 
reliability analysis, there exist two kinds of DOE strategy: single design and adaptive design. For the former, Wong5 
and Faravelli29 employed single factorial experimental design containing 2n points to fit a quadratic function and to 
estimate the failure probability. Cheng30 proposed a surrogate model based on the artificial neural network and using 
uniform experimental design in predicting failure probability. However, in the case of a black-box computer model, 
single experimental design cannot guarantee the accuracy of approximation, especially in domain around the limit 
state surface. Hence, it would be better to start with an initial set of samples and gradually add more samples based 
on the information provided by previous samples. Such a process is commonly referred to as the adaptive design of 
experiments and has received more attentions than the former strategy. 

In reliability analysis, Bucher and Bourgund3 first applied a surrogate model in which experimental points are 
chosen around the mean values of random variables, which form a matrix called the design matrix. Quadratic 
polynomials without cross terms are then used to fit these experimental points. Among various sampling methods, a 
common approach is to evaluate ( )g X  at a 2 1n   combination of i  and i if  , where i  and i  are the mean 

and standard deviation of random variables, iX , and f  is a factor that defines the sampling range. The number of 

unknown coefficients in the performance function is 2 1n  , given as 

 
2

0
1 1

ˆ( )
n n

i i ii i
i i

y a a x a x
 

   x
 (16) 

A FORM algorithm was applied to estimate the MPFP based on the above quadratic polynomial function, and 
the next design matrix was constructed on the new center point determined by the following expression: 

 
( )

( ) ( )
D

m
D

g
g g


 


μ x

x μ μ
μ x  (17) 

where
mx and

Dx indicate the new center point and the interim MPFP obtained in the previous stage, respectively. 

This second design matrix is used to form another quadratic polynomial just as the first matrix and the final failure 
probability was estimated by it. Thus, this procedure requires a 4 3n   evaluation of ( )g X . Rajashekhar and 

Ellingwood6 questioned if a single cycle of updating is adequate, and they proposed to improve it by using more 
iterations until a convergence criterion is satisfied.  
    The above surrogate model in structural reliability analysis has some disadvantages: (1) with the increase of 
random variables, the total ( )g X evaluation number increases excessively fast, particularly while the convergence 

process is slow; (2) the result obtained by the above procedures has been shown to be sensitive to the 
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parameter f and may not always give an acceptable approximation to the true failure probability (it is possible that 

the sequential center points during iteration may oscillate in the domain around the true design point and not 
converge); and (3) at different stages of surrogate modeling, only a part of available information on all 
previous ( )g X  is directly used. Thus, it is considered that the accuracy of above iterative algorithm depends mainly 

on the characteristics of the nonlinear performance function, thereby limiting its application. 
   Simpson31 concluded that a recommended experimental design should have a space-filling property. In the 

current study, an optimal uniform Latin hypercube design is utilized as the initial experimental design. In the 
following adaptive experiment design process, the distance from the center point to the new sample point is 
determined not by the constant parameter f , but by the location of limit state estimated using all the previous 

information of ( )g X .  

B. Adaptive experimental design 
1. Initial experimental design--Latin hypercube design (LHD) 

The statistical method of the Latin hypercube design (LHD) was developed to generate a set of samples from a 
multidimensional distribution. The technique was first described by McKay et al.32, and further elaborated by Iman 
and Conover33. LHD is popular in design and analysis of computer experiments. The location of LHD points is 
determined through a random procedure and a complete theory can be found in Forrester's work34. The goal of a 
good LHD is to make the selected sampling points as uniform as possible to cover the entire design space. In this 
paper, the p -criterion is selected as a uniformity measure and the translational propagation algorithm proposed by 

Viana35 is used to obtain the optimal uniform LHD. In this algorithm, sampling points are determined by minimizing 
the following criterion: 

 
1/

1

1 1

p
N N

p
p ij

i j i

d




  

 
  
 
   (18) 

where ijd is the distance between two sample points, ix  and jx , 

 
1/

1

( , )
tn t

ij i j ik jk
k

d d x x


 
   

 
x x  (19) 

and 50p   and 1t  were recommended by Jin36. The space-filling property of optimal uniform LHD ensures that 

no two sampling points are too close to each other; uniformly distributed experimental points would enhance the 
approximation capacity of surrogate models. In this paper, LHD is used as an initial set of experimental designs. 

 
2. Adaptive experimental design process 

Based on the developed DWMLS model, the FORM algorithm can determine an interim MPFP, which is 
presumably located close to the true MPFP. The iterative process adds new experimental points to improve the 
accuracy of the surrogate model near the MPFP. In this paper, an additional sampling point is added in the location 
of the limit state surface in each variable direction, starting from the current MPFP.  

Let us assume that *
kx  is the MPFP at k th DWMLS model. Then, the performance function ( )g X  is evaluated 

at *
kx , and additional sampling points will be added. Firstly, it is necessary to check the magnitude of *( )kg x , which 

helps judge whether *
kx  is close enough to the true MPFP. A ratio factor rC  is introduced to measure the closeness 

of *
kx  to limit state surface, as 

 
*( )

( )
k

r

g
C

g


x

μ
 (20)  

where μ  is the mean of random variables. If rC  is smaller than the threshold 0
rC  (always set as 0.05), then *

kx  is 

considered to be close enough to the limit state surface, and the following single point is added to the existing 
sampling points: 
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*

*
( )

( ) ( )
k k
add

k

g
g g


 


μ x

x μ μ
μ x

 (21) 

where k
addx is the newly added experimental design in 1k  th iteration. 

 On the other hand, when rC  is larger than the threshold, it means that *
kx  is relatively far away from the limit 

state surface. In such a case, sampling points are added, starting from *
kx , close to the limit state surface in the 

direction of each variable (see Fig. 4). By doing this, the accuracy of the surrogate model is improved locally near 
the current MPFP and the limit state surface. Unlike other surrogate models, the MLS has no expensive inner 
parameter optimization during the adaptive modeling process, so a temporary DWMLS model 1( )

kNg  x  can be 

established quickly based on existing 1kN   points. The distance between *
kx  and the limit state surface in the i-th 

variable direction, i , is calculated using the first-order Taylor series expansion, as  

 

*

*

1

( )

( )
k

k

k
i

N

i

g

g

x


  



x

x

x
 (22) 

Therefore, the following n+1 samples are added at the 1k  th experimental design:  

 

*

*
1

*
2

*

[ ,0, ,0]

[0, , ,0]

[0,0, , ]

k

k

k

k n

 

 

 

x

x

x

x







 (23) 

 The first-order approximation in (22) can have a large error when the performance function is highly nonlinear 
and the partial derivative becomes too small. Therefore, in order to prevent i  from being too large, a threshold 

c
i it     is proposed, where i  is the standard deviation of i-th random variable and t  is a constant between 2.0 

and 3.0. Hence the adjusted sampling points become: 

 
*

*

[0,..., ,...,0]

[0,...,sgn( ) ,...,0]i

c
k ik i i

add cc
i ik i i

      
    

x
x

x
 (24) 

After n+1 additional experimental design points are determined, the performance functions are evaluated at these 
locations. After updating the MWMLS with more points, FORM is used to determine a new *

1kx . 

 The adaptive experimental design process repeats until the limit state surface can be approximated accurately, 
particularly in the region near the MPFP. The following two convergence criteria are used: 

 1

* *
1

k k

k k MPFP

  






  


  x x
 (25) 

where the two tolerances,  and MPFP , are fixed at 10-3. 

V. Procedure of the proposed method 
The proposed two-stage hybrid reliability analysis method can be divided into (1) DWMLS enhanced FORM 

iterations and (2) MCS to calculate the failure probability. In the first stage, the DWMLS surrogate model is 
constructed and updated by adaptively adding sampling points near the limit state surface. In the second stage, MCS 
is performed on the final DWMLS to calculate the probability of failure. Fig. 2 summarizes the step-by-step 
procedures of the proposed algorithm. 
(1). Determine the initial experimental designs, initialX : 
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The initial number of samples is determined by 1 3N n  where n  is the number of random variables. The initial 

optimal LHD is generated in standard normal space U  of random variables, so it is necessary to define the 

sampling range in U  space. The sampling range on each dimension is selected by  ,i if f      where f  

is fixed at 4.0. Then, an optimal LHD initialU  is generated through the SURROGATES Toolbox37. The 

independent experimental points in initialU  are transferred into the physical space of mutually correlated non-

normal random variables by Nataf's rule, and the initial experimental design initialX  is determined. Since the 

mean point x  is not included in initialX , x  is added to initialX ; thus, the number of initial samples is 1 1N  . 

 
(2). Compute the value of the performance function at each point of initialX :  

 
1( ), {1,2,..., 1}k kg g k N  x  (26) 

 
(3). Calculate weight factors assigned to each point according to Eq. (8), and fit the first conventional MLS. Apply 

FORM based on the first surrogate model and determine the first reliability index 1  and MPFP *
1x . 

 
(4). Calculate the values of the performance function at the current MPFP and check the closeness ratio factor rC  by 

Eq. (20). If rC  is smaller than the threshold value, obtain the new adding point addX  using Eq. (21) and skip to 

step (7). 
 
(5). Add the new MPFP observation evaluated from the above step into existing sampling points and constructing a 

temporary DWMLS to estimate the partial derivatives to each random variables on MPFP. 
 

(6). Calculate the length i  by Eq. (22) on each direction, compare with c
i  and then determine

iaddx based on Eq. 

(24), and add to addX .  

 
(7). Calculate the values of the performance function at given addX  and add these points into the existing sampling 

points. 
 
(8). Calculate the weight factors assigned to each point according to Eq. (15) and build a DWMLS model.  
 
(9). Apply the FORM algorithm to the DWMLS model and determine the reliability index HL  and MPFP. 

 
(10). Repeat step (4) ~ step (9) until the convergence criteria in Eq. (25) is satisfied. 
 
(11). Perform MCS using DWMLS to calculate the probability of failure. 
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Figure 2. Flow chart for the proposed doubly weighted moving least square method for reliability analysis 

 

VI. Numerical examples 
In this section, four examples involving explicit and implicit functions from structural applications are presented 

to illustrate the efficiency and accuracy of the proposed DWMLS method. Since it is assumed that numerical 
simulation is far more expensive than developing surrogate models, the number of numerical simulations sN is used 

as a measure of efficiency. The proposed DWMLS method is a hybrid reliability analysis approach where first, 
adaptive experimental design combined with FORM algorithm is mainly aimed at positioning the MPFP, and then, 
subsequent Monte Carlo simulation is used to estimate the failure probability fp . Therefore, the accuracy of the 
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proposed method would not only depend on MCS for fp , but also the interim FORM. In numerical examples, 

comparisons have been made with the other reliability analysis methods presented in literature to evaluate the 
performance of the proposed method. 

A. A nonlinear limit state function 
In the first numerical example, the following two-dimensional performance function is used: 

 1 2( ) exp[0.4( 2) 6.2] exp[0.3 5] 200g x x     x  (27) 

where 1x and 2x are independent, standard normal random variables. This example is widely used in reliability 

analysis methods11,12,27,38. 
Figure. 3 ~ Fig. 5 illustrate the process of the DWMLS algorithm. Figure. 3 shows the initial six LHD samples 

along with the true limit state surface. Figure. 4 shows the initially estimated MPFP1 along with two additional 
sampling points. Figure. 5 shows two more iterations with MPFP2 and MPFP3 in a partially enlarged drawing. It is 
clear that the estimated MPFP converges to the true MPFP.  

The iteration history of the MPFP search using the proposed method is shown in Table 1. The performance 
function is evaluated twelve times during the three iteration cycles before arriving at the final convergence. Table 2 
compares the results from the proposed method with that of various methods from the literature. It should be noted 
that the exact fp is estimated by the Monte Carlo method with one million samples and the exact solution of HL and 

MPFP is estimated by the Hasofer-Lind algorithm. The comparison of fP aims at accuracy of the proposed method, 

while the comparison of HL and MPFP indicate the performance of DWMLS in positioning and converging to the 

true MPFP. 
As it can be seen, the results of the reliability analysis are close to each other for all methods under 

consideration. This is mainly because the nonlinearity of the problem in the vicinity of the design point is relatively 
low. The proposed method predicts very accurate estimates of the reliability index and design point when compared 
with the FORM method. However, a slight difference in the failure probability prediction is observed. The 
coefficient of variation (COV) of the estimated failure probability fP by direct MCS with sample size of sN  is 

 
1 f

s f

P

N P



  (28) 

When one million samples are used, the COV of fP  is 0.017. The same number of samples is used to calculate 

the failure probability in DWMLS. The difference in fP between MCS and the proposed DWMLS is within the 

range of COV. Compared with other approaches, the hybrid DWMLS method has demonstrated not only the 
accuracy in positioning the MPFP and estimating reliability index HL , but also the efficiency as only twelve 

function evaluations are needed in achieving it. 
  
Table 1: Iteration history of DWMLS method -Example #1 

Iteration HL  MPFP Ns  
1 2.229 [-2.116, 0.699] 7 
2 2.701 [-2.522, 0.968] 3 
3 2.710 [-2.547, 0.924] 2 

Table 2: Summary of results-Example #1 

Method HL  MPFP fp  Ns  

Monte Carlo simulation 2.685 Unavailable 3.68E-3 (1.7%)* 1E6 

FORM (H-L algorithm) 2.710* [-2.540,0.945]* 3.37E-3 27 
RSM in Ref. 27 2.710 [-2.541,0.942] 3.36E-3 12 
RSM in Ref. 12 2.707 [-2.567,0.860] 3.39E-3 12 
RSM in Ref. 18 2.686 [-2.558,0.820] 3.62E-3 8 
RSM in Ref. 38 2.710 [-2.538,0.951] 3.36E-3 21 
DWMLS + MCS 2.710 [-2.547,0.924] 3.61E-3 12 

* The results with bold font are regarded as exact results to compare with. 
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Figure 3. Initial LHD and mean value point for example 1 (Step 1)  

 
Figure 4. Illustration of adding n new experimental points based on previous MPFP for example 1(Step 6)  
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Figure 5. Illustration of adding one new experimental point based on previous MPFP for example 1(Step 4) 

B. Example 2: Dynamic response of a nonlinear oscillator 
In order to investigate the performance of the proposed method in complex problems with more random 

variables and greater non-linearity, the second example deals with a nonlinear undamped single degree of freedom 
system as presented in Fig. 6. This example is also used in several other studies6,20,39. The nonlinear oscillator with 
random system parameters subjected to a rectangular pulse load with random duration and amplitude is presented, 
and the performance function is defined by:  

 
 1 2 1 1 max

0 11
2
0

, , , , , 3

2
3 sin( )

2

g c c m r t F r z

w tF
r

mw

 

 
 (29) 

where 0 1 2( ) /w c c m  . The random parameters of six basic variables are listed in Table 3. 

 
Figure 6. Non-linear oscillator - system definition and applied load 
 
Table 3: Probabilistic distribution of random variables - Example 2 
Random variable Distribution Type Mean Value Standard Deviation 
c1 Normal 1.0 0.10 
c2 Normal 0.1 0.01 
m Normal 1.0 0.05 
r Normal 0.5 0.05 
t1 Normal 1.0 0.20 
F1 Normal 1.0 0.20 
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Table 4 shows the reliability analysis results from different methods in the literature along with the proposed 
DWMLS method. The reported results come from directional sampling (DS) and importance sampling (IS) methods 
combined with typical surrogate models (e.g., polynomials, splines, and neural network), and an active learning 
method combining Kriging and Monte Carlo simulation (AK-MCS). It can be seen that the DWMLS method can get 
competitive accuracy with the least amount of simulations, Ns  = 43. It is noted that the results reported by 
Schueremans and Gemert 39 and by Echard and Gayton20 are based on interpreting the last column of Table 3 as a 
standard deviation, not as a COV.  
 
Table 4: Summary of reliability results-Example #2 

Method Ns  fp  HL  

Monte Carlo Method 1E6 3.89E-2(1.9%) 1.76 
FORM 84 4.29E-2 1.72 

Directional Sampling(DS)* 1281 3.5E-2 1.81 

DS+Polynomial* 62 3.4E-2 1.83 

DS+Spline* 76 3.4E-2 1.83 

DS+Neural Network* 86 2.8E-2 1.91 

Importance Sampling(IS)* 6144 2.7E-2 1.93 
IS+Polynomial* 109 2.5E-2 1.96 

IS+Spline* 67 2.7E-2 1.93 

IS+Neural Network* 68 3.1E-2 1.87 

MCS** 7E4 2.83E-2(2.2%) 1.91 
AK-MCS+U** 58 2.83E-2 1.91 

AK-MCS+EFF** 45 2.85E-2 1.90 
DWMLS+MCS 43 3.94E-2 1.73 

* the results come from Ref. 39 
** the results come from Ref. 20 

C. Example 3: A cantilever beam 
The above two examples demonstrated the performance of the proposed method in estimating the failure 

probability and locating the MPFP. The proposed method can also be applied to multiple performance functions; 
i.e., calculating the system probability of failure. In such a case, adaptive experimental design is applied to each 
performance function . 

The third example considers system reliability with two limit state surfaces. A cantilever beam, as shown in Fig. 
7, is subjected to a tip load of 200.0 N. Two failure criteria are considered: (i) the displacement at the tip of the beam 
should be less than 0.005m, as expressed in Eq. (30), and (ii) maximum stress in the beam should be less than 33 
MPa, as expressed in Eq. (31). 

 
Figure 7. Simply supported beam 

 
3

1 3

4
Displacement limit state : ( ) 0.005 0

PL
g X

Ebh
    (30) 

 6
2 2

12
Stress limit state : ( ) 33.0 10 0

PL
g X

bh
     (31) 

In the above equations, , ,L b h indicate the length, width and height of the beam, whose probability distribution 
properties are shown in Table 5. The modulus of elasticity of the beam was taken to be 70.0 GPa. The system 
probability of failure is defined by: 
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 1 21 [ ( ) 0 ( ) 0]fp P g g    X X  (32) 

Table 5: Probabilistic characteristics of the basic random variables of the cantilever beam 
Random Variable Mean(m) Standard Deviation Distribution type 

L 0.90 0.090 Normal 

b 0.08 0.008 Normal 

h 0.04 0.004 Normal 

  
As the closed form expressions of performance functions are available, it is possible to estimate system 

reliability with Monte Carlo simulations. Table 6 listed the results of MCS with a million samples and the result 
estimated by the proposed DWMLS method. It should be noted that 98 samples in the DWMLS method include all 
the points used to locate two limit state surfaces and corresponding two MPFPs until convergence. In order to 
inspect the accuracy and efficiency of the DWMLS method on finding each MPFP, the FORM algorithm is used for 
each limit state function to estimate an individual reliability index  for comparison in Table 7. It can be concluded 

that the highly nonlinear limit state functions, particularly the first, can be positioned accurately without a large 
number of samples. 
 
Table 6: Comparison of failure probability for the cantilever beam system 

Method fp  Ns  
Monte Carlo simulation 8.33E-3(1.09%) 1E6 
DWMLS + MCS 8.98E-3 98 

 
Table 7: Comparison of reliability index for the cantilever beam system 

Method 
g1 g2 

Ns  HL Ns  HL
FORM 803 2.499 24 2.516 
DWMLS + MCS -- 2.549 -- 2.544 

 

D. Example 4: Ten-bar truss structure 
As a practical example using finite element analysis, a ten-bar truss structure (as shown in Fig. 8) is considered. 

The ten-bar truss structure is a classical structural analysis problem and widely studied27,40. The structure is simply 
supported at nodes 1 and 4, and is subjected to two concentrated loads P = 105lb at nodes 2 and 3. The truss 
members, which have random cross-sectional areas , 1,2,...,10iA i  , are made of an aluminum alloy with Young's 

modulus E=107psi. The input random variables 1 2 10{ , ,..., }TA A AX follow normal distribution and have a 

mean 22.5 in  and standard deviation 20.5 in  . The maximum vertical displacement ( ) X , which occurs at 

node 3, is limited to 0 18 in  . Therefore, the performance function is defined as: 

 0 max max( ) 18.0 ( )g v v   X X  (33) 

The structural analysis was done in MSC/NASTRAN, a commercial finite element analysis program. The 
estimation results are reported in Table 8.   
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Figure 8. A ten-bar truss structure 
 
Table 8: Failure probability of ten bar truss 

Method Ns  fp  HL

Monte Carlo method 10E6 0.139(0.25%) 1.083 
FORM( HL algorithm) 127 0.086 1.364 
SORM(Breitung) 506 0.129 1.142 
DWMLS + MCS 98 0.146 1.369 

  
Apparently, the performance of the DWMLS method performs well in this high dimensional reliability analysis 

problem. The failure probability of the DWMLS method is comparable with other methods and demands the least 
number of simulations. 

VII.  Conclusions 
In this paper, a doubly weighted moving least squares and a two-stage hybrid reliability analysis scheme are 

proposed to improve the surrogate model for reliability analysis. The proposed method provides a larger weight to 
the point near the MPFP and adds more samples closer to the limit state surface. From the first two benchmark 
examples, it was shown that, in comparison to classical MCS and FORM with various surrogate models, DWMLS 
improves the convergence speed, and locates the limit state function more accurately with a less number of sampling 
points. In the cantilever beam example, the proposed two-stage reliability analysis scheme was able to calculate 
system reliability by identifying multiple MPFPs. 

However, it should be noted that the proposed method is not intended as a replacement of existing surrogate 
models in reliability analysis, but as a possible complement and improvement to these methods. Furthermore, more 
studies are needed to extend the proposed method to reliability based design optimization of complex systems. 
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