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Abstract In this paper, we proposed a two-stage hybrid
reliability analysis framework based on the surrogate model,
which combines the first-order reliability method and
Monte Carlo simulation with a doubly-weighted moving
least squares (DWMLS) method. The first stage consists
of constructing a surrogate model based on DWMLS. The
weight system of DWMLS considers not only the normal
weight factor of moving least squares, but also the dis-
tance from the most probable failure point (MPFP), which
accounts for reliability problems. An adaptive experimen-
tal design scheme is proposed, during which the MPFP is
progressively updated. The approximate values and sensi-
tivity information of DWMLS are chosen to determine the
number and location of the experimental design points in
the next iteration, until a convergence criterion is satisfied.
In the second stage, MCS on the surrogate model is then
used to calculate the probability of failure. The proposed
method is applied to five benchmark examples to validate
its accuracy and efficiency. Results show that the proposed
surrogate model with DWMLS can estimate the failure
probability accurately, while requiring fewer original model
simulations.
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Nomenclature

n number of input random variables
N number of experimental points
x vector of input random variables
β reliability index
βH L reliability index by Hasofer–Lind algorithm
μ mean
σ standard deviation
g(X) limit state function
ĝ(X) approximate limit state function/ response sur-

face function
Xadd new added experimental points in any iteration
MLS moving least square
DWMLS doubly weighted moving least square
SVR support vector regression
ANN artificial neural networks
MPFP most probable failure point
MCS Monte Carlo Simulation
FORM first order reliability method
SORM second order reliability method
H–L Hasofer–Lind algorithm
RSM response surface method
LHD Latin hypercube design
FEA finite element analysis
CFD computational fluid dynamics
COV coefficient of variation
UDR Univariate Dimension-Reduction
MPP-UDR Most probable point based UDR
SGI Sparse Grid Interpolation
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1 Introduction

It has been well recognized that uncertainties in engineer-
ing systems (e.g., applied loads, material properties and
geometric tolerances) can result in catastrophic failure and
should be managed appropriately. The traditional factor-of-
safety approach to compensate for uncertainties often leads
to either un-conservative or too-conservative designs. Reli-
ability analysis takes into account these uncertainties in
evaluating system’s safety, which has become an impor-
tant part of recent engineering design. There has been a
growing interest in the use of reliability methods for struc-
tural design and safety assessment (see, e.g. Ditlevsen and
Madsen 1996; Hurtado 2004; Bucher and Bourgund 1990;
Rachwitz 2001; Zou et al. 2002; Youn and Choi 2004).

However, with the development of advanced numerical
simulation methods, which commonly take several hours to
perform a single evaluation, classical reliability methods
can easily become impractical. Monte Carlo Simulation
(MCS) and its variants demand tremendous computational
resources that prohibit its practicality. On the other hand,
approximation methods, such as first-order reliability meth-
od (FORM) and second-order reliability method (SORM),
have issues with relatively poor performance in accuracy.
Therefore, it seems reasonable to use a response surface or
surrogate model to approximate the performance function
and apply either MCS to calculate reliability.

However, reliability analysis is different from approxi-
mation problems, from which the surrogate model origi-
nated (see, e.g. Queipo et al. 2005; Viana et al. 2010b). In
conventional approximation problems, the general criterion
of a surrogate model is to minimize the error between the
true function and the surrogate model in the entire domain
of interest. In reliability analysis, however, it is important
to identify a limit state, which is the boundary between
safe and failed regions, especially near the most probable
failure point (MPFP). In this paper, a doubly weighted mov-
ing least squares (DWMLS) method is proposed, which
takes into account the characteristic feature of reliability
analysis. The proposed DWMLS method consists of two
weighting schemes—the first weight considers the distance
between the sampling point and the prediction point, while
the second considers the distance between the sampling
points and the MPFP. A hybrid, two-stage reliability anal-
ysis framework is proposed, which takes full advantage of
the FORM/SORM, MCS, adaptive experiment design and
DWMLS to achieve both accuracy and efficiency.

The remainder of this paper is organized as follows. In
Section 2, a brief literature review of various surrogate
models in reliability analysis is presented. In Section 3, a
general principle of the moving least squares method is

stated, after which the newly added weighting system
of DWMLS is detailed. In Section 4, a new adaptive
experimental design procedure is illustrated in detail. A
complete flowchart of the proposed hybrid reliability anal-
ysis framework is then presented in Section 5. Five numer-
ical examples are presented in Section 6, which highlight
the capabilities of the proposed method and demonstrate
its accuracy and efficiency, followed by a summary and
conclusions in Section 7.

2 Review on surrogate models in reliability analysis

The increased complexity of simulations on real systems
stimulates the development of surrogate models that approx-
imate the behavior of complex systems, improve their
validation process, and aid optimization of the system.
Surrogate models are developed in order to analyze experi-
mental data and to build empirical models based on obser-
vations. These models were first introduced in design
optimization and applied to reliability analysis and design
because of their merits in efficiency.

Wong (1985) first proposed a complete, quadratic form
polynomial and applied it to reliability analysis. In his work,
the number of polynomials and the required sampling points
increase rapidly with the number of random variables. In
order to reduce the number of sampling points, Bucher and
Bourgund (1990) proposed a two-iteration quadratic poly-
nomial without cross-terms. Rajashkhar and Ellingwood
(1993), and Liu and Moses (1994) improved this approach
by updating the surrogate model parameters until a conver-
gence criterion was satisfied. Kim and Na (1997) proposed
a sequential approach to the surrogate model where the gra-
dient projection method is used to ensure that the sampling
points are located near the failure surface. Das and Zheng
(2000) proposed an improved surrogate model and applied
it to reliability analysis of a stiffened plate structure. Guan
and Melchers (2001) evaluated the effect of surrogate model
parameter variation on reliability. Kaymaz and McMahon
(2005) suggested a new surrogate model, in which a
weighted regression method was applied instead of normal
regression. Inspired by Kaymanz and McMahon’s method,
Nguyen et al. (2009) improved the weighted regression
method where the fitting points were weighted according to
their distance from the true failure surface and the estimated
design point.

However, when the limit state function is highly nonlin-
ear, polynomial-based surrogate models can perform poorly
because they try to approximate the performance function
globally. Thus, advanced surrogate modeling methods were
introduced to replace traditional global polynomial-based
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models. Choi et al. (2003), and Kim et al. (2006) introduced
polynomial chaos expansion for reliability analysis and design.
Papadrakakis et al. (1996), Elhewy et al. 2006, and Hurtado
and Alvarez (2001) used Neural Networks to reliability ana-
lysis in conjunction with Monte Carlo Simulation. Gomes
and Awruch (2004) compared Neural Networks with FORM,
MCS, and the Importance Sampling technique. Kaymaz
(2005), and Panda and Manohar (2008) proposed the Krig-
ing method to reliability analysis and compared it with the
most common surrogate models. Echard et al. (2011) pre-
sented a Kriging enhanced MCS method in reliability anal-
ysis and the test problems have demonstrated its efficiency
and accuracy. Most (2007) presented an efficient adaptive
response surface approach for reliability analysis, where
support vector machines were used to classify the failure
and safe domain. Guo and Bai (2009) proposed a least
squares support vector machine for regression into reliabil-
ity analysis and the results demonstrate excellent accuracy
and smaller computational cost than the reliability method
based on support vector machines.

Moving least squares (MLS) is a local weighted least
squares method, originally introduced by Lancaster and
Salkauskas (1981) for smoothing and interpolating data.
After that, it is widely used to obtain approximations in
meshfree methods and structural optimization because of
its ‘localized’ approximation property (Zadeh et al. 2005).
Unlike other surrogate models, the MLS has no expensive
inner parameter optimization during the adaptive model-
ing process. Therefore, Krishnamurthy (2005) compared the
MLS method with other local methods, such as Kriging, and
found it to be more accurate and computationally effective
for the examples considered. Bucher and Most (2008) car-
ried out research aimed at comparing the performance of
these response surfaces and its application in reliability
analysis. In Kang et al. (2010), MLS has made it possi-
ble to derive the approximation function closer to the limit
state function and exhibited improved performance in terms
of significant reduction of the number of structural analy-
ses and sensitivity accuracy of the reliability index to the
random variables. Youn and Choi (2004), and Song et al.
(2011) have applied the moving least squares method to reli-
ability based design optimization and MLS performed well
in uncertainty design.

3 Doubly weighted moving least squares (DWMLS)

The basic idea of surrogate modeling in reliability analysis
is to replace the performance function with an approximate
function, whose value can be computed easily. Compared
with the global polynomial regression method, the moving

least squares (MLS) method is a local regression and a rela-
tively new surrogate modeling technique. The MLS method
can be found extensively in the element-free Galerkin
method and computer graphics. In this section, the basic
principle of the MLS method is presented first, followed
by an introduction to a new weighting scheme that works
better for reliability analysis.

3.1 Basic principle of moving least squares

We consider a performance function g(x) in an n-
dimensional space of random variables, in which the vec-
tor of random variables is defined as x = [x1, x2, . . . ,
x3]T. In the MLS method, the performance function is
approximated by

ĝ(x) = p(x)Ta(x) (1)

where p(x) = [p1(x), p2(x), ..., pm(x)]T is a vector of m
polynomial basis functions, and a(x) = [a1(x), a2(x), ...,

am(x)]T is a vector of corresponding coefficients. It is noted
that in global regression methods, the coefficients are con-
stant, while they are functions of x in MLS. In this paper,
the basis function p(x) is defined using polynomials up to
the second order without cross terms, as

p(x) =
[
1, x1, x2, ..., xn, x2

1 , x2
2 , ..., x2

n

]T
(2)

where the dimension of p(x) is m = 2n + 1. However, it is
possible that the basis function can include cross-terms, as
well as higher order terms.

The unknown coefficients in (1) can be calculated by
minimizing the error between the performance function and
its approximation at discrete points. In order to do that,
N sample points are first selected from the input space;
these samples are denoted by xI , I = 1, . . . , N . Then,
the performance functions, g(xI ), are calculated at these
sample points. This process may involve numerical sim-
ulations, such as finite element analysis or computational
fluid dynamics. At a given prediction point x, the MLS
technique determines the unknown coefficients by minimiz-
ing the error between actual and approximated values of the
performance function with weights, as

R(x) =
N∑

I=1

w(x − xI )
[
g(xI ) − p(xI )

Ta(x)
]2

(3)

The above formula can also be written in a matrix form as:

R(x) = [Pa(x) − g]TW[Pa(x) − g] (4)
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where g, P and W are defined as:

g = [g(x1), g(x2), ..., g(xN )]T (5)

P =

⎡
⎢⎢⎢⎣

pT(x1)

pT(x2)
...

pT(xN )

⎤
⎥⎥⎥⎦

N∗m

(6)

W(x)=

⎡
⎢⎢⎢⎣

w(x − x1) 0 ... 0
0 w(x − x2) ... 0
...

...
. . .

...

0 0 ... w(x − xN)

⎤
⎥⎥⎥⎦

N∗N

(7)

In (7), the weight w(x-xI ) takes the following Gaussian
form:

w (x − xI)=

⎧⎪⎨
⎪⎩

(
e−(α||x−xI||/DI )

2 −e−α2
)

(
1 − e−α2) if ||x − xI|| ≤ DI

0 otherwise
(8)

where the parameter α is used to control the weight
function curve, DI defines the domain of the influence of
point xI , ||x − xI || is the Euclid distance between sam-
pling point xI and prediction point x, and r = ‖x − xI ‖ /

DI is a normalized distance. In Fig. 1, the shape of
Gaussian weight function w(r) with different values of α is
demonstrated.

Fig. 1 Shape of the Gaussian weight function with different control
parameter α

The minimum of the square error R(x) can be achieved
by vanishing the partial derivatives with respect to unknown
coefficients, as

∂ R(x)

∂ai
= 0, i = 1, . . . , m (9)

The conditions in (9) yield the following system of linear
equations:

A(x)a(x) = b(x) (10)

where A(x) and b(x) are defined by:

A(x) = PTW(x)P (11)

b(x) = PTW(x)g (12)

Once the unknown coefficients, a(x), are calculated by
solving (10), (1) is used to approximate the performance
function.

As can be seen from the weight scheme in (8), the weight
wI , which is associated with sampling point xI , decreases
as x moves away from xI . The contribution of those points
whose distance from x is greater than DI vanishes, and thus,
there is no need to include them in the regression process.
Therefore, the dimension of the matrices in the MLS process
is much smaller than the total number of sample points N . It
is important to note that at a given prediction point x, there
must be enough sample points xI such that the coefficient
matrix A(x) should be non-singular. Also, it should be
noted that the coefficients, a(x), must be calculated at every
prediction point.

3.2 Doubly weighted moving least squares

In MLS, it is rational to impose a heavy weight to the points
that are close to the prediction point and a light weight for
more distant points in order to better approximate the per-
formance function. In reliability analysis, however, the most
important region is around the MPFP, because it contributes
most to the probability of failure. Thus, we introduce an
additional weighting scheme into MLS where the distances
of sampling points to the prediction point x and to the MPFP
are considered simultaneously. As discussed in the previous
section, the first weighting scheme is based on the distance
of sampling points xI to the prediction point x:

wI (x, xI ) = w(‖x − xI ‖) (13)

The second weighting scheme takes into account the dis-
tance between the sampling points and the current MPFP. It
aims to penalize points located far from the current MPFP.
The second weight factor is expressed as:

wI I (x∗, xI ) = exp
(
−d2

I

)
(14)
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Table 1 Distribution parameters of basic variables in test example

Random Distribution Mean Standard

variables type deviation

Q Normal 10,000 400

E Normal 2.0E10 0.5E10

I Normal 8.0E-4 1.5E-4

where dI is the distance between the I-th sampling point and
the current MPFP. It is noted that the value of probability
density can also be used instead of distance. It is also noted
that since there is no information on the position of MPFP
in the first stage, the conventional MLS is applied to the first
surrogate model.

Then, through the advantage of the above-mentioned
two weighting schemes, we find the following expression
suitable to obtain the weight for each sampling point:

w(x, xI ) = wI (x, xI )
∗wI I (xI ) (15)

In this paper, the weight matrix in (4) is replaced with this
double weight matrix and the new surrogate model con-
siders both the distance from the prediction point and the
MPFP.

3.3 Test problem

In order to assess the accuracy of DWMLS on represent-
ing the limit state surface, the following example is pre-
sented with DWMLS, ordinary MLS, and the second-order
polynomial response surface (Guo and Bai 2009):

g(q, E, I ) = L

360
− 0.0069

q L4

E I
(16)

where the distributions of three random variables are pre-
sented in Table 1. A full factorial design with 27 points
and the MPFP estimated by FORM is added to assist
the DWMLS. Based on 28 samples, DWMLS, ordinary
MLS, and the second-order polynomial response surface are
constructed. Table 2 shows the probability of failures esti-
mated with 2E7 samples using MCS. The third column in
Table 2 shows the error in each method with respect to the
original MCS.

Table 2 Failure probability of MCS estimates with 2E7 samples

Method Pf εp f

MCS 8.63E-4 (COV=0.76%) –

Polynomial RS + MCS 8.88E-4 2.97%

Ordinary MLS + MCS 8.54E-4 1.02%

DWMLS + MCS 8.58E-4 0.60%

The results in Table 2 show that DWMLS-based MCS
provides the most accurate failure probability compared
with other two models. However, the difference is relative
small, partly because the nonlinearity of the performance
function is not severe. In the following section, an adaptive
experimental design method is proposed and combined with
DWMLS.

4 Adaptive design of experiments (DOE)

4.1 Discussion on DOE in reliability analysis

The quality of probability estimates using a surrogate model
depends on not only the surrogate model itself, but also the
location of the points chosen to build the surrogate model
(design of experiments). In the context of reliability analy-
sis, there exist two kinds of DOE strategy: single design and
adaptive design. For the former, Wong (1985) and Faravelli
(1989) employed single factorial experimental design con-
taining 2n points to fit a quadratic function and to estimate
the failure probability. Cheng et al. (2008) proposed a surro-
gate model based on the artificial neural network and using
uniform experimental design in predicting failure probabil-
ity. However, in the case of a black-box computer model,
single experimental design cannot guarantee the accuracy of
approximation, especially in domain around the limit state
surface. Hence, it would be better to start with an initial set
of samples and gradually add more samples based on the
information provided by previous samples. Such a process
is commonly referred as the adaptive design of experi-
ments and has received more attentions than the former
strategy (see, e.g. Picheny et al. 2010; Duprat and Sellier
2006).

In reliability analysis, Bucher and Bourgund (1990) first
applied a surrogate model in which experimental points
are chosen around the mean values of random variables,
which form a matrix called the design matrix. Quadratic
polynomials without cross terms are then used to fit these
experimental points. Among various sampling methods, a
common approach is to evaluate g(X) at a 2n + 1 combi-
nation of μi and μi ± f σi , where μi and σi are the mean
and standard deviation of random variables, Xi , and f is
a factor that defines the sampling range. The number of
unknown coefficients in the performance function is 2n +1,
given as

ŷ(x) = a0 +
n∑

i=1

ai xi+
n∑

i=1

aii x2
i (17)

A FORM algorithm was applied to estimate the MPFP
based on the above quadratic polynomial function, and the
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next design matrix was constructed on the new center point
determined by the following expression:

xm = μ − g(μ)
μ − xD

g(μ) − g(xD)
(18)

where xm and xD indicate the new center point and the
interim MPFP obtained in the previous stage, respectively.
This second design matrix is used to form another quadratic
polynomial just as the first matrix and the final failure prob-
ability was estimated by it. Thus, this procedure requires
a 4n + 3 evaluation of g(X). Rajashkhar and Ellingwood
(1993) questioned if a single cycle of updating is adequate,
and they proposed to improve it by using more iterations
until a convergence criterion is satisfied.

The above surrogate model in structural reliability analy-
sis has some disadvantages: (1) with the increase of random
variables, the total g(X) evaluation number increases exces-
sively fast, particularly while the convergence process is
slow; (2) the result obtained by the above procedures has
been shown to be sensitive to the parameter f and may not
always give an acceptable approximation to the true failure
probability (it is possible that the sequential center points
during iteration may oscillate in the domain around the true
design point and not converge); and (3) at different stages of
surrogate modeling, only a part of available information on
all previous g(X) is directly used. Thus, it is considered that
the accuracy of above iterative algorithm depends mainly
on the characteristics of the nonlinear performance function,
thereby limiting its application.

Simpson et al. (2001) concluded that a recommended
experimental design should have a space-filling property.
In the current study, an optimal uniform Latin hypercube
design is utilized as the initial experimental design. In the
following adaptive experiment design process, the distance
from the center experimental point to other half-star shape
experimental points are determined not by the constant
parameter f , but by the location of limit state estimated
using all the previous information of g(X).

4.2 Adaptive experimental design

4.2.1 Initial experimental design–Latin hypercube design
(LHD)

The statistical method of the Latin hypercube design (LHD)
was developed to generate a set of samples from a multi-
dimensional distribution. The technique was first described
by McKay et al. (1979), and further elaborated by Iman and
Conover (1980). LHD is popular in design and analysis of
computer experiments. The location of LHD points is deter-
mined through a random procedure and a complete theory
can be found in Forrester’s work (2008). The goal of a good
LHD is to make the selected sampling points as uniform

as possible to cover the entire design space. In this paper,
the ϕp-criterion is selected as a uniformity measure and the
translational propagation algorithm proposed by Viana et al.
(2010a) is used to obtain the optimal uniform LHD. In this
algorithm, sampling points are determined by minimizing
the following criterion:

ϕp =
⎡
⎣

N−1∑
i=1

N∑
j=i+1

d−p
i j

⎤
⎦

1/p

(19)

where di j is the distance between two sample points, xi

and x j ,

di j = d(xi , x j ) =
[

n∑
k=1

∣∣xik − x jk
∣∣t

]1/t

(20)

and p = 50 and t = 1 were recommended by Jin
et al. (2005). The space-filling property of optimal uniform
LHD ensures that no two sampling points are too close to
each other; uniformly distributed experimental points would
enhance the approximation capacity of surrogate models. In
this paper, LHD is used as an initial set of experimental
designs.

4.2.2 Adaptive experimental design process

Based on the developed DWMLS model, the FORM algo-
rithm can determine an interim MPFP, which is presumably
located close to the true MPFP step by step. The iterative
process adds new experimental points to improve the accu-
racy of the surrogate model near the MPFP. In this paper,
an additional sampling point is added in the location of the
limit state surface in each variable direction, starting from
the current MPFP.

Let us assume that x∗
k is the MPFP at kth DWMLS model.

Then, the performance function g(X) is evaluated at x∗
k , and

additional sampling points will be added. Firstly, it is nec-
essary to check the magnitude of g(x∗

k), which helps judge
whether x∗

k is close enough to the true MPFP. A ratio factor
Cr is introduced to measure the closeness of x∗

k to limit state
surface, as

Cr = g
(
x∗

k

)

g(μ)
(21)

where μ is the mean of random variables. If Cr is smaller
than the threshold C0

r (always set as 0.05), then x∗
k is con-

sidered to be close enough to the limit state surface, and
the following single point is added to the existing sampling
points:

xk
add = μ − g(μ)

μ − x∗
k

g(μ) − g
(
x∗

k

) (22)
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where xk
add is the newly added experimental design in k +

1 th iteration.
On the other hand, when Cr is larger than the threshold,

it means that x∗
k is relatively far away from the limit state

surface. In such a case, sampling points are added, start-
ing from x∗

k , close to the limit state surface in the direction
of each variable (see Fig. 4). By doing this, the accuracy
of the surrogate model is improved locally near the current
MPFP and the limit state surface. This adaptive experi-
mental design process can be applicable to other surrogate
models. Unlike other surrogate models, the MLS has no
expensive inner parameter optimization during the adaptive
modeling process, so a temporary DWMLS model g̃Nk+1(x)

can be established quickly based on existing Nk + 1 points.
The distance between x∗

k and the limit state surface in the
i-th variable direction, �i , is calculated using the first-order
Taylor series expansion, as

�i = − g(x∗
k)

∂ g̃Nk+1(x)

∂xi

∣∣∣
x∗

k

(23)

Therefore, the following n + 1 samples are added at the
k + 1 th experimental design:

x∗
k

x∗
k + [�1, 0, . . . , 0]

x∗
k + [0, �2, . . . , 0]

...

x∗
k + [0, 0, . . . ,�n]

(24)

The first-order approximation in (23) can have a large error
when the performance function is highly nonlinear and the
partial derivative becomes too small. Therefore, in order to
prevent �i from being too large, a threshold �c

i = t × σi is
proposed, where σ i is the standard deviation of i-th random
variable and t is a constant between 2.0 and 3.0. Hence the
adjusted sampling points become:

xk
addi

=
{

x∗
k + [0, ..., �i , ..., 0]

x∗
k + [0, ..., sgn(�i )�

c
i , ..., 0]

�i ≤ �c
i

�i > �c
i

(25)

After n + 1 additional experimental design points are deter-
mined, the performance functions are evaluated at these
locations. After updating the DWMLS with more points,
FORM is used to determine a new x∗

k+1.
The adaptive experimental design process repeats until

the limit state surface can be approximated accurately, par-
ticularly in the region near the MPFP. The following two
convergence criteria are used:

{ |βk − βk+1| ≤ εβ∥∥x∗
k − x∗

k+1

∥∥ ≤ εM P F P
(26)

where the two tolerances, εβ and εM P F P , are fixed
are 10−3.

5 Procedure of the proposed method

The proposed two-stage hybrid reliability analysis method
can be divided into (1) DWMLS enhanced FORM itera-
tions and (2) MCS to calculate the failure probability. In
the first stage, the DWMLS surrogate model is constructed
and updated by adaptively adding sampling points near the
limit state surface. In the second stage, MCS is performed
on the final DWMLS to calculate the probability of fail-
ure. Figure 2 summarizes the step-by-step procedures of the
proposed algorithm.

(1) Determine the initial experimental designs, Xinitial:
The initial number of samples is determined by N1 =
3n where n is the number of random variables. The
initial optimal LHD is generated in standard nor-
mal space U of random variables, so it is neces-
sary to define the sampling range in U space. The
sampling range on each dimension is selected by[
μ − f σi , μ + f σi

]
where f is fixed at 4.0. Then,

an optimal LHD Uinitial is generated through the
SURROGATES Toolbox (Viana 2010). The indepen-
dent experimental points in Uinitial are transferred into
the physical space of mutually correlated non-normal
random variables by Nataf’s rule, and the initial
experimental design Xinitial is determined. Since the
mean point x is not included in Xinitial, x is added to
Xinitial; thus, the number of initial samples is N1 + 1.

(2) Compute the value of the performance function at
each point of Xinitial:

gk = g(xk), k = {1, 2, ..., N1 + 1} (27)

(3) Calculate weight factors assigned to each point
according to (8), and fit the first conventional MLS.
Apply FORM based on the first surrogate model
and determine the first reliability index β1 and
MPFP x∗

1.
(4) Calculate the values of the performance function at

the current MPFP and check the closeness ratio factor
Cr by (21). If Cr is smaller than the threshold value,
obtain the new adding point Xadd using (22) and skip
to step (7).

(5) Add the new MPFP observation evaluated from the
above step into existing sampling points and con-
structing a temporary DWMLS to estimate the partial
derivatives to each random variables on MPFP.
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Fig. 2 Flow chart for the proposed doubly weighted moving least
square method for reliability analysis

(6) Calculate the length �i by (23) on each direction,
compare with �c

i and then determine xaddi based on
(25), and add to Xadd .

(7) Calculate the values of the performance function at
given Xadd and add these points into the existing
sampling points.

(8) Calculate the weight factors assigned to each point
according to (15) and build a DWMLS model.

(9) Apply the FORM algorithm to the DWMLS model
and determine the reliability index βH L and MPFP.

(10) Repeat step (4) ∼ step (9) until the convergence
criteria in (26) is satisfied.

(11) Perform MCS using DWMLS to calculate the proba-
bility of failure.

6 Numerical examples

In this section, five typical examples involving explicit and
implicit functions from structural applications are presented
to illustrate the efficiency and accuracy of the proposed
DWMLS method. Since it is assumed that numerical sim-
ulation is far more expensive than developing surrogate
models, the number of numerical simulations Ns is used
as a measure of efficiency. The proposed DWMLS method
is a hybrid reliability analysis approach where first, adap-
tive experimental design combined with FORM algorithm
is mainly aimed at positioning the MPFP, and then, subse-
quent Monte Carlo simulation is used to estimate the failure
probability p f . Therefore, the accuracy of the proposed
method would not only depend on MCS for p f , but also
the interim FORM. In numerical examples, comparisons
have been made with the other reliability analysis meth-
ods presented in literature to evaluate the performance of
the proposed method.

6.1 Example 1: a nonlinear limit state function

In the first numerical example, the following two-dimensional
performance function is used:

g(x) = exp[0.4(x1 + 2) + 6.2] − exp[0.3x2 + 5] − 200
(28)

where x1 and x2 are independent, standard normal random
variables. This example is widely used in reliability analysis
methods (e.g., Kang et al. 2010; Kaymaz and McMahon
2005; Duprat and Sellier 2006; Nguyen et al. 2009).

Figures 3, 4, and 5 illustrate the process of the DWMLS
algorithm. Figure 3 shows the initial 7(= 3 ∗ 2 + 1) LHD
samples along with the true limit state surface. Figure 4
shows the initially estimated MPFP1 along with two addi-
tional sampling points. Figure 5 shows two more iterations
with MPFP2 and MPFP3 in a partially enlarged drawing.
It is clear that the estimated MPFP converges to the true
MPFP. The iteration history of interim MPFP search using
the proposed method is presented in Table 3. The perfor-
mance function is evaluated twelve times during the three
iteration cycles before arriving at the final convergence.

Table 4 presents the results of failure probability Pf , reli-
ability index β, MPFP and involved computational effort Ns
using MCS (sample size Ns = 106), FORM, several recent
response surface methods and proposed MLS and DWMLS
method. For crude MCS, the coefficient of variation (COV)
of the estimated failure probability Pf with sample size of
Ns is:

COV =
√

1 − Pf

Ns Pf
(29)
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Fig. 3 The initial LHD and the mean value point for example 1(Step
1 of the proposed method)

While for all examples in this paper, the COV of Pf is pre-
sented in parenthesis beside the failure probability results.
However, it should be noted that the exact results of Pf is
estimated by the MCS with 106 samples and the exact β

and MPFP are set as results get by classical FORM algo-
rithm. Comparison of Pf aims at accuracy of the proposed

Fig. 4 Add n new experimental points based on previous MPFP for
example 1(Step 6 of the proposed method)

Fig. 5 Add one new experimental point based on previous MPFP for
example 1(Step 4 of the proposed method)

method, while comparison of β and MPFP indicate the per-
formance of proposed method in positioning and converging
to the true MPFP.

As illustrated in Figs. 3, 4 and 5, the nonlinearity of the
first example in the vicinity of the design point is relatively
low, so the results of all methods are close each other. From
Table 4, the proposed reliability method using MLS and
DWMLS can estimate both Pf , β and MPFP well. How-
ever, with the same number of function evaluations (Ns =
12), the DWMLS method can obtain slightly more accurate
estimation of reliability index β as well as failure probabil-
ity Pf than MLS method. While compared with FORM and
other recent methods, the proposed DWMLS method shows
more accurate reliability estimation. Therefore, the results
in Table 4 indicate that proposed DWMLS method improves
not only the accuracy in positioning the MPFP and estimat-
ing reliability index β, but also the efficiency as only 12
function evaluations are needed to converge.

6.2 Example 2: dynamic response of a nonlinear oscillator

In order to investigate the performance of the proposed
method in complex problems with more random variables

Table 3 Iteration history of DWMLS method—Example #1

Iteration β MPFP NS

1 2.23 [−2.12, 0.70] 7

2 2.70 [−2.52, 0.97] 3

3 2.71 [−2.55, 0.92] 2
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Table 4 Summary of
results—Example #1 (the digit
with bold font are regarded as
exact results for comparison and
the accuracy of other results to
compare with exact one are
given in the parentheses below
each digit)

Method MPFP β Pf NS

Monte Carlo simulation [−2.54,0.95] 2.71 3.68E-3 (COV=1.7%) 1.0E6

FORM (H–L algorithm) [−2.54,0.95] 2.71 3.37E-3 (8.4%) 27

RSM in Kang (2010) [−2.54,0.94] 2.71 (0.0%) 3.36E-3 (8.7%) 12

RSM in Nguyen (2009) [−2.57,0.86] 2.71 (0.11%) 3.39E-3 (7.9%) 12

RSM in Kaymaz (2005) [−2.56,0.82] 2.69 (0.89%) 3.62E-3 (1.6%) 8

RSM in Duprat (2006) [−2.54,0.95] 2.71 (0.0%) 3.36E-3 (8.7%) 21

MLS + MCS [−2.55,0.91] 2.71 (0.07%) 3.56E-3 (3.3%) 12

DWMLS + MCS [−2.55,0.92] 2.71 (0.0%) 3.61E-3 (1.9%) 12

and greater non-linearity, the second example deals with
a nonlinear undamped single degree of freedom system as
presented in Fig. 6. This example is also used in several
other studies (see, e.g. Echard et al. 2011; Rajashkhar and
Ellingwood 1993; Schueremans and Gemert 2005). The
nonlinear oscillator with random system parameters sub-
jected to a rectangular pulse load with random duration
and amplitude is presented, and the performance function
is defined by:

g (c1, c2, m, r, t1, F1) = 3r − |zmax|

= 3r −
∣∣∣∣∣

2F1

mw2
0

sin

(
w0t1

2

)∣∣∣∣∣ (30)

where w0 = √
(c1 + c2)/m. The random parameters of six

basic variables are listed in Table 5.
Table 6 presents the reliability analysis results by

different methods in the recent literature along with pro-
posed hybrid reliability method with MLS and DWMLS
method. The reported results come from directional sam-
pling (DS) and importance sampling (IS) methods com-
bined with typical surrogate models (e.g., polynomials,
splines, and neural network), and an active learning method
combining Kriging and Monte Carlo simulation (AK-
MCS). Table 6 shows that the results from DWMLS are
accurate compared with FORM and other variants methods
in estimating the failure probability with the least number
of function evaluations. It is noted that the results reported
by Schueremans and Gemert (2005) and by Echard et al.

Fig. 6 Non-linear oscillator—system definition and applied load

(2011) are based on interpreting the last column of Table 5
as a standard deviation, not as a COV.

6.3 Example 3: a cantilever beam

The above two examples demonstrated the performance of
the proposed method in estimating the failure probability
and locating the MPFP. The proposed method can also be
applied to multiple performance functions; i.e., calculating
the system probability of failure. In such a case, adap-
tive experimental design is applied to each performance
function.

The third example considers system reliability with two
limit state surfaces. A cantilever beam, as shown in Fig. 7,
is subjected to a tip load of 200.0 N. Two failure criteria
are considered: (i) the displacement at the tip of the beam
should be less than 0.005 m, as expressed in (30), and (ii)
maximum stress in the beam should be less than 33 MPa, as
expressed in (31).

Displacement limit state : g1(X) = 0.005 − 4P L3

Ebh3
≤ 0

(31)

Stress limit state : g2(X) = 33.0 × 106 − 12P L

bh2
≤ 0

(32)

Table 5 Probabilistic distribution of random variables—Example 2

Random Distribution Mean Standard

variable type value deviation

c1 Normal 1.0 0.10

c2 Normal 0.1 0.01

m Normal 1.0 0.05

r Normal 0.5 0.05

t1 Normal 1.0 0.20

F1 Normal 1.0 0.20
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Table 6 Summary of reliability results—Example #2 (the digit with
bold font are regarded as exact results)

Method NS Pf β

Monte Carlo simulation 1E6 3.89E-2 1.72

(COV=1.9%)

FORM 84 4.29E-2 1.72

Directional Sampling(DS)* 1281 3.5E-2 1.81

DS+Polynomial* 62 3.4E-2 1.83

DS+Spline* 76 3.4E-2 1.83

DS+Neural Network* 86 2.8E-2 1.91

Importance Sampling(IS)* 6144 2.7E-2 1.93

IS+Polynomial* 109 2.5E-2 1.96

IS+Spline* 67 2.7E-2 1.93

IS+Neural Network* 68 3.1E-2 1.87

AK-MCS+U** 58 2.83E-2 1.91

AK-MCS+EFF** 45 2.85E-2 1.90

MLS+MCS 52 3.95E-2 1.73

DWMLS+MCS 43 3.94E-2 1.73

∗the results come from reference Schueremans and Gemert (2005)
∗∗ the results come from reference Echard et al. (2011)

In the above equations, L , b, h indicate the length, width
and height of the beam, whose probability distribution prop-
erties are shown in Table 7. The modulus of elasticity of the
beam was taken to be 70.0 GPa. The system probability of
failure is defined by

p f = 1 − P[g1(X) ≥ 0 ∪ g2(X) ≥ 0] (33)

As the closed form expressions of performance functions
are available, it is possible to estimate system reliability
with Monte Carlo simulations. Table 8 listed the results
of MCS with a million samples and the result estimated
by the proposed DWMLS method. It should be noted that
98 samples in the DWMLS method include all the points
used to locate two limit state surfaces and corresponding
two MPFPs until convergence. In order to inspect the
accuracy and efficiency of the DWMLS method on finding
each MPFP, the FORM algorithm is used for each limit
state function to estimate an individual reliability index β

for comparison in Table 9. From the results in Table 8,

Fig. 7 Simply supported beam

Table 7 Probabilistic characteristics of the basic random variables of
the cantilever beam

Random Mean Standard Distribution

variable (m) deviation type

L 0.90 0.090 Normal

b 0.08 0.008 Normal

h 0.04 0.004 Normal

the failure probability of MLS method is more accurate
than proposed DWMLS, this is because 34(=132–98) more
experimental points are used in MLS. For highly nonlinear
performance function g1(x), FORM has difficulty in con-
vergence (Ns = 803), while DWMLS can position MPFP
efficiently without a large number of function evaluations
(Ns = 98).

6.4 Example 4: a nonlinear limit state function with ten
random variables

In order to compare with other methods, we chose an analyt-
ical example, which had been tested by several methods. In
the fourth example, the proposed method was extended to
a nonlinear limit state function with ten random variables,
which is considered as a high-dimensional example. The
limit state function is defined as:

g(x) =
10∑

i=1

xi + 10x2
1 x2

2 + x2
2 x2

3 + x2
3 x2

4 + x2
4 x2

5

+ x2
5 x2

6 + x2
7 x2

8 + x2
8 x2

9 + x2
9 x2

10 − 16 (34)

Ten input random variables x = {x1, x2,. . . ,x10,}T follow
the same normal distribution with a mean value μx = 1.0
and standard deviation σx = 0.2.

The predicted failure probability based on the proposed
hybrid method is presented in Table 10 along with the
results from other methods. In the table, MPP-UDR-1, −2,
and −3 stand for UDR methods, expanded at MPFP, with
different sample sizes. Likewise, SGI-1 and −2 represent
sparse grid sampling methods with different sample sizes
of expansion points around the MPFP. As can be observed
in the table, the performance of proposed hybrid analysis
framework is undoubtedly comparable to both MPP-UDR

Table 8 Comparison of failure probability for the cantilever beam
system

Method Pf NS

Monte Carlo simulation 8.33E-3(COV=1.1%) 1E6

MLS + MCS 8.86E-3 132

DWMLS + MCS 8.98E-3 98
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Table 9 Comparison of reliability index for the cantilever beam
system

Method g1 g2

NS β NS β

FORM 803 2.50 24 2.52

DWMLS + MCS – 2.55 – 2.54

and SGI methods. Generally, MPP-UDR yielded relatively
large errors even with large function evaluation numbers.
The SGI method proposed by Xiong et al. (2010) showed to
be more accurate in predicting reliability, but it demanded
far more numbers of function evaluation. In the case of
this high-dimensional example, the proposed hybrid method
performed better in terms of both accuracy and the number
of function evaluations. At the same time, DWMLS showed
to be more efficient than MLS in locating the MPFP even
both obtained nearly the same reliability result. The reason
for this performance improvement over other local integra-
tion or interpolation methods is mainly because the hybrid
method can find the MPFP efficiently in the first stage and
capture the global profile of limit state function in the sec-
ond stage. Consequently, the proposed method turns out to
be good at estimating reliability for a high-dimensional limit
state function.

6.5 Example 5: ten-bar truss structure

As a practical example using finite element analysis, a ten-
bar truss structure (as shown in Fig. 8) is considered. The
ten-bar truss structure is a classical structural analysis prob-
lem and widely studied (Wei and Rahman 2007; Kang et al.
2010). The structure is simply supported at nodes 1 and
4, and is subjected to two concentrated loads P = 105 lb
at nodes 2 and 3. The truss members, which have random
cross-sectional areas Ai , i = 1, 2, . . . , 10, are made of an
aluminum alloy with Young’s modulus E = 107 psi. The

Table 10 Failure probability of example #4

Method NS Pf Error (%)

Monte Carlo 10E6 0.0083 0

simulation (COV=0.3%)

MPP-UDR-1* 131 0.0057 31.3

MPP-UDR-2* 251 0.0061 26.5

MPP-UDR-3* 971 0.0058 30.1

SGI-1* 509 0.0076 8.4

SGI-2* 709 0.0079 4.8

MLS + MCS 195 0.0076 8.4

DWMLS + MCS 155 0.0078 6.0

* the results come from reference Xiong et al. (2010)

Fig. 8 A ten-bar truss structure

input random variables X = {A1, A2, . . . , A10}T follow nor-
mal distribution and have a mean μ = 2.5 in2 and standard
deviation σ = 0.5 in2. The maximum vertical displacement
v(X), which occurs at node 3, is limited to v0 = 18 in.
Therefore, the performance function is defined as:

g = v0 − vmax(X) = 18.0 − vmax(X) (35)

The structural analysis was done in MSC/NASTRAN, a
commercial finite element analysis program. The estimation
results are reported in Table 11.

Table 11 lists the predicted failure probability of ten-
bar truss and the associated computational effort using
FORM, several SORM, three variants of MPP-UDR, crude
MCS (106 samples), and proposed hybrid reliability method

Table 11 Failure probability of ten bar truss

Method NS Pf β

Monte Carlo simulation 10E6 0.139 1.08

(COV = 0.25%)

FORM(HL algorithm) 127 0.086 1.36

SORM(Breitung) 506 0.129 1.13

SORM(Hohenbichler) 506 0.152 1.03

SORM(Cai and Elishakoff) 506 0.147 1.05

MPP-UDR with linear 187 0.146 1.05

integration*

MPP-UDR with quadratic 187 0.140 1.08

integration*

MPP-UDR with simulation** 187 0.147 1.05

MLS + MCS 113 0.146 1.37

DWMLS + MCS 98 0.146 1.37

*the results come from reference Wei and Rahman (2007)
**the results come from reference Rahman and Wei (2006)
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combined with ordinary MLS and DWMLS. From Table 10,
both versions of MLS predict the failure probability more
accurately than FORM and all three variants of SORM. On
the other hand, there is no improvement on accuracy for
DWMLS compared with ordinary MLS. This is because
15(=113–98) more experiments points are evaluated in the
convergence of MPFP for ordinary MLS. The MPP-UDR
method with quadratic integration shows the best accuracy.
However, it can be noted that the UDR methods require
about two times more function evaluations than the hybrid
DWMLS method.

7 Conclusions

In this paper, a doubly weighted moving least squares and
a two-stage hybrid reliability analysis scheme are proposed
to improve the surrogate model for reliability analysis. The
proposed method provides a larger weight to the point near
the MPFP and turns to sample more experimental points
closer to the limit state surface. From the benchmark exam-
ples #1 and #2, it was shown that, in comparison to classical
MCS and FORM with various surrogate models, DWMLS
improves the convergence speed, and locates the limit state
function more accurately with a less number of sampling
points. In the example #3, the proposed two-stage reliabil-
ity analysis scheme was able to calculate system reliability
by identifying multiple MPFPs. The last two examples have
revealed the steady performance improvement of proposed
hybrid method in high-dimensional nonlinear problems and
it turns to be more favorable or at least comparable than
several recent developed reliability methods.

However, it should be noted that the proposed method is
not intended as a replacement of existing surrogate models
and reliability methods, but as a possible complement and
improvement to these methods. Furthermore, more stud-
ies are needed to extend the proposed method to reliability
based design optimization of complex systems.
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