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Low-fidelity scale factor improves Bayesian multi-fidelity prediction
by reducing bumpiness of discrepancy function
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Abstract
This study explores why the use of the low-fidelity scale factor can substantially improve the accuracy of the Bayesian multi-
fidelity surrogate (MFS). It is shown analytically that the Bayesian MFS framework utilizes the scale factor to reduce the
waviness and variation of the discrepancy function by maximizing the Gaussian process-based likelihood function. Less wavy
functions are more accurately fitted, and variation reduction mitigates the effect of fitting error. Bumpiness is another way used to
combine waviness and variation. Two examples, Borehole3 and Hartmann6, illustrated that indeed the Bayesian MFS reduced
bumpiness using the scale factor. The finding may be useful for MFS using surrogates lacking uncertainty structure, so that
likelihood is not an option, but bumpiness may be.
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1 Introduction

Design optimization and uncertainty quantification often re-
quire numerous expensive simulations to find an optimum
design and to propagate uncertainties. Instead, a surrogate fit
to dozens of simulations is often employed as a cheap alter-
native. However, for computationally expensive high-fidelity
simulations, even evaluating sufficient samples for building a
surrogate is often unaffordable. To address this challenge,
multi-fidelity surrogates (MFS) combine inexpensive low-
fidelity models with a small number of high-fidelity simula-
tions. For example, MFS can be employed to predict the re-
sponse of an expensive finite element model with a few runs
of the model and many runs from a less accurate model with a
coarse mesh. MFS have been applied extensively in the liter-
ature (Fernández-Godino et al. 2016; Gano et al. 2006).

The regression-based MFS framework has been used ex-
tensively in design optimization, for example, by combining
two- and three-dimensional finite element models (Mason et
al. 1998) or coarse and fine finite element models (Balabanov

et al. 1998). More recently, Bayesian MFS frameworks have
become popular. Qian and Wu (2008) proposed the use of
Markov chain Monte Carlo and sample average approxima-
tion algorithm for hyperparameter estimation of the Bayesian
MFS framework. Co-Kriging followed with better computa-
tional efficiency (Forrester, 2007; Le Gratiet 2013). A
Gaussian process (GP) based Bayesian MFS framework was
introduced by Kennedy and O'Hagan (2000). The use of GP
model provides flexibility and their prediction is not limited to
a specific form of the trend function. Thus, the Bayesian MFS
can also be useful when there is no prior information, which is
also called non-informative prior (Rasmussen, 2006).

The Bayesian MFS framework can be expressed as

ŷH xð Þ ¼ ρŷL xð Þ þ δ̂ xð Þ ð1Þ

where ŷH xð Þ is high-fidelity function prediction at x, ŷL xð Þ is
low-fidelity function prediction, δ̂ xð Þ is discrepancy function
prediction, and ρ is a low-fidelity scale factor. This scale factor
has rarely been used in the past. However, the combined use of
a scale factor and a discrepancy function has been common for
recently developed GP-based MFS frameworks (Fernández-
Godino et al. 2016; Zhou et al. 2018).

The MFS frameworks can handle noisy data using (1) with
a noise model, where random noise follows a normal distribu-
tion defined with zero mean and a noise standard deviation,
which needs to be estimated. However, this paper focuses on
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MFS prediction with a few high-fidelity samples without ran-
dom noise. This is because filtering noise based on a few high-
fidelity samples is often not reliable (Matsumura et al. 2015).

It was found that the Bayesian framework and co-Kriging
often gave significantly more accurate predictions than other
MFS frameworks with a discrepancy function only (Park et al.
2017). An interesting observation was the influence of the
scale factor. The Bayesian framework gave much more accu-
rate discrepancy predictions with the scalar and so did the
MFS predictions, but it gave mediocre predictions without
the scalar. The objective of this paper is to discover the reason
why the use of the scalar made the Bayesian MFS significant-
ly more accurate. Understanding the reason behind the
Bayesian MFS is likely to help extend the success to other
non-Bayesian MFS frameworks that may have advantages for
some applications.

This paper is organized as follows. Section 2 discusses the
importance of using the scalar for making MFS prediction.
One-dimensional examples show how the scalar improves
the accuracy of the discrepancy function to improve MFS
prediction. It is discussed that large waviness and variation
of the discrepancy function tend to increase errors.
Bumpiness is introduced to combine them. Section 3 explains
how the Bayesian framework characterizes a discrepancy
function with variation and waviness. It finds the scalar by
combining them through the likelihood function based on a
Gaussian process model. Section 4 uses multi-dimensional
examples to illustrate the correlation between bumpiness and
error. These include the Borehole3 physical function and
Hartmann6 algebraic function. Concluding remarks are pre-
sented in Section 5.

2 The importance of having the scale factor
to reduce the bumpiness of a discrepancy

InMFS frameworks, it is usually assumed that the low-fidelity
function is well approximated due to a relatively large number
of samples. With the model expressed in (1), the low-fidelity
prediction is based on a sufficient number of low-fidelity sam-
ples. Once the low-fidelity model is determined, the differ-
ences between the high-fidelity samples and the low-fidelity
predictions are used to fit the discrepancy function. Since the
discrepancy samples are based on the high-fidelity samples,
the discrepancy function prediction depends on a small num-
ber of high-fidelity samples. Therefore, if the discrepancy
function is wavy or has a high amplitude of oscillation, a small
number of high-fidelity samples may lead to large errors.

Fortunately, the discrepancy function depends on the
scalar ρ because it is defined as the difference between
the high-fidelity prediction and the scaled low-fidelity
prediction. Therefore, it is possible to manage the dis-
crepancy function by changing the scalar. Based on our

study about MFS frameworks, the Bayesian MFS frame-
work was particularly effective with ρ. We found that it
was because the Bayesian MFS determines the scalar to
make the discrepancy simple. That is, it reduces the
waviness and variation of the discrepancy, which tends
to improve the prediction accuracy.

In order to show the above-mentioned characteristic, Fig. 1
shows two analytical examples where the Bayesian MFS
framework was applied with and without ρ. In Fig. 1(a) and
(b), the red and blue curves are the true high- and low-fidelity
functions, and the crosses and the hollow circles are the high-
and low-fidelity samples, respectively. Figure 1(c) and (d)
show the true discrepancy function (dashed curve) without ρ
(or with ρ= 1) and the corresponding predictions (red solid
curve) using the Bayesian framework. The figures also show
the two-sigma prediction uncertainty. Due to a large variation
of the true discrepancy function, the four samples were not
enough to predict the discrepancy accurately. Also, the 2σ-
confidence intervals (blue areas) failed to cover the true dis-
crepancy function.

On the other hand, when the scale factor is present, the
Bayesian framework found ρ = 2.5 for the first example,
whose discrepancy is shown in Fig. 1(e). Note that the dis-
crepancy samples in Fig. 1(c) and (e) are different because
they are discrepancies between the high-fidelity samples to
that of scaled low-fidelity samples. By choosing ρ= 2.5, the
variation in the original discrepancy in Fig. 1(c) is drastically
reduced as shown in Fig. 1(e), and thus, four samples were
enough to accurately predict it. Due to the reduction of varia-
tion, the root-mean-squared-error (RMSE) in the discrepancy
is reduced by more than a factor of 8. Although the true dis-
crepancy function is still wavy, the bumpiness is significantly
reduced by reducing the variation in this case.

In the case of the second example, Fig. 1(f) shows that the
Bayesian method found ρ= 2 that turns the wavy discrepancy
function in Fig. 1(e) into a linear function, and the prediction
becomes almost perfect. In this case, the Bayesian MFS
framework reduces the waviness of the discrepancy while
the variation is still large.

Note that the results also illustrate the flexibility of the GP-
based Bayesian MFS framework. The trend functions of the
GP models of the Bayesian MFS framework were set to a
constant function. Figure 1(f) shows that the GP-based dis-
crepancy prediction gave a prediction like a linear function
based on the data while its trend function is a constant func-
tion. In addition to the two analytical examples, a cantilever
beam example is also included in Appendix B.

The concept of variation and waviness can be combined
into the concept of bumpiness. The notion of bumpiness,
which is also referred to as roughness, was introduced for
measuring function roughness (Duchon 1977; Gutmann
2001; Cressie 2015). Salem and Tomaso (2018) uses bumpi-
ness to select surrogate and surrogate weighting for an
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ensemble. Bumpiness is an integral of the square of second
derivative of the associated function, as

B f xð Þð Þ ¼ ∫ f ″ xð Þ�� ��2dx ð2Þ

In the following section, we describe how the Bayesian
MFS framework combines the effect of variation and wavi-
ness through the likelihood function. In the Bayesian method,
finding a scalar value that maximizes the likelihood function
is related to reducing variation and waviness, which also leads
to the reduction of bumpiness in (2). However, maximizing

the likelihood function does not mean exactly minimizing the
bumpiness.

3 Bayesian MFS framework: Finding the scale
factor that reduces bumpiness

The two examples in the previous section used the Bayesian
framework to determine ρ, as shown in Fig. 1(e) and (f). The
Bayesian framework finds ρ using the method of maximum

a b

c d

e f

Fig. 1 Options to improve the
accuracy by including ρ for MFS
prediction (δ(x): True discrepancy
function; δ̂ (x): Discrepancy
prediction; δ: Discrepancy
function data)
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likelihood estimation (MLE) that estimates ρ at the mode of
the likelihood function. While the ρ obtained by MLE is not
exactly the same as the ρ minimizing the bumpiness, for the
examples we analyzed they were close, as will be seen in the
next section. This section discusses why the Bayesian formu-
lation tends to reduce the bumpiness in the discrepancy func-
tion using variation reduction and waviness reduction.

The likelihood function, which is in the form of the multi-
variate normal distribution, can be reformulated to find ρ as
the minimizer, as

argmin
ρ

σ̂̂2Δ ρð Þ RΔ ωΔð Þj j1=nH ð3Þ

whereσ̂Δ ρð Þ and |RΔ(ωΔ)|are, respectively, the process stan-
dard deviation and the determinant of the correlation matrix
obtained based on discrepancy data yH−ρycL. σ̂Δ ρð Þ represents
the variation, while |RΔ(ωΔ)| represents the waviness of the
discrepancy data. |RΔ(ωΔ)| can be interpreted as a waviness
measure, which is a function of waviness vector ωΔ. The
detailed derivation of (3) from the likelihood function is given
in Appendix A.

σ̂Δ andωΔare estimated based on the discrepancy data for
given ρ using auto-covariance, which was introduced to quan-
tify the probabilistic similarity of two values in space (Ripley
1981). The auto-covariance is also applicable to random func-
tion generation based on the variation and waviness parame-
ters of the auto-covariance. The inverse use of the auto-
covariance allows estimating the variation and waviness of
the true function based on the data (Rasmussen 2004).

The Bayesian framework uses the Gaussian correlation
function to model the auto-covariance of the uncertainties in
discrepancy function predictions at different locations. Let
Δ(x) and Δ(x′) be the discrepancy predictions at two data
locations x and xʹ. The covariance between them is expressed
using their distance as

cov Δ xð Þ;Δ x
0

� �� �

¼ σ2
Δexp − x−x

0
� �T

diag ωΔð Þ x−x
0

� �� �
ð4Þ

where diag(ωΔ) is a diagonal matrix with the waviness vector
ωΔ, which has the same dimension with x.

Figure 2 shows two sets of samples from (a) a wavy func-
tion with small variation and (b) a less wavy function with
large variation. The process standard deviation and waviness
were estimated based on the data sets using (4). It is clear that a
wavy function with small variation has a small σΔ and a large
ωΔ. On the other hand, a less wavy function with large var-
iation has a large σΔ and a small ωΔ.

The effect of the process standard deviation on (3) is obvi-
ous because the objective function decreases as with the pro-
cess standard deviation. The influence of |RΔ| on (3) is a

function of the waviness parameter and discrepancy data lo-
cations. Since data location remains the same for finding ρ,
there is no influence of the data location.

The correlation matrix RΔ is a symmetric square matrix.
The size of the matrix is the number of discrepancy data. The
diagonal elements of RΔ are one and the off-diagonal ele-
ments are obtained by the exponential part of the auto-
correlation in (4). The off-diagonal elements measure the cor-
relations between discrepancy values at two different data
locations. The correlation matrix is expressed as

RΔ ¼
1 ⋯ exp − xδ−x

0
δ

� �T
diag ωΔð Þ xδ−x

0
δ

� �� �
⋱ ⋮

symm 1

2
664

3
775

nH�nHð Þ

ð5Þ

The properties of the determinant of a correlation matrix
are well known (Reddon et al. 1985; Lophaven et al. 2002;
Johnson andWichern 2007). The determinant has a minimum
value of zero whenωΔ = 0, which makes all the off-diagonal
elements one. On the other hand, the determinant has a max-
imum value of one when ωΔ→∞, which makes all the off-
diagonal elements zero. As shown by Johnson and Wichern
(2007), the determinant decreases monotonically with de-
creasingωΔ. Since waviness is proportional toωΔ, reducing
the determinant is equivalent to reducing the waviness.

In summary, the minimization of (3) is achieved by reducing
the product of the terms representing variation and waviness.
When there is no way to reduce the variation and waviness using
ρ simultaneously, (3) trade-off between them to minimize the
objective function. Equation (3) drives bumpiness reduction
through the reduction of variation and/or waviness. However,
minimizing (3) is not theoretically equivalent to minimizing the
bumpiness of the discrepancy function defined in (2).

The reader is referred to Section A.2 of Appendix for the
detailed formulas to measure variation and waviness using the
auto-covariance model of the Bayesian framework.

4 Multi-dimensional examples

In this section, the influence of ρ on increasing MFS predic-
tion accuracy by reducing bumpiness will be presented
through multi-dimensional examples: (a) physical borehole
function and (b) numerical Hartmann 6 function.

Firstly, in this section, three different MFS frameworks are
compared, along with two single-fidelity Kriging surrogates.
Table 1 shows the framework descriptions with the corre-
sponding abbreviations. “H” and “L” denote Kriging surro-
gates using only high- and low-fidelity samples, respectively.
“B” is the Bayesian framework without ρ. “BR” is the
Bayesian framework with ρ that is found by minimizing the
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bumpiness, while ρ in BR2 is found by minimizing error. The
comparison between BR and B shows the effect of including ρ
on the prediction. The comparison between BR and BR2
shows the effect of different criteria for finding ρ: reducing
bumpiness versus minimizing error.

Secondly, the influences of ρ on the bumpiness of the discrep-
ancy function and the accuracy of MFS prediction were mea-
sured in the form of graphs by gradually changing ρ. However,
since evaluating second-order derivatives of a multi-dimensional
function in (2) is a computational challenge (Cressie, N., 2015;
Duchon, J., 1977), one-dimensional bumpiness measures are
used along Nline = 1000 randomly generated lines. Each line
was generated by connecting two randomly generated points
and extending the line to the boundary of the sampling domain.
The average of the one-dimensional bumpiness measures is used
as a representative bumpiness measure for a given value of ρ, as

B ρð Þ ¼ 1

Nline
∑
i¼1

Nline

∫ δ″ si; ρð Þ�� ��2dsi ð6Þ

where siis the parameter along the ith line, and δ″(si, ρ)is the
second-order derivative of the discrepancy function along the line
for a given ρ.

The graph of bumpiness with respect to ρ explains the influ-
ence of ρ on the bumpiness, but it does not explain whether the
change in bumpiness is caused by the variation and/or the wav-
iness. To measure their individual contributions, graphs of

variation and waviness are also obtained in terms of ρ. The
discrepancy variation is measured using the variance of the dis-
crepancy along all lines as

V ρð Þ ¼ 1

Nline
∑
i¼1

Nline

σ2
i ð7Þ

μi ¼ ∫δ si; ρð Þ=Lidsi and σ2
i ¼ ∫ δ si; ρð Þ−μið Þ2=Lidsi ð8Þ

where Liis the length of the i
th line.

To quantify the effect of waviness, a normalized bumpiness is
used. For example, the variation of δ1(x) = 2sin(100×) is four
times of the variation of δ2(x) = sin(100×) while their waviness
is the same. If these two functions are normalized, then they have
the same variation, so that only waviness can be measured. The
waviness measure is defined as

W ρð Þ ¼ 1

Nline
∑
i¼1

Nline

∫ δ
″
si; ρð Þ

����
����
2

dsi ð9Þ

where δ
″
si; ρð Þ ¼ δ″ si; ρð Þ=σi is the normalized second-order

derivative of the discrepancy function using the standard
deviation.

The accuracy graph of the Bayesian framework is measured
in terms of RMSE with respect to ρ. Since the MFS prediction
depends on samples; i.e., design of experiments (DOE), 100
DOEs were randomly generated using the nearest neighbor sam-
pling method (Forrester et al. 2007; Jin et al. 2005). Since the
Bayesian framework is applied for each DOE to calculate
RMSE, the above process yields 100 RMSEs. In the following
examples, the median, 25 and 75 percentiles of RMSEs were
obtained as a function of ρ.

4.1 Borehole function example: Reducing discrepancy
variation

The empirical Borehole function calculates the water flow rate
from an aquifer through a borehole. The function was obtained

a a

Fig. 2 The variation and the
waviness of a discrepancy
function

Table 1 Frameworks and the corresponding labels

Label Framework

BR Bayesian discrepancy framework including ρ

BR2 Bayesian discrepancy framework and finding ρ for maximizing
agreement

B Bayesian framework excluding ρ (or BR with ρ = 1)

H Kriging surrogate based on high-fidelity samples

L Kriging surrogate based on low-fidelity samples
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based on assumptions of steady-state flow from an upper aqui-
fer to the borehole and from the borehole to the lower aquifer,
no groundwater gradient, and laminar, isothermal flow through
the borehole (Morris et al. 1993).

In this example, the borehole function is considered as the
high-fidelity function and an approximate function is used as a
low-fidelity function. The high-fidelity function is defined as

f H Rw; L;Kwð Þ

¼ 2πTu Hu−Hlð Þ
ln R=Rwð Þ 1þ 2LTu

ln R=Rwð ÞR2
wKw

þ Tu

Tl

� � ð10Þ

The flow rate fH(Rw, L, Kw) is a function of three input
variables, Rw, L, and Kw, which are the borehole radius, bore-
hole length and hydraulic conductivity of borehole, respec-
tively. The ranges of the input variables and other environ-
mental parameters are presented in Table 2. The values of
the parameters were determined as nominal values of the pa-
rameters based on Morris et al. (1993).

A low-fidelity function of the borehole function is obtained
from the literature (Xiong et al. 2013) as

f L Rw; L;Kwð Þ

¼ 5Tu Hu−Hlð Þ
ln R=Rwð Þ 1:5þ 2LTu

ln R=Rwð ÞR2
wKw

þ Tu

Tl

� � ð11Þ

Note that bounds of [0.5, 1.5] were used for ρ, and constant
trend functions were used for the Bayesian framework.

Since MFS are built with low- and high-fidelity samples,
there are many different combinations of low- and high-
fidelity samples possible for the same total computational
budget. MFS performances for different combinations were
measured, and then, the one that shows the highest accuracy
was selected and analyzed further.

All the frameworks in Table 1 were applied for different
sample combinations for the same total budget. Table 3 shows

sample size ratios for the total budget of 10H, which means
the computational budget for evaluating ten high-fidelity sam-
ples. The sample cost ratio of 30 means that the cost of eval-
uating 30 low-fidelity samples is equivalent to that of evalu-
ating a single high-fidelity sample. With the total budge of
10H, we can use either 10 high-fidelity samples, 300 low-
fidelity samples, or any combinations as shown in Table 3.
These combinations are expressed with the numbers of high-
(nH) and low- (nL) fidelity samples, such as 7/90.

For each sample size ratio, 100 DOEs were randomly gen-
erated using the nearest neighbor sampling method (Forrester
et al. 2007), and the statistics of their RMSEs are used for
evaluating the performance of each MFS framework. Note
that RMSE of each DOE was calculated based on 100,000
test points in the sampling domain. For each sample size ratio
and MFS framework, the median, 25 and 75 percentiles of
RMSEs were obtained.

Figure 3 shows the median RMSEs of all five frameworks
for different sample size ratios. Since the low-fidelity Kriging
surrogate used 300 samples, the prediction error is small
against the true low-fidelity function, but RMSE is high
against the true high-fidelity function. On the other hand, the
error in the high-fidelity Kriging surrogate comes from the
prediction error because 10 high-fidelity samples are too

Table 2 Input variables and environmental parameters

Input Bounds Description

Rw [0.05, 0.15] m Borehole radius

L [1120,1680] m Borehole length

Kw [1500,15,000] m/yr Hydraulic conductivity of borehole

Parameters Value Description

R 25,050 m Radius of aquifer influence

Tu 89,335 m2/yr Transmissivity of upper aquifer

Hu 1050 m Potentiometric head of upper aquifer

Tl 89.55 m2/yr Transmissivity of lower aquifer

Hl 760 m Potentiometric head of lower aquifer

Table 3 Cases of sample size combinations for a total computational
budget of evaluating 10 high-fidelity samples (10H) and ratio of 30
between the cost of high-fidelity and low-fidelity simulation (Borehole3
function)

Total budget Sample cost ratio High- and low-fidelity
samples

10H 30 8/60, 7/90, 6/120, 5/150, 4/180,
3/210, 2/240

Fig. 3 The median (of 100 DOEs) accuracy for different sample size
ratios (Note that the BR2 curve is overlapped with the BR curve)
(Borehole example)
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few. In general, the RMSEs of the MFS frameworks were
significantly lower than that of single-fidelities.

The difference between these MFS frameworks is from the
contributions of ρ and the criteria for finding ρ. BR and BR2
significantly outperformed B. That indicates that the inclusion
of ρ is a key factor for the accuracy in this example. In addi-
tion, the difference in finding ρ (BR and BR2) did not lead to a
significant difference, which means that the different criteria
for finding ρ did not change the results. In the case of the
sample size ratio of 7/90 (BR and BR2 were most accurate
at this ratio), the estimated ρ from 100 DOEs has the mean of
1.25 and standard deviation of 9.3 × 10−7; that is, the effect of
different DOEs is negligible. In this example, the directions of
finding ρ for reducing bumpiness (BR) andmaximizing agree-
ment (BR2) are consistent, which is not always true. The
reason will be discussed in a later section.

Figure 4(a), (b) and (c) show the graphs of bumpiness,
variation, and waviness of the true discrepancy function with
respect to ρ. In Fig. 4(d), the MFS accuracy was calculated
based on 100 DOEs of 7/90 at which the prediction accuracy
of BR is closest to the minimum median RMSE of BR shown
in Fig. 3. From Fig. 4(a), ρ = 1.25 minimizes the bumpiness,
which is consistent with the mean of the estimated ρ from BR;
that is, BR found ρ that is identical to minimizing the bump-
iness. The bumpiness behavior is related to the variation and
waviness behavior. Figure 4(b) and (c) show that ρ affects the

variation but not the waviness of the discrepancy function, so
all the changes in the bumpiness are due to variation. Figure
4(d) shows that the MFS accuracy as well as its uncertainty is
the best when the bumpiness is minimum. In summary, BR
found ρ = 1.25 by minimizing the bumpiness, or equivalently,
by minimizing variation. Such behavior is related to the char-
acteristics that both the high- and low-fidelity functions are
convex.

Figure 5 illustrates a prediction comparison between BR
and B along the line connecting x1 = {0.2, 1120, 1500} and
x2 = {0, 1680, 15,000} for a chosen DOE. Note that the char-
acteristics along other lines are similar to this one. Since the
low-fidelity prediction was very accurate, the prediction accu-
racy was determined by the error in the discrepancy function.
As the result shows, seven high-fidelity samples could not
capture the curvature of the discrepancy in Fig. 5(b) without
ρ (or ρ = 1). ρ reduced the variation of the discrepancy func-
tion and so does the bumpiness as shown in Fig. 5(a); and it
increased theMFS prediction accuracy significantly. Note that
the magnitude of the discrepancy function in Fig. 5(a) and (b)
are different by a factor of about 100. Since the variation of the
discrepancy function was reduced so much, the errors in
fitting the discrepancy function have also been reduced by
two orders of magnitude. The comparison between Fig. 5(c)
and (e) shows that the high-fidelity response has a similar
trend with the low-fidelity response. Therefore, magnifying

a Bumpiness curve b

c d

Variation curve

Waviness curve RMSE curve (BR)

Fig. 4 The bumpiness, variation
and waviness graphs and the
RMSE from BR in terms of ρ for
the borehole example
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the low-fidelity function reduces the variation of the discrep-
ancy function.

It is recalled that the performances of the BR and the BR2
were almost identical. This is because for this example, the
reduction in variation of the discrepancy function is achieved
by scaling down its magnitude. However, this is not always
the case, as the Hartman 6 example will show.

4.2 Hartmann 6 function example

The Hartmann 6 function example also shows that Bayesian
frameworks with ρ increase the prediction accuracy of MFS.
However, in contrast to the borehole example, the BR2 did not

give as good prediction as BR, which confirms that reducing
bumpiness was more effective than minimizing error. For a
high-fidelity function, the six-dimensional Hartmann 6 func-
tion is defined as

f H xð Þ ¼ −
1

1:94
2:58þ ∑

4

i¼1
αiexp − ∑

6

j¼1
Aij x j−Pij
� �2 ! !

ð12Þ
where the domain of input variables is defined as
{0.1, ...0.1} ≤ x ≤ {1,…, 1}. For model parameters, α = {1
1.2 3 3.2}T, and the following two constant matrices are
used:

Discrepancy prediction, ρ=1.25: 
RMSE=0.031 (BR)

 Discrepancy prediction, without ρ (ρ=1):
RMSE=4.449 (B)

, ρ=1.25: 
RMSE=0.060 (BR)

c MFS prediction d

a b

 MFS prediction, without ρ (ρ=1): 
RMSE=4.470 (B)

e Low-fidelity prediction, ρ=1.25: 

RMSE=0.028 (BR)

 f Low-fidelity prediction, without ρ (ρ=1):

RMSE=0.028 (B)

Fig. 5 Comparisons between the
predictions based on the BR and
the B on the line between
x1 = {0.2, 1120, 1500} and
x2 = {0, 1680, 15,000} and
RMSEs along the line (Borehole
example)
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A ¼
10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14
3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

0
BB@

1
CCA a n d

P ¼ 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

0
BB@

1
CCA.

The approximated Hartmann 6 function was invented to be
used as a low-fidelity function as

f L xð Þ ¼ −
1

1:94
2:58þ ∑

4

i¼1
α

0
i f exp − ∑

6

j¼1
Aij x j−Pij
� �2 ! !

ð13Þ

where α
0 ¼ 0:5 0:5 2:0 4:0f gT andfexp(x)is the ap-

proximated exponential function as

f exp xð Þ ¼ exp
−4
9

� �
þ exp

−4
9

� �
xþ 4ð Þ
9

� �9

ð14Þ

Note that the total function variation of the Hartmann 6
function is 0.33 and the RMSE of the low-fidelity function
is 0.11.

In this example, the total computational budget is the cost
of evaluating 56 high-fidelity samples (56H), and the sample
cost ratio between high- and low-fidelity functions is 30.
Table 4 shows the considered sample size ratios. The notations
and the repetitions of DOE are the same as the previous
example.

Figure 6 shows the median of RMSEs of all the frame-
works for different sample size ratios. In this example, BR
outperformed both B and BR2, which shows that not only
the inclusion of ρ but also reducing the bumpiness is important
for prediction accuracy. Finding ρ by reducing bumpiness
yielded much more accurate prediction than by minimizing
error.

Figure 7(a) and (b) show the histograms of ρ estimated
fromBR and BR2 for the sample size ratio of 42/420, at which
the BR is the most accurate. The histograms clearly show they
estimated significantly different ρ. The mode of the histogram
was 1.49 for BR, while it was 1.03 for BR2. Since there is no
difference in making low-fidelity predictions between the BR
and the BR2, the difference between the two frameworks is
caused by the difference in the ways of finding ρ.

The graphs of MFS discrepancy bumpiness, variation and
waviness with respect to ρ are shown in Fig. 8 as well as the
graph of prediction accuracy for the sample size ratio of 42/420.
Figure 8(a) shows the bumpiness graph of the true discrepancy
function, where the minimum bumpiness occurred at ρ= 1.41.
The mode of ρ from BR (1.49) is close to ρ at the minimum
bumpiness, which indicates that BR found ρ, which reduces the
bumpiness as discussed in Section 3. The contributions of the
variation and the waviness are shown as a graph in Fig. 8(b) and
(c). It shows that the bumpiness is strongly correlated with the
variation, while the waviness shows an opposite behavior, but its
contribution is overwhelmed by that of the variation. Figure 8(d)
shows the RMSE of BR for varying ρ. Note that the correspond-
ing RMSE graph of BR2 is identical to that of BR. That means,
BR and BR2 gave identical predictions for the same ρ. The
difference between BR and BR2 shown in Fig. 6 was because
they used different ρ estimates. RMSE is closely correlated with
the bumpiness, where the maximum accuracy occurred at ρ=
1.55. ρ at the minimum variation (1.55 from Fig. 8(b)) is consis-
tent with ρ at the minimum RMSE (1.55 from Fig. 8(d)).

The result indicates that bumpiness reduction was effective
to reduce prediction error. However, minimizing bumpiness is
not equivalent to maximizing accuracy. An explanation of the
observation is that the bumpiness of the true discrepancy func-
tion is compared with the accuracy of the predictions based on
samples. Since there are infinite true functions for a given set
of samples, the bumpiness of the true function cannot be per-
fectly correlated with the error.

In order to visualize the effect of different variation reduc-
tions between BR with BR2, a DOE was chosen for the sam-
ple size ratio of 42/420. Figure 9 shows predictions along a
line in the sampling domain that has the maximum difference
between BR and BR2. The low-fidelity prediction is reason-
ably accurate with RMSE of 0.048 for both frameworks
(Fig. 9(e) and (f)). Therefore, the error in MFS mostly comes

Table 4 Cases of sample size combinations for a total computational
budget of evaluating 56 high-fidelity samples (56H) and sample cost ratio
of 30 (Hartmann6 example)

Total budget Sample size ratio nH/nL

56H 48/240, 46/300, 44/360, 42/420, 40/480,
38/540, 28/840, 18/1140

Fig. 6 The median (of 100 DOEs) RMSEs versus sample size ratio
(Hartman6 example)
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from the error in the discrepancy function. This is because 42
high-fidelity samples are not sufficient to capture the bumpy
behavior of the discrepancy in the six-dimensions. BR deter-
mined ρ = 1.48 by minimizing the bumpiness, while BR2
found ρ = 1.04 by minimizing the error.

As in the borehole function, Figs. 9(a) and (b) show that the
fit along the line is poor for both BR and BR2. However, the
improvement by BR is not accomplished by reducing the
magnitude of the discrepancy but by reducing its variation.
The RMSEs along the line are much higher than the median
RMSEs of the whole sampling domain shown in Fig. 6. This
is because the line is a tiny part of the domain. However, in
terms of the RMSE reduction, they are consistent: 23% reduc-
tion for the line and 20% reduction for the whole domain.

5 Concluding remarks

This paper discussed that the Bayesian discrepancy frame-
work uses the low-fidelity scaling scalar to reduce variation
and waviness of the discrepancy function through the likeli-
hood based on the Gaussian process model. The variation and
waviness reductions lead to reduction of bumpiness that com-
bines the two without a Gaussian process model. The impor-
tance of including the low-fidelity scaling factor is that it al-
lows to reduce bumpiness of the discrepancy function that
tends to reduce error as the examples show. For the examples
studied, the success of the Bayesian framework was largely
based on the use of the scale factor. Without the scalar, the
Bayesian method gave mediocre predictions. The three-

a Bumpiness curve b  Variation curve

c Waviness curve d RMSE curve (BR)
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Fig. 8 The bumpiness, variation
and waviness graphs and the
RMSE from BR in terms of ρ for
the Hartman6 example

a Histogram of ρ for BR (mode of 1.49) b  Histogram of ρ for BR2 (mode of 1.03)

Fig. 7 Histogram of ρ estimates
(Hartman6 example)
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dimensional borehole and the six-dimensional Hartmann6 ex-
amples demonstrated that the accuracy of theMFS predictions
was strongly correlated with the bumpiness of the discrepancy
function. For the Borehole3 example, the minimum RMSE
was achieved with the scalar minimizing bumpiness. For the
Hartmann6 example, the scalar minimizing RMSE was not
identical to the scalar minimizing the bumpiness but they were
very close and the behaviors of RMSE and bumpiness were
strongly correlated. However, a perfect correlation cannot be
expected between the bumpiness of the true function and the
prediction error due to infinite possible true functions passing
through a finite number of samples.

The Bayesian framework characterizes a discrepancy func-
tion with two factors variation and waviness through the
Gaussian process model. And the maximum likelihood meth-
od combines variation and waviness reduction. Bumpiness is
another way to combine them without using a Gaussian pro-
cess model. For the examples using the Bayesian framework,
variation reduction dominated bumpiness reduction for the
Hartmann6 and Borehole3 examples. That can be interpreted
as the low-fidelity function captured the trend of the high-
fidelity function, but it did not capture the high-frequency
behavior. Whereas waviness reduction requires the scaled
low-fidelity model to capture the high-frequency behavior of

a b

c d

e f

Fig. 9 Comparisons between the
BR and the BR2 on hyper-line
between
{0.35,0.32,0.63,0.14,0.88,0.10}
and
{0.30,0.39,0.31,0.36,0.10,0.80}
and RMSEs along the line
(Hartman6 example)
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the high-fidelity model without necessarily capturing the low-
frequency behavior. We suspect that such a case may be rare,
so reducing variation would be more common. The lessons
learned from the Bayesian framework can be utilized for other
MFS predictions.
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Appendix A: Bayesian MFS framework

The discrepancy function based Bayesian framework
(equivalent to co-Kriging) predicts a high-fidelity response
based on a scaled low fidelity prediction and the correspond-

ing discrepancy prediction,ρŷL xð Þ andδ̂ xð Þ, respectively, as

ŷH xð Þ ¼ ρŷL xð Þ þ δ̂ xð Þ ð15Þ
where ρ is a scalar for the low-fidelity response. Both predic-
tions are based on a low fidelity Gaussian process (GP) model
YL(x) and a discrepancy function GP model Δ(x), respective-
ly. MFS prediction is made with the high-fidelity GP model,
which is the sum of the two GP models as

YH xð Þ ¼ ρYL xð Þ þΔ xð Þ ð16Þ

MFS prediction is made with two steps: 1) estimating
hyperparameters of the GP models and ρ using the Bayesian
inference and 2) updating the high-fidelity GPmodels defined
with the estimates using data. The MFS predictor is the mean
of the updated high-fidelity GPmodel YH(x) ∣ yH, yL, which is
expressed as

ŷH xð Þ ¼ E YH xð ÞjyH ; yLð Þ ð17Þ
where yH and yL are, respectively, the vectors of high- and
low-fidelity sample sets. The corresponding prediction uncer-
tainty estimate is

σ̂
2

H xð Þ ¼ Var YH xð ÞjyH ; yLð Þ ð18Þ

Gaussian process models

The GP models assume that the prediction uncertainties (epi-
stemic uncertainty) follow normal distributions. The low-
fidelity and discrepancy GP models are respectively defined
at x as

YL xð Þ∼N ξL xð ÞβL;σ
2
L

� �
Δ xð Þ∼N ξΔ xð ÞβΔ;σ

2
Δ

� � ð19Þ

where the subscript L andΔ denote low-fidelity function and
discrepancy function, respectively. Since the GP models are
functions of x, the GP models are defined with mean func-
tions, where a polynomial regression model is often
employed. ξL(x)andξΔ(x)are basis vectors of the mean func-
tions at x and βLandβΔare coefficient vectors. Note that the
unknown coefficient vectors are to be estimated based on data.
Equation (24) and (31) are the estimators of the coefficient
vectors. The variances remain constant but the GP models
define the relation between responses at two different points
with covariance functions based on the distance between the
points, which are defined as

cov YL xð Þ; YL x
0

� �� �
¼ σ2

Lcorr YL xð Þ; YL x
0

� �� �
cov Δ xð Þ;Δ x

0
� �� �

¼ σ2
Δcorr Δ xð Þ;Δ x

0
� �� � ð20Þ

where σ2
L and σ2

Δ are process variances of the GP models of
the low-fidelity and discrepancy function, respectively.
corr(YL(x), YL(x

′))andcorr(Δ(x),Δ(x′))are correlation func-
tions. A Gaussian kernel is used for the correlation functions
as

corr YL xð Þ; YL x
0

� �� �
¼ exp − x−x

0
� �T

diag ωLð Þ x−x
0

� �� �

corr Δ xð Þ;Δ x
0

� �� �
¼ exp − x−x

0
� �T

diag ωΔð Þ x−x
0

� �� �
ð21Þ

wherediag(ωL)anddiag(ωΔ)are diagonal matrices. Their (i,i)
component is the ith component ofωLand ωΔ, respectively.

Finally, the high fidelity GP model is obtained as the sum
of the GP models as

YH xð Þ∼N ρξT
L xð ÞβL þ ξT

Δ xð ÞβΔ; ρ
2σ2

L þ σ2
Δ

� � ð22Þ

The covariance function of the GP model is

cov YH xð Þ; YH x
0

� �� �
¼ ρ2σ2

Lcorr YL xð Þ; YL x
0

� �� �
þ σ2

Δcorr Δ xð Þ;Δ x
0

� �� �
ð23Þ

F o r m a k i n g M F S p r e d i c t i o n ,
{βL,ωL, σL,βΔ,ωΔ, σΔ, ρ}of the high fidelity GP model
need to be estimated.

Estimating hyper parameters of the GP models and ρ

A common condition for MFS sampling is that high fidelity
sampling locations are selected from low fidelity sampling
locations. With the condition, the discrepancy can be directly
obtained at the common locations, i.e. at the high-fidelity
sample locations. For the Bayesian framework, the condition
allows computational advantage of estimating the parameters.
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The condit ion yields independent est imations of
{βL,ωL, σL}and{βΔ,ωΔ, σΔ, ρ}. This is because the dis-
crepancy function prediction does not depend on the low fi-
delity prediction that makes{βΔ,ωΔ, σΔ, ρ}estimation inde-
pendent to {βL,ωL, σL}estimation.

The Bayesian inference uses the GP model inversely to
obtain the likelihood function with respect to{βL,ωL, σL}.
Fortunately, {βL, σL} can be analytically expressed as a func-
tion ofωL. Thus, the likelihood function is reformulated as a
function of ωLonly by substituting {βL, σL}:

p ωLjyLð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞnL σ̂

2

L ωLð ÞRL ωLð Þ
����

����
s

exp −
1

2σ̂
2

L ωLð Þ
yL−XLβ̂L ωLð Þ
� �T

R−1
L ωLð Þ yL−XLβ̂L ωLð Þ

� �0
@

1
A
ð24Þ

where β̂L ωLð Þ; σ̂2
L ωLð Þ
 �

are the analytical estimates of
{βL, σL}for given ωL. These estimates can be expressed as
a function ofωL:

β̂L ωLð Þ ¼ XT
LR

−1
L ωLð ÞXL

� �−1
XT

LR
−1
L ωLð ÞyL ð25Þ

σ̂̂2L ωLð Þ ¼ 1

nL
yL−XLβ̂̂L ωLð Þ� �T

R−1
L ωLð Þ yL−XLβ̂̂L ωLð Þ� �

ð26Þ

Correlation matrixRL(ωL)is also a function of ωL, which
is defined as

RL ωΔð Þ ¼
1 L exp − xL;nL−xL;1

� �T
diag ωLð Þ xL;nL−xL;1

� �� �
M O M

symm L 1

2
64

3
75

nL�nLð Þ

ð27Þ

where xL ¼ xL;1;…; xL;nL

 �

is the vector of nL low-fidelity
sample locations. The moment matrix is defined by applying
the sample locations to the basis vectors as

XL ¼
ξT
L xL;1
� �
⋮

ξT
L xL;nL
� �

8<
:

9=
;

nL�p1ð Þ

ð28Þ

where p1 is the number of basis of the mean function.
Using the maximum likelihood estimation, the mode of the

likelihood function is used to determine ωL. Thus, the likeli-
hood function can be reformulated as long as the mode re-
mains the same. By substituting (26) into the likelihood func-
tion and taking 2/nL

th root, the likelihood function in (23) and
(24) can be simplified as

p ωLjyLð Þ∝−σ̂̂2L ωLð Þ RL ωLð Þj j−1=nL ð29Þ

Finally,ωLestimate is obtained by solving an optimization
problem defined as
argmin

ωΔ

σ̂̂2L ωLð Þ RL ωLð Þj j−1=nL ð30Þ

Note that Bayesian statistics uses the maximum a posteriori
(MAP) estimation, which takes the mode of the posterior dis-
tribution as a parameter estimate. However, in the case of non-
informative prior, which is the case we used, the MAP esti-
mation gives the same estimate with the method of maximum
likelihood estimation. Because of this reason, we simply de-
scribe that hyper parameters were estimated with the method
of maximum likelihood in this paper.

In the same sense, {βΔ,ωΔ, σΔ, ρ}are estimated using the
discrepancy GPmodel. Since{βΔ, σΔ}can be analytically ob-
tained for given{ωΔ, ρ}, the likelihood function is expressed
as

p ωΔ; ρjyH ; ycL
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð ÞnH σ̂
2

Δ ωΔ; ρð ÞRΔ ωΔð Þ
����

����
s

exp −
1

2σ̂
2

Δ ωΔ; ρð Þ
yH−ρy

c
L−XΔβ̂Δ ωΔ; ρð Þ

� �T
R−1

Δ ωΔð Þ
yH−ρy

c
L−XΔβ̂Δ ωΔ; ρð Þ

� �
8<
:

9=
;

2
64

3
75
ð31Þ

where ycL is a subset of the low fidelity data at the common
data locations. The analytical estimates of {βΔ, σΔ} are

β̂Δ ωΔ; ρð Þ

¼ XT
ΔR

−1
Δ ωΔð ÞXΔ

� �−1
XT

ΔR
−1
Δ ωΔð Þ yH−ρy

c
L

� � ð32Þ

σ̂
2

Δ ωΔ; ρð Þ ¼ 1

ny
yH−ρy

c
L−XΔβ̂Δ ωΔ; ρð Þ

� �T
R−1

Δ ωΔð Þ yH−ρy
c
L−XΔβ̂Δ ωΔ; ρð Þ

� �

ð33Þ

RΔ(ωΔ) is defined as

RΔ ωΔð Þ ¼
1 L exp − xH ;nH−xH ;1

� �T
diag ωΔð Þ xH ;nH−xH ;1

� �� �
O M

symm 1

2
64

3
75

nH�nHð Þ

ð34Þ

where xH ¼ xH ;1;…; xH ;nH


 �
is the vector of nHhigh-fidelity

sample locations. The moment matrix is defined by applying
the sample locations to the basis vectors as

XΔ ¼
ξT
Δ xΔ;1

� �
⋮

ξT
Δ xΔ;nL

� �
8<
:

9=
;

nΔ�pð Þ

ð35Þ
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By substituting (32) and (33) into the exponential term of
the likelihood function in (31) and taking 2/nH

th root, the like-
lihood function is simplified as

p ωΔ; ρjyH ; ycL
� �

∝−σ̂
2

Δ ωΔ; ρð Þ RΔ ωΔð Þj j−1=nH ð36Þ

Finally, ωΔand ρ estimates are obtained by solving an
optimization problem defined as

argmin
ωΔ;ρ

σ̂
2

Δ ωΔ; ρð Þ RΔ ωΔð Þj j−1=nH ð37Þ

The objective function is the simplified negative maximum
likelihood function of {ωΔ, ρ}. One interesting aspect of this
problem is the presence of ρ. For a fixed ρ, (37) turns a prob-
lem of finding ωΔfor fittingyH−ρycL that is the same with
finding hyperparameters for fitting a Kriging surrogate for yH
−ρycL (Lophaven et al. 2002).

By assuming σ̂2
Δ ρð Þ and RΔare the process standard devi-

ation and correlation matrix for yH−ρycL, (37) can be turned
into

argmin
ρ

σ̂
2

Δ ρð Þ RΔj j−1=nH ð38Þ

The objective function if the minimized negative likelihood
function of the Kriging surrogate for yH−ρycL. Equation (38)
can be interpreted as a problem for finding ρ minimizing the
negative Kriging likelihood function.

Equation (38) is identical to (5). With the fact that σ̂2
Δ ρð Þ

and |RΔ|represent the variance and waviness estimated based
on yH−ρycL, (38) is to find ρ that minimizes the bumpiness of
discrepancy data yH−ρycL.

High fidelity function prediction

When all the hyperparameters are estimated, MFS prediction
at a chosen point x is made by updating the GP model defined
with the estimated hyperparameters. Posterior distribution of
the prediction is obtained with (17).

The predictor and prediction uncertainty estimate are the
mean and variance of the posterior distribution, respectively,
expressed as

ŷH xð Þ ¼ ξ xð ÞT β̂þ t xð ÞTΣ−1 y−Xβ̂̂
� �

σ̂
2

yH
xð Þ ¼ ρ2σ̂

2

L ωLð Þ þ σ̂
2

Δ ωΔ; ρð Þ−t xð ÞTΣ−1t xð Þ
þ ξ xð Þ−t xð ÞTΣ−1X
� �T

XTΣ−1X
� �−1

ξ xð Þ−t xð ÞTΣ−1X
� �

ð39Þ

where Σ−1is the inverse matrix of the covariance matrix
expressed in (42).

The vectors and matrixes used in (39) are defined as fol-
lows.

β̂
T
¼ β̂

T

L β̂
T

Δ

n o
ð40Þ

X ¼ XL 0
ρXL XΔ

� 
ð41Þ

Σ ¼ σ̂̂2L ωLð ÞRL ωLð Þ ρσ̂̂2L ωLð ÞRLH ωLð ÞT
ρσ̂̂2L ωLð ÞRLH ωLð Þ ρ2σ̂̂2L ωLð ÞRL ωLð Þ þ σ̂̂2Δ ωΔ; ρð ÞRΔ ωΔð Þ
� 

ð42Þ
where the correlation matrix between the high and low fidelity
GP models RLH(ωL)is expressed as

RLH ωLð Þ ¼
1 L corr YL xL;nL

� �
; YL xH ;1

� �� �
M O M

corr YL xL;1
� �

; YL xH ;nH

� �� �
L 1

2
4

3
5

nL�nHð Þ

ð43Þ

ξ xð Þ ¼ ξL xð Þ
ξΔ xð Þ
� 

nLþnHð Þ�1

ð44Þ

t(x)is expressed as

t xð Þ ¼

cov YH xð Þ; YL xL;1
� �� �

M
cov YH xð Þ; YL xL;nL

� �� �
cov YH xð Þ; YH xH ;1

� �� �
M

cov YH xð Þ; YH xH ;nH

� �� �

2
6666664

3
7777775

nLþnHð Þ�1

ð45Þ

where cov(YH(x), YL(x
′))andcov(YH(x), YH(x

′))are defined in
(20) and (21).
Appendix B: Cantilever beam example

A cantilever beam example is chosen as a structural example to
showhow ρ simplifies the discrepancy function tomaximizeMFS
prediction accuracy. Figure 10(a) shows the geometry of a canti-
lever beam with a rectangular section under a concentrated force
and moment. By choosing the height of the beam as a variable, it
is easy to visualize the discrepancy function. Since shear deforma-
tion is not ignorable for a thick beam, the Timoshenko beam
theory is used as a high-fidelity function to calculate the tip-de-
flection. The high-fidelity function is expressed as

f H hð Þ ¼ 4FL3

Ebh3
þ 6ML2

Ebh3
þ FL 4þ 5υð Þ

2Ebh
ð46Þ

The low-fidelity function is based on the Euler-Bernoulli
beam theory, where the shear deformation is ignored, as

f L hð Þ ¼ 4FL3

Ebh3
þ 6ML2

Ebh3
ð47Þ
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The error in the low-fidelity function comes from the third
term of (46). Since the error is linear in the reciprocal of h, it
cannot be captured perfectly with a polynomial trend function.

Figure 10(b) compares the high- and low-fidelity functions.
Two samples at x = {7.1,10} are used from the high-fidelity
function and five samples at x = {7.1,8.5,10,11.5,13} from the
low-fidelity function.

Figure 11(a) and (b) show the predictions using the Bayesian
MFS frameworks with and without including ρ (or with ρ= 1).
The red solid curves are the MFS prediction, while the black

dashed curves are the true high-fidelity function. Figure 11(c)
and (d) show the corresponding discrepancy predictions and
the true discrepancy functions. Note that the true discrepancy
functions are different since one is determined by ρ and the other
is the difference between the high- and low-fidelity functions.
The figures also show the two-sigma prediction uncertainty. In
the case of Fig. 11(a) and (c), the prediction uncertainty is too
small to show in the figure.

Figure 11(c) shows that ρ is determined such that the true
discrepancy function has a small variation, which allows an

a Cantilever beam under concentrated force 
and moment

b Tip-deflections of the high- and low-fidelity
models

Fig. 10 Cantilever beam example and the tip-deflection of the high- and low-fidelity models with respect to section height

a b

c d

Fig. 11 The MFS predictions and
the discrepancy predictions for
cantilever beam example
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accurate prediction with two samples. On the other hand, the
true discrepancy function without ρ has much larger variation
that leads larger bumpiness. The prediction error of the dis-
crepancy function with smaller bumpiness is 0.0011 in terms
of RMSE in Fig. 11(c), while its counterpart is 0.0040 in
Fig. 11(d), which is almost four times larger.
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