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As composite structures play a key role in aircraft structure design, assessing probability 
of failure (PF) of the composite structures has become important to ensuring safety of the 
aircraft design. To assess the PF of the design, computational models are frequently used to 
estimate probability of the composite structures but the computational models have 
uncertainty in predicting failures due to lacking knowledge of composite structure failures. 
Structural tests can provide additional knowledge of the failures to effectively reduce the 
uncertainty in the computational model. The presence of multiple failure modes due to 
variabilities is the other concern because correlated failure modes causes difficulty to 
estimate PF and it brings significant error for use of the effective reliability analysis 
methods, such as FORM or SORM. Undetected failure mode is the other issue relevant to 
the multiple failure modes. A single test can detect one failure mode, each failure modes has 
different probability of occurrence. Hence, a existing failure mode may not be detected and 
neglected. Possibly we have significantly under estimated PF. In the study, we make an 
uncertainty quantification model to estimate PF for correlated failure modes. Also the 
probability of failure occurrence of each failure modes is also estimated with the model. The 
model is demonstrated through a simple example and PF estimation of a curved composite 
panel with a hole is made. From the numerical study, it is observed that performing a single 
failure test can significantly reduce conservativeness on estimating PF. Test for a given 
probability of failure allows lighter design. 

I. Introduction 
DVANCED composite materials have become key ingredients in modern aircraft structures due to their 

superior strength to weight ratio, stiffness tailorability, fatigue and corrosion properties. But composite 
structure design a disadvantage that use of the composite materials also induce large uncertainty in predicting 
failures with computational models, Uncertainty quantification becomes important for composite design to ensure its 
safety. Here, we make a model to quantify uncertainty in a composite fuselage panel design and predict probability 
of failure (PF) of panels based on the design. Two main features of the uncertainty model are that incorporating 
structural tests into the uncertainty model with error in the tests and considering multiple potential failure modes. 

To incorporate test results into the computational model with its own uncertainty, we have to quantify 
uncertainty in the tests. But there is an obstacle to incorporate test result into the computational model. The 
computational model requires exact inputs parameters, such as material properties and dimensions, and predict 
output, such as buckling load, with uncertainty. To reduce the uncertainty in the outputs, tests also have to have 
negligible uncertainty in the inputs to properly incorporate test results into the computational model. However tests , 
particularly for composite structures, have large input uncertainty. Errors in measuring material properties are large 
while  output uncertainties, such as errors in measuring strain and buckling load , are negligibly small (Ref. 2). To 
properly incorporate uncertainty in tests, uncertainty in inputs has to be converted to likelihood of output for given 
input.  

Considering presence of multiple potential failure modes is another important issue for estimating probabilities 
of failure. Due to variability in manufacturing process, multiple failure modes may exist in a single design. The 
presence of failure mode switching can lead a undesirable situation. For example, buckling failure mode is dominant 
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at PF of 10-2 level and strength failure mode is dominant at PF of 10-4 then test can detect only buckling failure 
mode. Possibly the present of strength failure is neglected, we can significantly underestimate PF of design at low 
level PF. If we know the presence, it is hard to use the buckling test to reduce uncertainty in predicting the strength 
failure. Thus we need to estimate the possibility of failure mode switching and figure out a method to reduce 
uncertainty for both failure modes even with test results of only one failure modes. 

Previous work (Ref. 5 and Ref. 6) quantified the effects of the structural tests on a structural design with simple 
design process with a single failure mode of structural strength using convolution integral to model uncertainty 
propagation and combination. In this study, we evaluate PF of cylindrical composite panels based on a design which 
was tested and analyzed by Knight and Starnes (Ref. 3) and Stanley (Ref. 4). Two correlated failure modes are 
considered as potential failure modes in the design. We use ABAQUS to predict failures and then the actual test 
result from their report will be used to reduce error in the failure prediction.  

The objectives of this from ABAQUS study are as follows: i) present a methodology for a composite panel 
design to predict and include the effect of a test, ii) show the effects of structural test on reducing uncertainty in PF 
evaluation for a complex composite panel design, and iii) investigate the effects of the correlation on final PF 
evaluation is investigated.  
The paper has three parts. Firstly, show uncertainty modeling to incorporate test results. Before estimating PF of the 
composite panel with the uncertainty model, PF estimation for a simple composite beam structure with two potential 
failure modes is made to validate the uncertainty model. Then finally we estimate PF for the composite panel model. 
We use non-linear analysis to predict buckling load and strength failure load. 

II. Evaluating Probability of Failure for a Composite Panel with a Hole 
The composite panel was fabricated from commercially available unidirectional Thornel 300 graphite fiber tapes 

pre-impregnated with 450K cure Narmco 5208 thermosetting epoxy resin fixture (Ref. 3). The test specimen 
schematically shown in Fig. 1 is surrounded by a metallic test frame. The appropriate boundary conditions for the 
cylindrical panel are (i) fully clamped on the bottom edge, (ii) clamped except for axial motion on the top edge 
(potted end), and (iii) simply-supported on the vertical edges (knife-edge restraints). The test consists of statically 
imposing a uniform end-shortening, δ, until the specimen reaches buckling point. Electrical strain gages were used 
to monitor surface strains near the hole in the axial direction. A single test was performed and buckling failure 
occurred and measured with the specimen.  
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Figure 1. Magnetization as a function of applied field. 
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In this study, we assume that we have two potential modes, buckling failure and strength failure. The strength 
failure will be occurred by failure of a single sheet instead of progressive damage model. PF is defined as 

  ˆ ˆˆ ˆPr   sPf C P or C P  (1) 

 where Ĉ , ˆ sC and P̂ are random variables for modeling variabilities in capacity of buckling failure, capacity of 

strength failure, and external load, respectively. 

A. Modeling Uncertainty 
For quantifying uncertainty of composite panels, 

two test stages in the building-block approach for 
structural tests shown in the Fig. 2 are considered. 
Design of a composite panel begins with coupon test 
ply material properties and their variability. The 
element test calibrate predicted performances of 
designs based on the measured material properties and 
their variability at coupon test level. In the paper, we 
recognize that composite panel is a structural element, 
and the buckling test is an element test. 

To estimate PF, variability of capacity in the 
panels has to be quantified and computational models 
are needed to estimate the variability of capacity, such 
as buckling load, and PF corresponding to design 
allowable. However the computational model has 
error to predict the capacity, the error can lead 
significant error to predict the variability. 
Consequently we have large error in PF estimate. 

When we include error in our estimation, the 
calculated buckling load distribution is widened and 
the widened distribution compensates the error in the 
calculation. We call the distribution as possible true distribution (PTD) which considering every possible 
uncertainties. 

Figure 3 shows a process to obtain the PTD of buckling load. In uncertainty model, we have input uncertainties, 
such as variability in dimension  inpf d  and in material property  inpf m . We then calculate the distribution of the 

buckling load  calcf   based on the input parameters with a computational model. Finally the computational error is 

combined with the calculated capacity distribution,  calcf   then the PTD of buckling load,  Ptruef , is obtained. 

 

 

 calcf 


 Ptruef 



Calculation inpf d

 inpf m  ,e calc calcf e
 

Figure 3. Illustration of the manufacturing variability of the input parameters, dimension (d) and material 
properties (m), calculated distribution of the buckling, computational error, and PTD of buckling load 

including the computational error 
. 

 

ELEMENTS

DETAILS

SUB-COMPONENTS

COUPONS

COMPONENTS

D
A

T
A

 B
A

S
E

S
T

R
U

C
T

U
R

A
L F

E
A

T
U

R
E

S

G
E

N
E

R
IC

 S
P

E
C

IM
E

N
S

N
O

N
-G

E
N

E
R

IC
 S

P
E

C
IM

E
N

S
ELEMENTS

DETAILS

SUB-COMPONENTS

COUPONS

COMPONENTS

D
A

T
A

 B
A

S
E

S
T

R
U

C
T

U
R

A
L F

E
A

T
U

R
E

S

G
E

N
E

R
IC

 S
P

E
C

IM
E

N
S

N
O

N
-G

E
N

E
R

IC
 S

P
E

C
IM

E
N

S

  
Figure 2. Building-block approach for testing aircraft 
structural components. 
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However considering every possible error may bring other concern that the calculated PF could be too 
conservative. Thus the error in the error bounds has to be reduced by structural tests. In the element test stage, the 
error in the computational model is reduced and we can reduce probability that the too conservative PF estimate. 

Figure 4a shows an example that the PTD leads too conservative PF estimate. In this example, we estimate 
variability of buckling load λ of  a panel design. Probability that the buckling load is less than the design allowable 
is the PF of design. The  truef  is true capacity distribution of the panel which is unknown. The area on the left of 

the design allowable allow is the true PF. On the other hand, the  calcf  is the calculated distribution using the 

computational model. Due to the error in the computational model, the calculated PF has tremendous error, 
dangerously underestimate the PF. Figure 4b shows an example that the conservativeness in the PTD is effectively 
reduced by test.  

 
 

 
Particularly for design with composite material, we should consider correlation between material properties due 

to the fiber volume fraction. Ignoring the correlation of the material properties induces error in predicting PF (Ref. 
1). Also imperfection has a major source of variability in design capacity. Hilburger and Starnes (Ref. 7) 
investigated the effects of imperfections on the non-linear response and buckling loads of un-stiffened thin-walled 
compression-loaded graphite-epoxy cylindrical shells, they categorized imperfection types into two, traditional 
imperfection and non-traditional imperfection. The traditional Imperfection is considered into the uncertainty 
modeling. The effects of the imperfection for the curved panel example are shown in the illustrative example 
section. In case of composite material tests, input uncertainty is critical, such as material properties and thickness of 
thin panel, but there are very little measurement errors for measuring capacities, measuring load, in test (Ref. 2). To 
incorporate experiment results for calibrating FE model, input uncertainties have to be converted to output 
uncertainty for given inputs. 

B. Estimating Variabilities in Capacities with Test 
Variability in capacity of  structures has to be estimated based on uncertainty sources, such as material properties 

and geometries. True variability of the capacity can only be measured with an infinite number of structural tests, but 
it is not feasible. Computational models are alternatively used for making a reasonable prediction of the variability 
in capacity. However, structural tests have to be performed and incorporated into the computational model due to the 
prediction error in the computational model. We describe an uncertainty model for incorporating the structural tests 
into the computational model.  

Unfortunately a single structural test provides information about just one failure mode. The curved panel test, we 
assume presence of two failure modes, buckling failure and strength failure. Buckling load and strength failure load 
can be called as load capacities and they are correlated each other. We can improve the buckling load prediction 
with the test result, but cannot improve the strength failure capacity with a test in which buckling failure observed.  

Here we assume that we are estimating buckling load for given dimension d and material property m. Relation 
between true value and calculated value for buckling load is expressed as below 

    ,, 1true calc true calcC d m e     (2) 

 truef 

 Ptruef 

 calcf 


allow

 truef 

 Ptruef 

 calcf 


allow

(a) Before test                                                   (b) After test 
Figure 4. Illustration of unconservative calculation of buckling load when including the error in the 

estimate improves the estimate of the PF 
.
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where the  ,trueC d m  is true capacity for given dimension and material property d and m, the calc is calculated 

buckling load and the ,calc truee is true error in buckling load capacity calculation, is unknown, we should estimate the 

error and obtain possible true value of the capacity, including uncertainties in estimation process. 
A global measurement, such as the buckling load, can directly be updated by performing a test. But strength 

failure load should take indirect way to reduce uncertainty in the strain calculation. Excessive local strain triggers 
strength failure. Error in strain calculation at the spot where a strain gauge is attached may different from the spot 
where the excessive local strain actually appeared. An important assumption is made that measured strain, where the 
strain gauge is attached, at the buckling point can be compared to calculated strain at the same spot. Calculation 
error at the nearby spot can be used as strain calculation error for the other spots. 

Here we propose a scheme to reduce uncertainty in the strength failure prediction with test result. We use failure 
theory to predict strength failure. The maximum strain theory is known as one of the best theory to predict strength 
failure of composite structures. Particularly for the strength failure capacity, we have two uncertainty sources that 
uncertainty in strain calculation and uncertainty in the failure theory itself. The former uncertainty is associated with 
the error in the computational model and the latter uncertainty is relevant to lacking knowledge.  

If the computational model has no error, we only have the error in the failure theory as shown as 

    , 1s f
true true trueC d m e S   (3) 

where the load trueS  is the load when the maximum ply strain is equal to ultimate strain, and f
truee  is true error in the 

failure theory to have the true capacity for the strength failure. Actually our computational model evaluates the 
function between strain and load; i.e. a load-strain curve. If we have no error in our computational model to evaluate 
the curve, we can find the true load trueS for the ultimate strain as 

  s
true true uS f    (4) 

The computational model brings error for both strain and load calculation. A reason we have to use two errors 
for both parameters is as follows. We can calculate the buckling load and corresponding strain from load-strain 
history. We have the history curve from the experiment. If we can express the history curve as a function of the 
buckling load and the corresponding strain, we can modify the calculated load-strain curve with those buckling load 
and the corresponding strain values and it provides us better prediction for the load trueS for given ultimate strain. 

Figure 5 shows difference between the calculated load-strain curve and the true curve. In the curve, we have a 
relation between buckling load and strain, it implies that there is coupling between two variables. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
Since errors in buckling load calculation and strain calculation are also coupled. This is because as buckling 

approaches the nonlinear amplification of strains intensifies. Here we propose an approximation of the coupling 
between the two based on normalizing the curve, and fitting the normalized curve with Kriging surrogate model. 

,calc truee

,calc truee

 ,calc calc 

 ,true true 



P

 
Figure 5. Illustrations for errors in load-strain curve 

.
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   , ,

ˆ
1 1

KRG

calc calc true calc calc true

P
f

e e 


 

 
 
     

 (5) 

where ,calc truee is the true error in calculation of strain at buckling point, ˆ
KRGf is Kriging model constructed based on 

the calculated load-strain curve. The Kriging model fits the experimental data for P and ε. Figure 5 shows that the 
discrepancies between the calculated load-strain curve and the true load-strain curve. When we know the true errors 

,calc truee and ,calc truee , using Eq. (5), the true strength failure capacity for the ultimate strain u is given as 

 
   ,

,

ˆ1
1

u
true calc calc true KRG

calc calc true

S e f
e









 
  
    

 (6) 

However the true errors are unknown, we have to estimate them. To discover the errors, structural tests are 
performed and the errors in calculation are calibrated. Before test, the errors are modeled as a uniform distribution, 
which is called as a prior distribution. Bounds of the uniform distribution represent estimated uncertainty in the 
computational model from experts. After test, using the Bayesian inference, we can update the initial distribution 
with test results. If there are no errors in tests and measurements, calculated values have pure theoretical errors. The 
test results are expressed as 

 

 
 

,

,

1

1

true calc calc true

true calc calc true

e

e





 

 

 

 
 

 (7) 

where true and true are the true buckling load and strain at the buckling load for given dimension and material 

property, d and m. calc and calc are calculated buckling load and strain using the computational model. Note that the 

errors are referred to the calculated values.  
However the error distributions are conservative estimate to compensate possible error in the estimation. 

Including these errors for buckling load and surface strain can provide very conservative PF prediction as shown in 
Fig. 4a. The prior error distribution is denoted PTD and is expressed as follows 

 

     

     

, , ,

, , ,

1
[ , ]

1
[ , ]

init
e calc Ptrue calc Ptrue e e

e e

init
e calc Ptrue calc Ptrue e e

e e

f e I e l u
u l

f e I e l u
u l

   
  

   
  

 


 


 

 (8) 

where the  [ , ]I x l u  is an indicator function that gives 1 for x belongs to the range [l,u] and 0 for otherwise, the u 

and l represent upper bound, and lower bound, respectively. The superscript λ and ε represent buckling load and 
strain, respectively.  

After the test, we can reduce the error based on the test result. From the test, we can construct likelihood function 
of the responses. The form of the likelihood function is a function of likelihood of true prediction for the measured 
material property and dimensions of test specimen. For one structural test and its measured test results are 

meas and meas at dimension of d and material properties of m the effects of test errors is expressed as 

 

 
 

,

,

1

1

true meas test true

true meas test true

e

e





 

 

 

 
 

 (9) 

When substitute Eq. (9) into Eq. (7), it leads to 
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   
   
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1 1

meas test true calc calc true

meas test true calc calc true

e e

e e

 

 

 

 

  
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 (10) 

In the present model, we have two errors: error in simulation and error in test. In Eq. (10), true values of the 
errors in test are unknown. The errors are estimated and modeled as random variables as Eq. (11). 

 

 
 

,

,

ˆ ˆ1

ˆ ˆ1

Pmeas meas test Ptrue

Pmeas meas test Ptrue

e

e





 

 

 

 
 

 (11) 

where ,t̂est Ptruee and ,t̂est Ptruee are random variables which follows estimated PDF of test error. ˆ
Pmeas and ˆ

Pmeas  are used 

as the likelihood function, due to error in test in the Bayesian inference. Substituting the Eq. (11) into the LHS of the 
Eq. (10), we can obtain the calculation errors as 

 

,

,

ˆ
ˆ 1

ˆ
ˆ 1

Pmeas
calc Ptrue

calc

Pmeas
calc Ptrue

calc

e

e










 

 
 

 (12) 

where ˆ
Pmeas and ˆ

Pmeas are random variables which have possible true distribution for given d and m and they can be 

obtained after test. Detailed derivation is given in the next estimating errors in structural test section. From the Eq. 

(12), we can construct likelihood functions  , ,e calc Ptruel e
 and  , ,e calc Ptruel e . 

Using the prior distribution in Eq. (8) and the likelihood functions, the distributions of errors in the response 
calculations are updated as 
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f e l e
f e

f e l e de

f e l e
f e
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



 
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 
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 

 
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



e
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calcl





  

 (13) 

Note that the errors in calculation for the buckling load and strain are correlated and modeled as joint PDF.  
Finally, from Eq. (2), Eq. (3), Eq. (6) and estimated errors as shown in Eq. (8), error estimates before test, or Eq. 

(13), error estimates after test, the possible true capacities are obtained. 
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



 

 
   
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Ptrue calc Ptrue calc
d m

s f u
Ptrue Ptrue calc calc Ptrue

d m
calc calc Ptrue

C e

C e e f
e

  (14) 

where ˆ f
Ptruee is follows uniform distribution with error bounds of failure theory.  

C. Estimating Likelihood Function of Structural Test 
In structural test, there are measurement errors and errors in test conditions. Gage repeatability and 

reproducibility (GRR) is an important issue for structural test. For tests of composite panels, measurement errors in 
strain or buckling load are small, less than 0.1%, whereas measurement error in material properties and thickness are 
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relatively large, 3 to 4%. These errors are converted into errors in the buckling load and strain through the 
computational model. 

In this section we describe how to obtain the errors in test. We estimate possible true buckling load and surface 
strain for the measured geometry and material property dmeas and mmeas. When we perform a test, dimension and 
material properties are measured as dmeas and mmeas. However the measurements are not necessarily be true values as 
shown in Fig. 6. But what we have in output is the true bcukling load because measurement error in output is 
negligibly small. To compare the computational model with the test result, we should know a pair of measured 
inputs and true output because the measured buckling load is used to determine error in calculated buckling load 
with the measured inputs using a computational model. The true output is unknown, the true test error is the error 
between the measured buckling load and true buckling load. 

 
 
 
 
 
 
 
 
 
 
 
Hence, the true bucklingload should be estimated using the measured inputs and possible true inputs. Left 

distributions represent input uncertainties in geometry d and material m property measurments. Figure 7 shows 
possible true input parameters and corresponding possible true buckling load. The possible true buckling load 
distrbituion represents possible true buckling loads for every possible true d and m for the measured d and m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the Fig. 7, if we predict true buckling load and strain and we know variability in the inputs, we can 

calculate distributions for buckling load and strain according the the inputs uncertainty and we can express the 
distribution of possible true values with respect to the measured geometry and material property as 

 

 
 

, ,

, ,

ˆˆ ˆ,

ˆˆ ˆ,













test Ptrue true Pmeas Pmeas

test Ptrue true Pmeas Pmeas

f d m

f d m
 

 (15) 

where bold Pmeasd and Pmeasm are random variables. The left values are the possible true buckling load and strain and 

they are random variables. If we use the computational model, the Eq. (15) can be rewritten as 

Output
,test truee

truem
measm

measd trued

Input

 , trum uea e es trd m  , meat aru s se med m
 

Figure 6: Illustrations for error in test due to input errors 

truem measm

 ,

meas

true true truef d m





measd trued

 ,

true

true meas measf d m





,test truee

Input Output

ˆPDFof Pmeas

ˆPDFof Pmeasd

ˆPDFof Pmeasm

 
Figure 7. Illustrations for errors in inputs and corresponding errors in outputs when the measured d 

and m are true 
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      
      

, , ,

, , ,

ˆ ˆ ˆˆ ˆ ˆ, 1 , ,

ˆ ˆ ˆˆ ˆ ˆ, 1 , ,

true Pmeas Pmeas calc true Pmeas Pmeas calc Pmeas Pmeas

true Pmeas Pmeas calc true Pmeas Pmeas calc Pmeas Pmeas

f d m e d m f d m

f d m e d m f d m


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 (16) 

The true errors, ,calc truee  and ,calc truee , in calculations are functions of the dimensions and material properties 

generally. When their design and material properties are measured as measd and measm and variation in dimensions and 

material properties are small, it is assumed that the variation of error is also small. Eq. (16) can then be 
approximated as 
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 
  (17) 

If possible true errors for estimating the true error in test ,test truee and ,test truee are defined as 
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 (18) 

By substituting Eq. (17) for the numerator of Eq. (18) due to measurement uncertainty and replacing the 
denominator of Eq. (18) using the true functions and true errors, we can obtain possible true values of buckling load 
and strain for the measured dimension and material property. Even we do not know the values of errors in 
calculations, with the constant error assumption in Eq. (17) with small variation, the possible true errors are 
calculated as 

 

 

 

,

,

,

,

ˆ ˆ,
ˆ1

ˆ ˆ,
ˆ1

calc Pmeas Pmeas

test Ptrue
calc

calc Pmeas Pmeas

test Ptrue
calc

f d m
e

f d m
e









 

 
 

 (19) 

Eq. (20) is obtained using Eq. (10) and Eq. (19), estimated calculation error after test will be expressed as 
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 (20) 

PDFs of the possible true errors in Eq. (20) can be used for the likelihood function for the measured dimensions 
and material properties.  

Here two scattered plots of the likelihood function are shown after test of the simple beam example in the 
illustrative example section. We have two associated values with the likelihood function: true error in buckling load 
and strain calculation and measured error in buckling load and strain calculation at the buckling load. The former 
values are obtained from true values with respect to the measured dimensions and material properties, showing true 
errors in calculations. The latter values are measured calculation errors values that including errors in test. Fig. 8 
shows that an illustration of a scattered plot of the likelihood with 1000 samples and a set of true errors and a set of 



 
American Institute of Aeronautics and Astronautics 

 

 

10

measured errors. The horizontal axis is error in strain calculation and the vertical axis is error in buckling load 
calculation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the left plot does not include the measured error but the right plot does because measured errors are 

placing out of the prior, blue rectangle, the prior cut off the measured errors but still accommodate the true error.  

D. Estimating Probability of Failure 
In the previous sections, we make an uncertainty model of the composite structure capacities for given 

dimensions and material properties using the estimated likelihood function from a test. We can obtain the possible 
true capacities for certain measured dimensions and material properties of the test specimen. However, dimensions 
and material properties can vary due to uncertainty in manufacturing process. We assume that the error function 
from a single test can be used for other possible sets without applying extrapolation error since manufacturing 
variability is small. 

The possible true capacities are obtained from combination between calculated variabilities of buckling load and 
strength failure load and the corresponding possible true calculation errors from an element test. We use MCS to 
evaluate the variability of the calculated buckling load and strength failure load and the possible true calculated 
error. 

The composite panel requires a non-linear quasi-statics analysis to estimate buckling load and strain due to large 
deflection of the panel at the buckling point. Thus we have to consider load-strain history, which makes it hard to 
use a surrogate model. However, MCS requires high computational resources for very small PF, such as reliability 
index of β=4 or 5. Hence, we use MCS for generating capacity samples of buckling load and strength failure load for 
uncertainty in dimensions and material properties and fit the samples using the goodness of fit tests to calculate the 
low level PFs. We extrapolate distributions of the capacities. 

In order to calculate PF from Eq. (1), we have to consider critical failure mode. For given material property and 
dimension, we can predict buckling failure or strength failures. When we run simulations to obtain samples for 
ˆ

PtrueC and ˆ s
PtrueC , some simulations show that buckling failure is their critical failure mode and the others show 

strength failure mode is their critical failure mode. Therefore, Eq. (1) can be re-written as 

 
     ˆ ˆ ˆ ˆ ˆ ˆˆ ˆPr | P Pr | P       s s s

Ptrue Ptrue Ptrue b Ptrue Ptrue Ptrue sPf C C C P C C C P
 

 (21) 

where Pb is probability that buckling failure mode is the critical failure mode, and Ps is probability that strength 
failure mode becomes the critical failure mode.  

Due to the important feature of the independent random variables,  ˆ ˆ ˆ|   s
Ptrue Ptrue PtrueC C C  and 

 ˆ ˆ ˆ| s s
Ptrue Ptrue PtrueC C C , since one sample cannot have both capacities, we can gather samples which satisfying those 

conditions and fit two independent CDFs for each case, which are approximated distribution of those two random 
variables. Table 1 shows detailed process to calculate PF 
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(a) Large error in test                                                (b) Small error in test 

Figure 8. A scattered plot of the likelihood function (1000 samples), true error (red circle) and measured 
error (green triangle) 
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Note that K-S goodness to fit test is used for fitting the generated samples. Bayesian inference has strong point to 

identify the best fit CDF if the number of samples is small, the K-S test is affordable with enough number of 
samples.  

III. Illustrative Examples 
In this section, we show a simple numerical example to validate the uncertainty model in the first place and 

estimating PF, followed by composite panel example  

A. Composite Beam Example 
The present study is intended to validate the uncertainty model. Here we have a simple composite beam model 

with two potential failure modes, buckling failure and strength failure,  and a single element test is performed and 
buckling failure mode observed in the test. In this example, we simulate testing and estimating process. We make 
two equation types for buckling load and strength failure load: true equations and theoretical equations. The true 
equation give true buckling load and strain but the theoretical equations have errors in their predictions. We estimate 
PF using the theoretical equations and incorporate the test result made by the true equations. The test gives measured 
buckling load, strain at the buckling point, material properties and dimensions. The measured material properties 
and dimensions have measurement errors. Since we know the true equations, not like reality, the estimated PF will 
be verified to true PF calculated by the true equations. To see the effects of test variability and MCS error, we repeat 
the process 1000 times. 
 

 
 
 
 
 
 
 
 
Dimensions and boundary conditions are shown in the Fig. 9. We have bending moments M and axial forces P 

with roller boundary conditions on both sides. The bending moment M is deterministic and the axial load P has 
uncertainty. Hence PF of the structure is a function of the axial force P for given M. Theoretical equations for 
calculated buckling load calcP  and strength failure load s

calcP and corresponding true values trueP  and trueP  are 

expressed in Table 2. 
 

Table 1: Probability of failure calculation process 
1. Generate N random sets of dimension d and material property m for their variability due to 

manufacturing process 
2. Calculate N capacities with respect to the generated N sets of d and m using an analysis code (If test is 

performed go to step 3, otherwise go to step 6)  

3. Generate M sample sets of ˆ
Pmeasd  and ˆ Pmeasm  for possible variations due to measurement error 

4. Calculate M sample sets of ,ˆcalc Ptruee and ,ˆcalc Ptruee using test results which presented in ref [0] and 

 ,
ˆ ˆ,calc Pmeas Pmeasf d m and  ,

ˆ ˆ,s calc Pmeas Pmeasf d m with respect to the generated ˆ
Pmeasd  and ˆ Pmeasm using the 

analysis code 
5. Fit the M sample sets of ,ˆcalc Ptruee and ,ˆcalc Ptruee  using copula and marginal PDFs. (go to step 7) 

6. Generate M errors using error bounds of buckling load and strain calculations 
7. Generate Q possible true errors in buckling load and strain using the fitted copula model 
8. Combine the N sets from the step 2 and Q samples from step 6 and obtain N×Q samples capacities  
9. Separate those capacity samples into two failure cases of buckling failure and strength failure and fit 

those samples to two CDFs 
10. Generate a large number of R samples from the two CDFs and R samples from random design load 

distribution and calculate PF using Eq. (20) 

P P

M M

L

b

h

 
Figure 9. Simple beam model



 
American Institute of Aeronautics and Astronautics 

 

 

12

 
 
 
 
 
 
 
 
 
 
 
 
PF estimation process in Table 1 is used. Test is performed as follows:  
1) Generate a test result of buckling load and strain at the buckling point (buckling failure) 
2) Generate measured dimensions and material properties by adding measurement uncertainty on the true 

dimensions and material properties 
We have two examples to consider different failure mode patterns: multiple failure modes with and without 

failure mode switching. Dominant failure mode is buckling failure mode for both examples. Example 1 has no 
failure mode switching and example 2 has failure mode switching. 

1. Composite Beam Example: no failure mode switching case 
Firstly, we consider a structure with only an axial force case. Table 3 shows that an uncertainty list for material 

properties and dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
The bending moment M=0, PF is estimated in terms of nominal P. We use table 1 to estimate PF, the number of 

function evaluations to obtain samples for capacities is N=200. For after test case, further function evaluations are 
needed to obtain samples for errors in calculations, M=100. Finally we have Q=100×N possible true capacity 

samples, separated into two cases,  ˆ ˆ ˆ|   s
Ptrue Ptrue PtrueC C C  and  ˆ ˆ ˆ| s s

Ptrue Ptrue PtrueC C C , fitted to CDFs. R=10 Million 

are the number of sample generations from fitted CDFs and a CDF for load P.  
Error bounds for errors in buckling load calculation, strain calculation and failure theory are given in Table 4. 
 
 
 
 
 
 
 
 
We have the uncertainties due to the MCS and test variability, PF estimation process is repeated 1000 times. 

Statistics are compared to the true PF as table 5.  
From the table 5, we can see the effects of test. We have a single test result to reduce uncertainty in calculations. 

We expect PF of 2.61×10-4 before test, whereas PF 1.18×10-4 after test for P=19 MN. The effects of test for reducing 
uncertainty in predicting PF is significant. The difference will induce design weight reduction. The standard 
deviation PF without test represents error in MCS. We can observe that the standard deviation PF with test becomes 

Table 2: Theoretical equation and true equation 
 Buckling load Strength failure load 

Theoretical 
equation 

2 2

2 4calc

EI M
P

EIl
 

   0.5
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s
calc

calc

P hM

EA EI

 





 
   

 

 

True equation 
2 2

2
0.97

4true

EI M
P

EIl
  
  

 
 

1.02

0.5
1.05

true u

s
true

true

P hM

EA EI

 





 
   

 

 

Table 3. Nominal values and variabilities from uncertainty sources 
 Uncertainty source Nominal value Variability Distribution 

Manufacturing 
process 

E: 200 GPa 
εu: 0.0025 

CV=3% for E 

CV=1% for εu 
Normal 

Measurement error E: 0% 
εu: 0% 

Std. of 1% for E 
No error for εu 

Normal 

Manufacturing 
process 

b: 0.3 m 
h: 0.165 m 

±1% for b and h Uniform 

Measurement 
Error 

b: 0% 
h: 0% 

Std. of 0.5% for b and h Normal 

 

Table 4: Error bounds 
Error types Error bounds 

Error in buckling load calculation ,calc Ptruee  [-0.05,0.05] 

Error in strain calculation ,calc Ptruee  [-0.08,0.08]  

Error in failure theory f
Ptruee  [-0.05,0.05] 
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larger than the standard deviation PF without test. The portion comes from test variability. It is observed that test can 
significantly reduces conservativeness in the PF estimate, but also it adds one more variability source, standard 
deviation of the PF estimation increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. Composite Beam Example: failure mode switching case 
Secondly, we consider a structure with an axial force and a bending moment case. The structure has failure mode 

switching. In this example differences are the nominal value is h = 0.08 m and bending moment M=105 kN-m. PF is 
estimated in terms of nominal P. We use table 1 to estimate PF. The number of function evaluations is N=200. For 
after test case, M=100 is used. Q=100×N and R=10 Million. Error bounds are the same with the previous no bending 
moment example. PF estimation process is repeated 1000 times. Statistics are compared to the true PF as table 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A notable thing is the ratio of the true PF for a single failure mode. For example, the ratio of buckling failure is 

0.80 and  the ratio for strength failure mode is 0.20 when nominal P is 2.3 MN. It implies that we can usually 
observe buckling failure modes from test. However, at low PF level, strength failure mode is dominant failure mode. 
For structures, this undetected failure mode by tests can bring a dangerous situation.  

The PF without test provides very conservative estimate of PF because uncertainties in strain calculation and 
failure theory are combined. Error in strain calculation of 8% and error in failure theory of 2% are used in this 
simulation. So, the error in strain calculation is major uncertainty source to predict strength failure. After test, we 
can reduce the uncertainty in strain calculation, we can reduce uncertainty in strain calculation. Test result can 
effectively reduce conservativeness in the PF estimate without test.  

B. Curved Composite Laminated Panel with a Hole 
In this section we describe PF estimation of the curved composite panel. FE model and analysis scheme of the 

panel is shown at the first place. We then discuss about uncertainty model of the composite panel. PF of this panel is 
estimated in terms of the axial force P. 

 
 

Table 5: PF estimations with 1000 repetitions 
Magnitude of P 19 MN 19.5 MN 20 MN 

Mean PF 1.18×10-4 5.91×10-4 2.42×10-3 
Std. PF 5.85×10-5 2.27×10-4 7.34×10-4 
COV 0.5 0.38 0.3 
Mean PF 2.61×10-4 1.01×10-3 3.22×10-3 
Std. PF 5.24×10-5 1.73×10-4 4.65×10-4 
COV 0.2 0.17 0.14 

True PF 4.68×10-5 2.96×10-4 1.42×10-3 
True PF (buckling failure) 4.32×10-5 (0.83)a 2.68×10-4 (0.83) 1.30×10-3 (0.81) 
True PF (strength failure) 1.86×10-5 (0.17)b 1.35×10-4 (0.17) 0.7×10-4 (0.19) 

a Probability of buckling failure 
b Probability of strength failure 

Table 6: PF estimations with 1000 repetitions 
Nominal P 2.1 MN 2.2 MN 2.3 MN 

Mean PF 1.72×10-4 5.72×10-4 3.24×10-3 
Std. PF 1.44×10-4 3.97×10-4 1.62×10-3 
COV 0.84 0.69 0.5 
Mean PF 1.97×10-3 3.17×10-3 6.00×10-3 
Std. PF 3.81×10-4 5.84×10-4 1.01×10-3 
COV 0.19 0.18 0.17 

True PF 8.8×10-5 3.63×10-4 2.54×10-3 
True PF (buckling failure) 4.8×10-6 (0.03)a 1.45×10-4 (0.33) 2.19×10-3 (0.80) 
True PF (strength failure) 8.6×10-5 (0.97)b 2.51×10-4 (0.67) 6.0×10-4 (0.20) 

a Probability of buckling failure 
b Probability of strength failure 
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1. Nonlinear Buckling analysis with ABAQUS 
For analysis of this model, we use nonlinear analysis to predict strength failure and buckling failure as severe 

deflection is anticipated in the panel surface, especially around the hole boundary,  
ABAQUS is used for the nonlinear analysis of the composite panel. The Riks method was used to trace 

incrementally the load-displacement curve and obtain buckling load. After the analysis processes, we track the load-
displacement curve to figure out buckling point and obtain load at the point as buckling load. Also load-ply strain 
curves are analyzed on the nodes around the hole to find strength failure load. 

 
 
 
 
 
 
 
 
 
 
 
 
The composite panel in Fig. 10 is modeled using ABAQUS with 9 node S9R5 element. The panel section is 

defined as composite general section property with stacking sequence and thickness as shown in Table 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We assume that ABAQUS is capable of providing accurate prediction. In this composite laminate panel, 

imperfection is very sensitive to buckling load prediction but the test specimen’s imperfection data is not available. 
We assume that the imperfection which gives the best prediction is actual imperfection of the specimen. Figure 11 
shows the effects of the imperfections with various perturbation magnitudes. -10% to 10% of thickness perturbations 
are assumed as reasonable imperfections and this represents imperfection in the panel. Mode 1 to 4 are used, 
eigenvector of the model 1 to 4 are shown in Appendix B. The eigenvector is obtained from the linear buckling 
analysis and the normal direction is surface normal direction of the curved panel. Actual test with the curved panel 
was performed by Knight (Ref. 3). Simulation result indicates that -10% thickness perturbation with mode 3 

 
Figure 10. Curved composite laminate panel modeling with ABAQUS 

Table 7. Ply material properties / Ply section properties 
E1 135 GPa (19600 ksi) ε1tu 0.0093 
E2 13.0 GPa (1890 ksi) ε1cu -0.011 

G12, 
G13 

6.4 GPa (930 ksi) 
ε2tu 0.0043 

G23 E2/3 ε2cu -0.016 
ν12 0.38 ε12u 0.019 

Ply thickness 0.142 mm (0.0056 inch) 
Stacking sequences [ 45/90/02/90/ 45]s 

 

 
Figure 11: Effects of various imperfections (estimated simulation error) 
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eigenvector provides the best predictions for buckling load and surface strain. Hence we assume that the specimen's 
actual imperfection is approximately mode 3 eigenvector shaped thickness perturbation of -10%. Figure 11 shows 
another fact that the effects of imperfection on buckling load and strain are very substantial. 

Figure 12 shows comparisons between predicted load-displacement curve and load-surface strain curve from 
ABAQUS and corresponding test results. The curves are plotted up to buckling point. The surface strain is measured 
from two strain gages on the top and bottom of the panel near the hole. Table 8 has measured buckling load and 
surface strain at the buckling point from the test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Uncertainty Modeling of Curved Composite Panel 
In this section, variabilities in buckling load and strength failure load, capacities of the curved composite panel 

for the two failure modes, are estimated using ABAQUS. The two capabilities are varied due to variabilities in 
manufacturing process, such as material properties and geometric properties.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 9 shows variabilities in material properties and geometries. In this table, ply material properties, E1, E2, 

G12 and ν12, are correlated. It is assumed that the fiber volume fraction is the dominant factor to make the 
correlation. Use relationships for the elastic constants in terms of volume fraction from mixture rule, the correlation 
between material properties are calculated. Variabilities of material properties are given in table 9. We assume that 
the nominal material properties in table 7 have variabilities in table 9 then covariance matrix is calculated. See 
detailed information in (Ref. 1). Also it is assumed that the ultimate strains are independent each other. 

             
(a) Load-Displacement (P-δ) curve 

(up to buckling point) 
(b) Load-Surface strain curve 

 
Figure 12. Curved composite laminate panel modeling with ABAQUS 

Table 8. Experiment results 
Buckling load  101.6 kN (22840 lb) 
Surface strain -0.0128 

Table 9: Variability of material properties, thickness, imperfection and load 
 Variabilities Modeling 
Material 
properties 

CV=4.25% for E1, 2.75% for E2, 1.5% 
for G12 and 5.25% for v12 (correlated) 

CV=6% for εlu, and εll, 10% for ε2l, ε2u 
and εl2u* (independent) 

Considering correlation between the 
parameters using Gaussian copula 

Thickness ±3% of thickenss 
(0.0056×0.03=0.00269in) 

Uniform distribution for individual 
ply thickness 

Imperfection ±10% of thickenss 
(0.0056×16×0.1=0.00896 in) 

Uniform distribution 
Imperfection mode is randomly 
selected among mode 1, 2, 3, and 4 

Load CV=10% for P Normal distribution 
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The others, thickness and imperfection are also shown here. It is assumed that all the plies have the same 
variability in thickness. For the variability in imperfection, we randomly select an eigenvector and multiply the 
perturbation factor which is generated from the uniform distribution. 

Variabilities of capacities are estimated using the uncertainty sources and ABAQUS model with MCS. We 
predict the strength failure using load-strain curve from the FE analysis using the maximum strain criterion. Strength 
failure beyond the buckling point is estimated using post buckling analysis. 200 samples are generated using 
ABAQUS. 

As we have error in measurements of dimensions and material properties, we need to consider test error Table 10 
shows the uncertainty sources of test which cause the test error.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since these errors are correlated, the errors are modeled using Frank copula. Marginal distributions are fitted 

using K-S test to find the best fit CDFs. To fit the marginal distributions and copula, 200 samples are generated 
using ABAUQUS with the uncertainty sources in structural test. 

 
 
 
 
 
 
 
 
 
Using Eq. (19), we obtain distribution of ,ˆ1 test Ptruee and ,ˆ1 test Ptruee , scattered plot and fitted joint PDF of 

likelihood function are shown in Fig. 13 and table 12 shows marginal CDFs for each calculation errors. Rank 
correlation coefficient Kendal’s tau of the likelihood function is 0.15. 
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Figure 13: Updated 1-e distribution for both buckling and strain (200 FE analysis runs) 

Table 11: Uncertainty sources on experiment 
(200 samples) Buckling load Surface strain 
Mean 22801.01 0.0132 
Standard deviation 214.07 0.000063 
COV (std. of error) 0.93% 0.47% 
Kendal’s tau 0.15 

 

Table 10: Uncertainty sources in structural test 
 Causes Experimental variability Modeling 
Material 
properties1 

Measurement CV=1% for E1, 3% for 
E2, G12 and v12 

Independent 
normal 
distributions 

Thickness2 Measurement ±0.08% of thickenss 
(panel thickness: 
0.0056×16=0.0896 in) 

Unifrom 
distribution 

Imperfection3 Measurement ±0.08% of thickenss Uniform 
distribution 

Boundary4 
condition 

Imperfect BC  Torsional springs on 
nodes applying BC 

Ignored as for 
little effect 

Load Measurement 0.256 lb  
(experimental buckling 
load: 22840 lb) 

Ignored as for 
little effect 
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Same error bounds as shown in table 4 are used for establishing prior distribution, updated distribution of the 
calculation errors are used to estimate PF. 

 
 
 
 
 
 
 
 
 
 

3. Estimating Probability of Failure Based on a Single Test 
PFs and their corresponding reliability indices of the composite panel are estimated in terms of loads. As 

expected the effects of test is significant in terms of PF.  
 
 
 
 
 
 
 
 
 
 
 
As we got from the previous examples, test affects a lot on PF estimate. With the test, we can significantly 

reduce conservativeness in the PF estimate before test. In the table we have dominancy ratios and the values 
represent probability of occurrence at the corresponding load. In this table the ratios shows that there is little chance 
of failure mode switching and buckling mode is a dominant failure mode of the curved composite panel.  

IV. Concluding Remarks 
Advanced composite materials have become key ingredients in modern aircraft structures. We make an 

uncertainty quantification model for a curved composite fuselage panel. Both epistemic uncertainty and alreatory 
uncertainty are applied in the model. Two correlated failure modes, buckling failure and strength failure, are 
considered.  

Through the uncertainty quantification model, we estimate PF of a structure. The PF estimation capability of the 
model is validated with a simple example. Also the effects of test are quantified in terms of PF. The numerical 
example shows that performing a single test can reduce significant conservativeness in PF estimation. Performing a 
single test for given probability of failure allows lighter structure. For the curved composite panel, ABAQUS is used 
for non-linear analysis to predict failures. PF of the curved panel according to the load level is estimated based on 
the analysis result with the uncertainty quantification method. Also probability of failure occurrence for each failure 
modes is estimated to see if there is a failure mode switching. 

 
 
 
 
 
 
 
 
 

Table 12: K-S test to identify the best fit CDF for buckling load and 
surface strain  

 
Error in buckling 

load 
Error in surface 

strain 
CDF type Logn Gamma 
Mean 1.0041 0.975 
Standard deviation 0.0094 0.0046 
COV (std. of error) 0.93% 0.47% 
Kendal’s tau 0.15 

Table 13: Estimated PFs according to load P  

Load P (kN) 
After test Before test 

PF  β  Dominancy PF β  Dominancy 
80 4.6×10-3 2.61 0.73 (B) 7.8×10-3 2.42 0.57 (B) 

77.5 1.7×10-3 2.92 0.74 (B) 3.3×10-3 2.71 0.56 (B) 
75 5.7×10-4 3.25 0.73 (B) 1.3×10-3 3.01 0.56 (B) 

72.5 1.6×10-4 3.59 0.73 (B) 4.4×10-4 3.33 0.55 (B) 
70 4.2×10-5 3.93 0.71 (B) 1.2×10-4 3.65 0.56 (B) 
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Appendix 
ABAQUS linear buckling analysis provides eigenvectors. The eigenvectors were used for the geometric 

imperfection. 
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