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A B S T R A C T   

Accurately predicting the remaining useful life (RUL) of industrial machinery is crucial for ensuring their reli
ability and safety. Prognostic methods that rely on Bayesian inference, such as the Bayesian method (BM), 
Kalman and Particle filter (KF, PF), have been extensively studied for RUL predictions. However, these algo
rithms can be affected by noise when training data are limited or uncertainty when empirical models are 
employed in place of accurate physics models. As a result, this can lead to significant prediction errors or even 
infeasible RUL predictions. To overcome this challenge, three different approaches are proposed to guide the 
Bayesian framework by incorporating low-fidelity physical information. The key idea is to impose inequality 
constraints to reduce sensitivity to noisy observations and achieve robust prediction. To evaluate the feasibility 
of the approaches, their performance is evaluated by a numerical example and real case study for drone motor 
degradation.   

1. Introduction 

The improvement of manufacturing productivity in smart factory 
depends on Prognostics and health management (PHM) techniques, 
which enable prediction of the machinery remaining useful life (RUL) to 
prevent unexpected failure and ensure smooth operation. To perform 
accurate RUL prediction, not only health indicator (HI) needs to be 
extracted from the sensor signals, but also require robust prognostic 
algorithms to estimate or train the degradation model using up to date 
HIs and predict future degradation trajectory [1]. 

For prognostics, two types of approaches are commonly used: data- 
driven and model-based approaches [2,3]. Data-driven approaches use 
historical datasets to identify degradation patterns and predict the 
future degradation behavior of machinery using artificial intelligence 
(AI) methods such as neural network (NN) [4] and fuzzy logic [5] or 
statistical methods including the Gaussian process (GP) regression [6], 
long short-term memory (LSTM) network [7] and support vector ma
chine (SVM) [8]. Although data-driven approaches are free from the 

in-depth knowledge of degradation physics, they require a huge amount 
of training data, and insufficient training data may lead to poor accuracy 
and large training uncertainty to make proper decision-making. In 
contrast, model-based approaches use a physical model that describes 
machinery degradation behavior and enables more accurate and 
long-term prediction. For instance, a physical model such as 
Paris-Erdogan or Huang’s model is utilized to predict the degradation 
process of bearings [9] and crack growth [10]. Bayesian filtering algo
rithms such as the Bayesian method (BM) [11], Kalman filter (KF) [12] 
and Particle filter (PF) [13] are widely used to estimate these model 
parameters. However, complex machinery systems with various com
ponents and failure mechanisms present challenges for developing 
high-fidelity physical models. Recently, a comprehensive review has 
been undertaken to assess advanced prognostics method and direction 
for prognostic approach, highlighting gaps in their design, development, 
and decision-making perspectives [14,15]. 

Though both data-driven and model-based approaches have shown 
good RUL prediction performances in various fields, their limitations 
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have impeded the implementation in practical applications. Thus, 
hybrid approaches have been developed in both approaches. The data- 
driven approaches incorporated physical laws into data-driven 
methods by integrating essential mathematical information into a ma
chine learning framework [16–18]. However, a high-fidelity physical 
model is still required to be embedded into the machine learning 
framework [19,20]. In model-based approaches, simple but empirical 
mathematical models such as the single exponential model [21,22], 
polynomial model [23], dual-exponential model [24,25] or trans
formation of multiple models [26] can be used as an alternative. These 
models do not possess specific physical meaning but can capture the 
degradation process over time and can be selected based on a 
run-to-failure history [27]. For instance, exponential models are often 
used to represent the gradual wear and tear of components, while 
polynomial models may capture more complex patterns of degradation 
[28]. Moreover, the Bayesian inference algorithms like BM and PF not 
only accurately estimate model parameters but also characterize pre
diction uncertainties. However, empirical models with conventional 
Bayesian inference algorithms require substantial data to robustly esti
mate the degradation physics and may lead to unrealistic RUL prediction 
in the presence of non-monotonic data influenced by measurement 
noise. Based on the existing survey, this paper proposes a method to 
enforce physical constraints in Bayesian approach to capture complex 
degradation evolution and enhance noise insensitivity even in early 
degradation stage with limited data. To the best of our knowledge, these 
issues have not been extensively discussed in the prognostics using 
Bayesian inference algorithms. 

A few studies have addressed incorporating constraints in the 
Bayesian algorithms to improve RUL prediction. For instance, Son et al. 
[29] applied constraints in KF to generate a truncated probability den
sity function (PDF) and minimize the impact of large measurement noise 
on RUL prediction. They established constraint ranges for model pa
rameters to achieve truncated posterior PDF and applied to automotive 
lead-acid battery failure predictions. Tang et al. [30] addressed the 
gradient-correction method in the calculation of weights in the PF al
gorithm. The gradient corrector is regulated by an effective base model 
obtained from historical datasets. However, acquiring predefined 
parameter ranges through expert knowledge remains challenging and 
may restrict adaptation to degradation trends differing from those 
observed in historical datasets. Recently, Downey et al. [31] proposed 
non-linear least square method with dynamic bounds for parameters, 
enabling the tracking of multiple aging mechanisms and demonstrated 
online RUL prediction using eight batteries. Nevertheless, the fluctua
tion of monitoring data during degradation introduces challenges to 
parameter estimation, leading to significant prediction errors. 
Addressing this issue, Yu et al. [32] utilized B-spline model updated 
through constrained PF, eliminating particles that do not meet the 
monotonic constraints after resampling. However, truncating the PDF 
after obtaining the unconstrained posterior distribution may reduce the 
number of samples to estimate posterior distribution. Moreover, existing 
studies have primarily focused on constraints within the interpolation 
region, neglecting the extrapolation region for prediction. Li et al. [33] 
introduced a self-constraint state-space estimator to acquire a constraint 
curve in the future time but required trend of the historical datasets to 
set constraints. 

To address the above issues, this research proposes three distinct 
methods to incorporate physical constraints into the traditional 
Bayesian prognostic framework aiming to reduce sensitivity to local 
noisy measurements and improve RUL prediction performance. The first 
method involves giving physical constraints based on initial prior 
knowledge of degradation model parameters. However, unlike other 
studies, this knowledge is identified by the monotonicity and curvature 
of the model. The second method involves constraining the acceptance 
criteria in a sampling method to generate samples for posterior distri
bution without reducing its number. The third method similarly con
strains a sampling method by giving penalties to the cost function (i.e. 

likelihood) to act as a regularization term. These methods are applied to 
two different prognostic algorithms: the BM and PF. In addition, phys
ical constraints are applied to extrapolation region that training data 
cannot cover during the parameter estimation. Finally, the prediction 
performance is robustly compared addressing the data uncertainty due 
to noise randomness. The main contributions of our work are summa
rized as follows: 

❿ Three different methods to integrate physical constraints into 
Bayesian inference-based prognostic algorithms is proposed. 
❿ Physical constraints in the extrapolation region are also consid
ered in optimizing the degradation parameter estimation in the 
Bayesian framework. 
❿ The data uncertainty is quantified using synthetic measurement 
data, providing a robust evaluation of the proposed method. 
❿ Numerical and a real case study are presented to demonstrate the 
performance of the proposed method, particularly when dealing with 
noisy measurement data and early-stage predictions. 

The article is organized as follows. In Section 2, prognostic algo
rithms based on the Bayesian framework and the definition of physical 
constraints for prognosis are briefly introduced. Then, in Section 3, three 
different approaches to embedding physical constraints are proposed in 
detail with the implementation procedure for each prognostic algo
rithm. In Section 4, the metrics to evaluate the prediction accuracy and 
uncertainty with the data uncertainty are addressed. In Sections 5 and 6, 
the proposed methods are applied to numerical simulation and a real 
case study for drone motor degradation, respectively, followed by 
Conclusions in Section 7. 

2. Model-based prognostics 

This section introduces a brief overview of the various parameter 
estimation algorithms used in model-based prognostics. These algo
rithms involve the following three steps: (1) identifying or developing a 
physical model that describes the degradation dynamics, (2) estimating 
model parameters by fitting data acquired at a sequence of times/cycles, 
and (3) extrapolating the model to predict the trend and RUL at future 
times/cycles [34]. The BM is an overall Bayesian approach, while the PF 
is a recursive Bayesian approach to estimating the model parameters. 
Further details are discussed in the following sections. 

2.1. BM-based approach 

In BM, the joint posterior PDF of model parameters at the current 
cycle is obtained by a single equation, in which all the likelihoods of 
measurements are multiplied. In detail, let θ be the vector of unknown 
model parameters including measurement noise σ, and y1:k is the vector 
of observed data up to current cycle k. The joint posterior PDF is ob
tained by multiplying the prior PDF and the likelihood as 

p(θ|y1:k)∝p(y1|θ) × p(y2|θ)⋯p(yk|θ) × p(θ) = p(y1:k|θ)p(θ) (1)  

p(y1:k|θ) =
(
σ2)− k/2exp

{

−
1

2σ2(y1:k − ŷ1:k)
T
(y1:k − ŷ1:k)

}

(2)  

where p(θ) is the prior PDF of parameters, p(y1:k
⃒
⃒θ) is the multiplied 

likelihood of observed data conditional on the given parameter value θ, 
and ŷ1:k is the vector of model predictions. 

Once the expression of the posterior PDF is obtained from Eq. (1), a 
sampling method using the Markov-chain Monte Carlo (MCMC) is 
employed to draw N samples of the parameters. Fig. 1 summarizes the 
BM process with sampling using the Metropolis-Hasting (M-H) algo
rithm, which is a typical method of MCMC. First, the user sets the initial 
value for parameters θ0, the initial prior distribution p(θ), and the 
weight w which is a vector of values for the sampling interval of the 
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proposal distribution g(θ∗
⃒
⃒θi− 1). Then a new sample θ∗ is drawn from the 

proposal distribution and the selected based on the following acceptance 
criterion: 

Q
(
θi− 1, θ∗

)
= min

{

1,
p(θ∗

|y)g
(
θi− 1⃒⃒θ∗

)

p
(
θi− 1⃒⃒y

)
g
(
θ∗
⃒
⃒θi− 1)

}

= min

{

1,
p(θ∗

|y)
p
(
θi− 1⃒⃒y

)

}

(3)  

where the proposal distribution can be removed since it is a symmetric 
distribution. More detailed explanations are given in references [35,36]. 

2.2. PF-based approach 

The PF also follows Bayes’ theorem where the posterior distribution 
of model parameters is approximated with many particles (or samples) 
and their weights. Unlike the BM, the PF is based on the filtering tech
nique that updates parameters recursively by taking one measurement 
at a time. 

The general PF requires a state transition model f and measurement 
model h as 

xk = f (xk− 1, βk) + ωk (4)  

yk = h(xk) + vk (5)  

where k is the cycle index, xk is the degradation state, βk is a vector of 
degradation model parameters and yk is measurement. ωk and vk are 
process and measurement noise, respectively. The process noise vk is 
ignored as it can be handled through the uncertainty in model param
eters and the measurement noise ωk is assumed Gaussian, i.e., ωk ∼ N(0,
σk), where σk is the unknown standard deviation. Thus, the unknown 
parameters become θ = [x, β, σ], including the state which is obtained 
based on the model parameters and measurement noise. 

The process of PF begins with drawing random samples for the un
known parameters with the number of particles N from the assumed 
initial PDF. Then the three steps are followed as shown in Fig. 2: Pre
diction—the prior PDF p(θk) at the current cycle k is obtained from the 
posterior distribution of the previous cycle k − 1. The degradation state 
is predicted with the model f while the model parameters and standard 
deviation are unchanged; Update—the likelihood from the measured 
data yk at the current step is calculated as 

wi
k∝p
(
yk
⃒
⃒xi

k, β
i
k, σi

k

)
∝p
(
yk
⃒
⃒θi

k

)
=

1
σi

k

̅̅̅̅̅
2π

√ exp

[
1

2σi
k

2

(
yk − xi

k

(
βi

k

))2

]

(6)  

where wi
k is the likelihood or weight of the ith particle proportional to 

the PDF in Eq. (6); Resampling—the particles in the updated distribution 
are resampled based on their weights by duplicating or eliminating 
samples using the inverse cumulative distribution function (CDF) 
method. The resampling result corresponds to the posterior distribution 
at the current step and is used as a prior for the next cycle k+ 1. 
However, since the PF suffers from the problem of particle impover
ishment, a regularized PF (RPF) is employed in this study, which uses a 
kernel function in the resampling step to approximate the weighted 
particles in continuous distribution. Further details are addressed in [13, 
37]. 

2.3. Physical constraints 

In this paper, the physical constraints based on low-fidelity physical 
information is used. The low-fidelity physical information is the lowest 
level of available physical information that represents the crude 
behavior of parameters for degradation [19]. For the reader’s under
standing, it is explained with a polynomial degradation model that will 
be discussed in the numerical study. The degradation model xk is defined 
as: 

xk = C + β1t2
k + β2t3

k and yk = xk + ϵ with ϵ ∼ N(0, σ) (7)  

where β = [β1, β2] is model parameters, C is an initial value, tk is cycle 
and yk is measurement added by random noise ϵ following Gaussian 
distribution with standard deviation σ. 

It is well known that in degradation, the damage state xk should 
monotonically increase over the cycle (i.e. dx/dt ≥ 0) and the slope of 
degradation should be a positive trend (i.e. a non-linearly increasing 
trend, dx2/dt2 ≥ 0). These two pieces of information represent mono
tonicity and curvature, respectively. Thus, the physical knowledge of the 
constraints can be defined as 
{

Monotonicity : ŷm = 2β∗
1tTp + 3β∗

2t2
Tp

≥ 0
Curvature : ŷc = 2β∗

1 + 6β∗
2tTp ≥ 0

where tTp =
[
1, 2,…, Tp

]
(8)  

where the prediction points Tp including both the interpolation (mea
surements) and the extrapolation regions as shown in Fig. 3. In the 
figure, prediction is carried out using measurements until 8 cycles which 
red solid line represents the medians of prediction by BM. 

3. Proposed methodology 

This section presents methodologies to incorporate constraints into 

Fig. 1. Illustration of BM process with MCMC.  
Fig. 2. Illustration of RPF process.  
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the BM and PF algorithms. Fig. 4 illustrates our proposed methodology, 
which involves three different encoding methods to guide the prognostic 
algorithms using monotonicity and curvature constraints. Then prog
nostics performance with data uncertainty is evaluated with quantita
tive metrics. 

3.1. Method 1: constraining the initial prior distribution 

First, a simple and direct approach to incorporate physical con
straints in the Bayesian approach is to apply them to the initial prior 
distribution. In Method 1, the initial prior distribution is established 
such that the constraints are satisfied in all prediction range. Unlike the 
most related studies that provide a prior constraint range based on 
expert domain knowledge, this paper identifies the range by combining 
the monotonicity and curvature of the damage model. 

In more detail, from the polynomial damage model in Eq. (7), we 
intend to impose inequality constraints on the model parameters βj, j =
1, 2 to meet the physical constraints at all prediction cycles and obtain 
the corresponding constraint set C. 

C =
{

aj ≤ βj ≤ bj
}

j = 1, 2 (9) 

Then the constrained prior distribution pc(θ) is defined such that it is 
a uniform distribution for the BM, or initial random samples generated 
only in the range of C for the PF. 

In the BM, the samples are drawn from the posterior PDF pc(θ
⃒
⃒y1:k) by 

applying constrained prior pc(θ). The acceptance criterion for the sam
ples is then determined based on the following constraints. 

Qc
(
θi− 1, θ∗

)
= min

{

1,
pc(θ∗|y)

pc
(
θi− 1⃒⃒y

)

}

where pc(θ|y)∝p(y|θ)pc(θ) (10) 

In the RPF, the samples at the initial step are drawn from the pc(θ), 
and the three steps: prediction, update and resampling are followed 
recursively. However, since the RPF employs kernel function in the 
resampling step to accommodate continuous distribution, some samples 
may violate the constraint range. To prevent this, the truncated likeli
hood is considered. Fig. 5 illustrates this with an example, which shows 
the resampling step by inverse CDF method by (a) conventional likeli
hood versus (b) truncated likelihood when the parameter is constrained 
within the blue range. Thus, compared to Eq. (6), the truncated likeli
hood is defined as follows: 

pc
(
yk|θi

k, θi
k ∈ C

)
=

{
p
(
yk|θi

k

)
, if θi

k ∈ C
0, else

, (11)  

3.2. Method 2: constraining the acceptance criterion 

In Method 2, an additional criterion is imposed on the sampling 
acceptance criterion to incorporate the physical constraints. Unlike 
Method 1, the initial prior distribution of model parameters is not 
constrained, and initial samples are drawn as usual. At each cycle, a new 
sample drawn from the proposal distribution of BM or particles at the 
prediction step of PF is used to calculate ŷm and ŷc. Then, the sample/ 
particle is only accepted if it meets the following constraints. 

C = {ŷm ≥ 0 & ŷc ≥ 0} (12) 

In the BM, this condition is added to the acceptance criterion for 
Q(θi− 1, θ∗). In the RPF, the two constraints are calculated with the pre
dicted particles. Then the values are used to set the boundaries C, and 
the same procedure with Method 1 is used to truncate the likelihood 
function. 

3.3. Method 3: penalizing the likelihood function 

Method 3 is to incorporate the physical constraints by imposing 
penalties on the likelihood function when the two physical constraints, 
monotonicity, and curvature, are violated. As a result, the likelihoods in 
the BM and RPF as defined in Eqs. (2) and (6) are changed to 

pc, BM(y1:k|θ
∗
) =

(
σ2)− k/2exp

[

−

(
1

2σ2(y1:k − ŷ1:k)
T
(y1:k − ŷ1:k)+ λ1V1 + λ2V2

)]

(13)  

pc, PF
(
yk|θi

k

)
=
(

σi
k

̅̅̅̅̅
2π

√ )− 1
exp

[

−

(
1

2σi
k

2

(
yk − xi

k(βki )
)2

+ λ1V1 + λ2V2

)]

(14)  

where V1 =
∑Tp

k=1max[0, − ŷm,k], V2 =
∑Tp

k=1max[0, − ŷc,k] are the 
maximum violation of the two constraints. In the equation, λ1 and λ2 are 
the penalty parameters corresponding to the two constraint violations. 
In terms of numerical aspects, the physical constraint acts as a regula
rization term to prevent constraint violation. 

4. Metrics for prognosis performance 

Long-term RUL prediction faces significant challenges due to various 
sources of uncertainty, with measurement noise being one of them. This 
type of uncertainty is inherently random [38,39] and affects the model 
parameter estimation that depends on the observed data. Different sets 
of data with the same level of noise can result in different estimations. 
For instance, Fig. 6 illustrates prediction by two sets of measurement 

Fig. 3. Physical constraint calculation with prediction points.  

Fig. 4. The proposed methodology for prognostics guided by physical 
constraints. 

H.J. Park et al.                                                                                                                                                                                                                                  



Reliability Engineering and System Safety 244 (2024) 109954

5

generated from Eq. (7) with σ ∼ N(0, 10). The filled black circles 
represent the measured, and the red solid and dashed lines show the 
predicted median and 90 % C.I. using general BM, respectively. Despite 
the noise being added from the same distribution, the measured data 
appears different, leading to significantly different predictions. There
fore, the prediction performance using different datasets with the same 
level of noise need to be considered to evaluate data uncertainty in 
prediction. 

4.1. Prediction accuracy quantification 

The average RUL prediction accuracy is evaluated using the mean 
absolute error (MAE) defined as 

MAEk =
1
M

∑M

i=1
|R̂ULm(θk) − RULTrue(θk)| (15)  

where R̂ULm represents the median value of predicted RUL by estimated 
model parameters using measurements until cycle k, and RULTrue is true 
RUL value [29]. The MAE is computed by averaging over M datasets. 

4.2. Prediction uncertainty quantification 

From the perspective of decision-makers, in addition to the predic
tion accuracy. the uncertainty in RUL prediction offers a clearer un
derstanding of the potential variability in the predicted RUL and help in 
making reliable maintenance decisions. In most of studies, uncertainty 
can be assessed by the C.I. of the predicted RUL [40]. However, owing to 
data randomness, the uncertainty bound itself can also have uncertainty. 
Therefore, it is vital for the prognostic algorithms to have consistent 
performance even under different test datasets. To quantify the consis
tency of the prognostic algorithm, the lower bound (5 percentile), me
dian (50 percentile), and upper bound (95 percentile) of the RUL 
predictions of M datasets are stored as a table in Fig. 7. Then we addi
tionally calculated the 90 % C.I. and median for M sets of predicted RULs 
and draw uncertainty of RUL curve with the shaded surface as in Fig. 7. 
The overall uncertainty is increased when data uncertainty is consid
ered, and this uncertainty range should decrease to establish the 
appropriate decision-making. This approach was also studied in the 
previous study by the authors [19]. 

Besides the uncertainty visualization, quantification evaluation 
metrics are also used to measure the quality and convergence rate of the 
prediction. A predict interval coverage probability (PICP) is used to 

Fig. 5. Illustration of sampling by inverse CDF method from (a) general likelihood (b) truncated likelihood.  

Fig. 6. Data uncertainty in measurement: (a) data under first random noise (b) second random noise.  

Fig. 7. Data uncertainty quantification in RUL curve.  
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evaluate the percentage of true RUL that falls within the given predicted 
C.I. [41,42]. 

PICP =
1
n
∑n

i=1
ci, ci =

{
1, Li ≤ RULi ≤ Hi

0, otherwise (16) 

Li and Hi are the lower and upper bounds of prediction interval for 
every sample i, and ci is used to judge whether the true RUL RULi is 
contained in the credible interval. In this study, the average PICP over M 
datasets are calculated which the larger the PICP is, the more actual 
RULs fall into the C.I., and the more reliable and the prediction results of 
the model are. The PICP should exceed the given confidence as much as 
possible. 

The PICP alone can misunderstood the uncertainty information of 
RUL prediction accurately since too broad a PI can lead to high PICP 
value. Thus, it is necessary to consider the interval width to thoroughly 
evaluate the prediction uncertainty. Predict interval normalized average 
width (PINAW) calculates the average width of the C.I., which can be 
shown as 

PINAW =
1

n(RULmax − RULmin)

∑n

i=1
(Hi − Li) (17)  

where RULmax and RULmin denote the maximum and minimum of the 
true RUL respectively. The average PINAW value over M datasets is 
calculated. In case when PICP values are similar, the smaller PINAW, the 
better the prediction of the model [43]. 

5. Numerical case study 

This section aims to demonstrate the proposed methods’ effective
ness through a numerical study. Specifically, the nonlinear degradation 
data is generated using Eq. (7) where the true values of β1 and β2 are 
0.05 and 0.02, respectively. The third-order polynomial function con
tains two stationary points that can represent the degradation process of 
the normal, initial degradation and sever degradation condition before 
failure. To account for moderate and severe noisy conditions, two values 
of σ (10 and 50) are considered, and 50 random datasets are generated to 
for each. 

5.1. Prediction results 

To apply physical constraint using Method 1, the initial prior dis
tributions of the model parameters satisfying the constraints need to be 
identified. Fig. 8 illustrates this process. The initial range of the prior 
distribution is divided into 50× 50 grid. In this example, the range is 
between − 0.1 to 0.1 for both βj, j = 1, 2. Then, ̂ym and ̂yc are calculated 
over the grid at each cycle. The prior distribution at a grid is defined as 1 
if both ŷm and ŷc are positive, otherwise as 0. The results of grid at cycle 
1 shows that β1 should always be positive to satisfy the constraints. The 
prediction point Tp is set 50 cycles in this study and prior constraint 
range that meet the physical constraints over all cycles is found as C =

{0 ≤ βj ≤ 0.1} where j = 1, 2. 
The degradation prediction using the conventional Bayesian prog

nosis algorithms and proposed methods are compared using data up to 8 
cycles for estimation. Except for constraint Method 1, the initial prior 
distribution ranges for the parameters are set as below. 

f (β1) ∼ U(− 0.1, 0.1) & f (β2) ∼ U(− 0.1, 0.1)

Fig. 9(a) and (b) depict the results based on BM under small and large 
levels of noise, respectively. The general BM prediction is unsatisfactory 
because the estimated posterior state does not accurately reflect the true 
underlying degradation process due to noisy data. The median of the 
predicted distribution violates the monotonicity principle and yields a 
decreasing trend over cycles. In contrast, the predictions based on the 
proposed methods are satisfactory since the median of the predicted 

distribution is not only monotonically increasing but also close to the 
true degradation with reduced uncertainty. Fig. 10 shows the prediction 
results by RPF, and similar results are observed where constrained 
methods provide better performance. Thus, proposed constrained 
Bayesian framework with physical information avoids large prediction 
errors caused by local noisy data and predicts the degradation trajectory 
monotonically even under early prediction. Even if the median predic
tion from the large noise level seems more accurate than that of the 
small noise level, this is by accident due to the realization of noise. 

5.2. Prediction performance analysis 

In this section, we use the metrics introduced in Section 4 to compare 
the prediction accuracy. In Fig. 11(a), the MAE of 50 random datasets 
based on the BM is shown, where the column represents the MAE at each 
cycle and the row divided by different noise levels and methods. The 
results demonstrate that the proposed methods outperform the general 
BM, particularly in the early stages (5~9 cycles). However, under suf
ficient measurements until failure, the prediction accuracies of both 
general and constrained BM are not much different (15 cycles). The grey 
shaded column represents the overall MAE from 5 to 15 cycles, and our 
proposed method reduces the MAE significantly compared to the general 
BM. Moreover, under large noise data, the constrained methods show 
better performance even in the later stages. Fig. 11(b) shows the results 
of the RPF, addressing similar performance observed in the BM. The 
overall prediction accuracy of the general RPF is better than that of the 
general BM since more sampling errors can exist due to the random walk 
process in MCMC sampling [23]. 

Next, the RUL curve plots regarding the data uncertainty by BM and 
RPF are shown in Fig. 12. Fig. 12(a) illustrates the result of the BM under 
the small noise level. The black line indicates the true RUL value. The 
proposed constraint methods show a significant reduction in uncertainty 
and high accuracy in the earlier stages compared to the general BM. 
Under the large noise, the general BM is unable to provide robust pre
dictions, while the proposed methods consistently predict the RUL with 
reduced uncertainty and the median close to the true one. The results by 
RPF are displayed in Fig. 13, with superior performance compared to the 
general RPF. 

Fig. 8. The range of initial prior distributions that satisfy constraints at 
different cycles. 
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Fig. 9. Prediction results using BM and proposed constraint methods: (a) under small-level of noise (b) large-level of noise.  

Fig. 10. Prediction results using RPF and proposed constraint methods: (a) under small-level of noise (b) large-level of noise.  

Fig. 11. MAE of 50 random datasets by (a) BM and (b) RPF under different noise levels.  
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It is noted that the uncertainty intervals for the constrained BM and 
RPF methods do not consistently decrease as more measurements are 
added but tend to become larger and then reduce after the steep section 

of the degradation curve. This behavior can be attributed to the presence 
of strong nonlinearity in the later stages, which has also been observed 
in the previous study [44]. 

Fig. 12. RUL curve plot of 50 random datasets by (a) BM under small noise (b) BM under large noise.  

Fig. 13. RUL curve plot of 50 random datasets by (a) RPF under small noise (b) RPF under large noise.  

Fig. 14. Prediction interval results with different level of noise.  
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To further assess the prediction uncertainty performance, the 
average value of both PICP and PINAW are calculated from the 50 
random datasets. The Fig. 14(a) illustrates the PICP and PINAW results 
for datasets with small level noise, with the blue and red bars repre
senting BM and RPF, respectively. In PICP, the constrained BM method 
showed a significant increase indicating higher prediction interval 
coverage compared to general BM. The RPF consistently achieved high 
scores irrespective of the applied constraints. Regarding the width of the 
RUL prediction intervals, both BM and RPF with proposed methods, 
exhibited a substantial decrease in PINAW, with PINAW being at least 
50 % smaller. These results emphasize that the proposed approaches can 
reduce the uncertainty of RUL predictions while maintaining stable 
prediction coverage. 

The prediction results yield the following observations for each 
method. Firstly, Method 1, employing prior range constraints, is 
straightforward and suitable for low-dimensional degradation models. 
However, obtaining the prior distribution in high dimensions can be 
computationally challenging, and identifying feasible ranges satisfying 
constraints may be difficult. Secondly, Method 2, requiring no prior 
knowledge, has the potential to discard samples regardless of likelihood 
with measurements. Thirdly, Method 3 provides a regularization effect 
without losing any samples, but appropriate selection of penalty pa
rameters is crucial. Despite these considerations, all proposed methods 
exhibit improved prediction performance compared to the conventional 
Bayesian framework, even under severe noise conditions. Method 1 is 
notable for determining the prior range through a combination of the 
damage model’s monotonicity and curvature, unlike from traditional 
reliance on expert domain knowledge or experience. Both Method 2 and 
Method 3 offer the distinct advantage of directly truncating the posterior 
PDF during resampling, eliminating the need for subsequent truncation 

step and sample reduction in deriving the posterior distribution. In the 
following case study, BM and RPF using Method 3 is implemented owing 
to its high performance with the advantage of regularization effect, all 
while preventing the computational cost of identifying prior range and 
the risk of sample loss. 

6. Case study 

As a case study of the RUL prediction, a commercial quadcopter, a 
Parrot Mambo drone (PMD) is used which safety issues are increasing for 
fall-off by driving motors degradation. The PMD is a miniature quad
copter manufactured and sold by Parrot, France, measuring 7.1 × 7.1 
inches with a mass of 63 g. The PMD is equipped with an 8520 coreless 
direct current (DC) motor and has a high-risk failure owing to the per
formance degradation of motors [45]. 

6.1. Experimental setup 

For an accelerated life test, the takeoff and hovering motion at the 
altitude of 1.1 m with the rotational angles being 0 rad is performed with 
intermittent intervals. The PMD flight data are collected during the 
hovering test and the snapshot of takeoff and hovering motion with 
nominal motors are shown in Fig. 15(a). After 106 h of experiment, the 
degradation is incurred to motor 4 in the PMD which corresponds to 48 
cycles of hovering tests with intervals. In contrast to the normal hov
ering motion which rises smoothly in the vertical direction, the hovering 
motion in Fig. 15(b) shows the difficulty to reach the target altitude as it 
greatly deviates from the vertical path. Degraded motor 4 in Fig. 15(d) 
shows foreign substances at the bottom of the brush and coil owing to 
the cumulated wear compared to a nominal motor in Fig. 15(c). 

Fig. 15. (a) PMD take-off and hovering with normal motor (b) PMD take-off and hovering with degraded motor (c) components of normal motor (d) components of 
degraded motor. 
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The maximum thrust is selected as a health indicator (HI) for the 
motor, which is obtained by online estimation based on the Kalman filter 
(KF) at each cycle. The detailed process of HI estimation can be found in 
the previous research [46] and is considered beyond the scope of the 
current research goal. In Fig. 16, the blue circles and red-filled circles are 
the maximum thrusts of motor 1 (normal) and motor 4 (degraded) until 
48 cycles. Motor 1 maintains its thrusts between 0.2434 to 0.2370, while 
motor 4 non-linearly decreases and reaches the threshold (magenta-
colored line). Using these measurements, the RUL is predicted with BM 
and RPF by Method 3. 

6.2. RUL prediction based on the proposed method 

The empirical degradation model for motor is defined by the dual 
exponential function of cycles, as it is widely employed for the non- 
linearly degrading trend such as batteries [47–49]: 

xk = β1,kexp
(
β2,ktk

)
+ β3,kexp

(
β4,ktk

)
(18)  

where xk is the HI of the motor, tk is the cycle index, and βi,k(i= 1,…,4)
are the model parameters. Unlike the BM, the RPF requires the state and 
measurement model in a recursive form: 

State transition model: 

θk =

⎡

⎣

xk− 1⋅eβ2,k dt + β3,keβ4,k tk
(

1 − e(β2,k − β4,k)dt
)

βk

σk

⎤

⎦+ wk (19) 

Measurement model: 

yk = xk + ϵ with ϵ ∼ N(0, σ) (20)  

where dt = tk − tk− 1, θk is the state variable including the thrust, the 
model parameters, and the measurement noise, namely, θk =

[xk, βk, σk]
T , and yk is the measurement variable which is the estimated 

maximum thrust from the online estimation. 
The initial prior distributions of the parameters for the BM and RPF 

procedures are assumed as follows, which is a rough range based on the 
degradation fitting over the entire cycles: 

x0 ∼ U(0.23, 0.25), β2 ∼ U(0.05, 0.15), β3 ∼ U(0.2, 0.4) β1, 4

∼ U(− 0.05, 0.05), σ ∼ U(0, 0.1)

From these, 5000 samples/particles are generated to be used for the 
sampling in both BM and RPF. Moreover, considering the HI of motor to 
naturally decrease as degradation occurs, it requires to incorporate 
negative trend inequality constraints. It is worth highlighting that in 

various applications, each with its distnct domain knowledge and 
degradation characteristics, relevant constraints should be tailored. 

C = {ŷm ≤ 0 &ŷc ≤ 0}

Fig. 17(a) and (b), respectively, show the prediction comparison 
conducted by BM and RPF using measurement until 24 cycles. In Fig. 17 
(a), the red and blue dashed lines represent the medians of prediction by 
general and constrained BM, respectively. The dotted lines show the 
prediction interval (P.I.) with the estimated standard deviation. It is 
noticeable that the prediction by the general BM is affected by the local 
noisy data around 20–27 cycles giving a counter-intuitive prediction 
trajectory. Meanwhile, the proposed method shows improved prediction 
with narrower uncertainty bounds. Similar performance is also observed 
in RPF. 

Furthermore, an RUL curve comparison was conducted between the 
prediction under a single exponential model, a dual exponential model, 
and a dual exponential model with constraint method. In Fig. 17(c), the 
yellow shaded area represents the predicted RUL with interval under the 
single exponential model. The two parallel black dotted lines indicate an 
allowable error bound (α%) around the true RUL, which is set at 10 % in 
this study. The results show that the single exponential model cannot 
accurately predict the RUL even using all measurements. The red shaded 
area represents the predicted RUL under the dual exponential model 
with the general BM, which predicts within the allowable error bound 
after 34 cycles while suffering from large fluctuations in the earlier stage 
predictions. On the other hand, the blue shaded area by the proposed 
constrained BM method shows reliable and accurate RUL prediction 
from 23 cycles, which is 11 cycles faster than the general BM. The RUL 
prediction curve by the RPF algorithm is also illustrated in Fig. 17(d) 
and shows superior performance similar to BM. 

7. Conclusions 

This study introduced three distinct approaches aimed at enhancing 
Bayesian inference-based prognostic algorithms by integrating con
straints derived from low-fidelity physical information. These proposed 
methods effectively mitigate the adverse effects of local noisy data, 
resulting in significantly improved accuracy in predicting RUL, partic
ularly in early-stage predictions. Furthermore, the approach takes into 
account data uncertainty, offering a comprehensive assessment of the 
accuracy and uncertainty quantification of predicted RUL values. 

The effectiveness of our proposed approach is exemplified through 
both numerical examples and a real-world case study, where quantifi
cation metrics demonstrated the superior performance of our methods 
compared to the conventional Bayesian framework prognostic algo
rithms. Importantly, this framework underscores the adaptability and 
variability of our approach across various scenarios, emphasizing the 
importance of incorporating domain-specific knowledge when formu
lating constraints. 

Future research efforts will prioritize on the automatic determination 
of optimal penalty parameters to enhance real-time performance. 
Additionally, extending the application of the proposed method to 
consider more than one degradation signals with constraints will pro
vide broader utility as various signals are monitored simultaneously. 
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