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A Bayesian network represents a causal relationship among random variables using conditional probabilities.

Because of limited resources and sampling uncertainty, the estimated probabilities have both aleatory randomness

and epistemic uncertainty. In this paper, two approaches are used to estimate the confidence intervals of component-

and system-level probabilities. The first approach uses an analytical method, where a normal distribution is assumed

for the component- and system-level probabilities. Another approach is the bootstrapmethod, which uses resampling

to build a distribution of the probabilities. Global sensitivity is analyzed as well to identify the component-level

probability that most significantly affects the uncertainty in the system level. It is shown that the confidence intervals

of system probability can be effectively narrowed by reducing sampling uncertainty in the most significant

component.

Nomenclature

Ac;tot = sum of charge particle surface area
Asurf
e = surface area of heating element

Aps = cross-sectional area of piston chamber
CP = heat capacity
de = heating element diameter
e = burning distance
Fba = frictional force of balls
For = frictional force of O-ring
Fsh = shearing force of shear pin
I = input current
IF = indicator function
h = subfunction by analysis of variance decomposition
le = heating element length
lpin = length of pin
m = total number of component-level probability of failure
mba = mass of ball
mc = mass of charge
mps = mass of piston
n = total number of samples
P = heating rate of heating element
PF = probability of failure
Pi
F = ith conditional probability of failure

Psys
F = system probability of failure

Pps = chamber pressure
Qloss = heat transfer
R = resistance of heating element
Rg = universal gas constant
rb = burning rate
rba = radius of ball
rw = resistivity of heating element

T = temperature of heating element
Tg = gas flame temperature
Tpin = temperature at the end of pin
T0 = ambient temperature
Vps = piston chamber volume
xi = ith input random vector
xi;j = ith input random variable of the jth component
yi = ith output of a component
yi;th = threshold value of the ith conditional probability
γ = ratio of specific heats
ε = emissivity
ηp = correction factor
κ = conductivity of heating element
μc = mean of component probability of failure
vps = velocity of piston
ρc = density of charge
σ = Stefan–Boltzmann constant
σc = standard deviation of component probability of failure
σsysF = standard deviation of system probability of failure

I. Introduction

I NTHE early design stage, engineers need to estimate the safety of
their design by calculating the system probability of failure.When

a system is composed of many components, engineers should
understand the structure of the system as well as how the component
probability of failure propagates to the system. In this paper, the
system probability of failure means the probability of failure at the
system level. In some literature, system probability of failure also
means the probability of multiple failure modes, which is different
usage from this paper [1].
One way to represent the component–system relationship is a

Bayesian network [2,3], which is also known as a belief network.
ABayesian network represents the probabilistic relationships of a set
of components in a hierarchical information graph, which is called a
directed acyclic graph (DAG), whose detailed explanation will be
provided in Sec. II. This network is useful to understand how a
component probability of failure propagates through the network and
how significantly it affects the system probability of failure.
The probability in a Bayesian network is induced from two

different sources of uncertainty: aleatory randomness and epistemic
uncertainty [4]. The aleatory randomness comes from the natural
variability of input and is irreducible; the randomness is usually
modeled through a probability density function. On the other hand,
epistemic uncertainty is originated from the lack of knowledge or
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limited data, which can be reduced by improving knowledge or

allocating more resources.
When a set of samples are used to calculate the probability of

failure at a component level, there exist both aleatory randomness

and epistemic uncertainty. These uncertainties directly affect the

output of the component and are propagated through the network to

cause uncertainty in system performance. In this paper, it is assumed

that the probability of failure of a component is determined through

a sampling method, such as Monte Carlo simulation. In such a case,

the estimated probability of failure has sampling uncertainty

due to the finite number of samples, which is the only epistemic

uncertainty considered in this paper. If different methods are used to

estimate the probability of failure, such as the first-order reliability

method, then the approximation error can be accounted for

epistemic uncertainty. When a quantity of interest has epistemic

uncertainty, it is important to estimate the confidence interval to

make a reliable decision.
Although the confidence interval of a system reliability has been of

high interest for decades [5–7], not muchwork has been done thus far

regarding the confidence interval of a system that is defined as a

Bayesian network. In the traditional reliability assessment, only the

system-level reliability has been the focus. However, a success in a

system does not guarantee all components’ success, and vice versa

[8]. A Bayesian network canmanage this lack of connection between

the system and the components. Regarding a Bayesian network,

Cheng and Druzdzel used two sampling algorithms, so-called he

AIS-BN-μ and AIS-BN-σ algorithms, to calculate the probability of

failure of aBayesian networkwithin prescribed precision focusing on

the convergence of the importance distribution [9].
Although conventional reliability methods can calculate the

system reliability as well as its confidence intervals, this paper

focuses on identifying the contribution of component-level reliability

and confidence intervals to that of system. For this purpose, the

Bayesian network provides a unique framework to facilitate the

relationship between components and the system. Different from

previous studies, this paper addresses how to estimate the confidence

interval of an individual component probability of failure as well as

the system probability using two different methods. Further, global

sensitivity analysis will be introduced to identify important

components whose epistemic uncertainty significantly contributes to

the system’s epistemic uncertainty and to efficiently reduce the

system’s confidence interval to make a conservative decision by

controlling sampling uncertainty.
The paper is organized as follows. Section II introduces several

methods of estimating the confidence interval of the system that is

represented using a Bayesian network. Section III presents the global

sensitivity analysis to evaluate the contribution of the uncertainty in

the component level to the uncertainty in the system level. In Sec. IV,

confidence intervals using different methods are compared using an

analytical example. Section V shows a Bayesian network example of

pyromechanical devices with confidence interval and sensitivity

analysis results. SectionVI presents conclusions with a suggestion of

possible methods under different conditions.

II. Confidence Interval of Bayesian Network

The objective of this section is to find the confidence interval of a
component and of the system. Figure 1 shows an example of a
Bayesian network. The Bayesian network is represented by a
graphical model, called directed acyclic graph (DAG), and
probability tables associated with it. The graphical model consists
of nodes and arrows. The nodes are depicted by the circles on Fig. 1,
and they represent components in the system. The arrows connecting
the nodes are called causal edges, and these edges show how a node
affects others. The node from which a causal edge starts is called
“parent node”, and the node that receives the causal edge is called
“child node”. A child node is conditioned on a parent node, and in
some cases, there can be more than two parent nodes, as node C

in Fig. 1.
On either side of a node, there is a table describing the probability

of failure of the node, conditioned on its parent nodes. For example,
node D is conditioned on node C. Therefore, there are two possible
failures that can occur in nodeD; nodeD fails when nodeC succeeds,
and node D fails when node C fails. The table, therefore, calculates
each conditional probability of failure. Then, the Bayesian network
allows calculating the system probability of failure by considering all
possible scenarios [10].
In this paper, it is assumed that the probabilities are calculated

using a sampling method (e.g., Monte Carlo simulation). Because of
the finite number of samples, the calculated probabilities have
sampling uncertainty. Therefore, to be conservative in estimating
probabilities, it is necessary to estimate the confidence intervals. For a
single component, the confidence intervals can be calculated by
estimating sampling uncertainty [11]. However, when a system is
composed of many components using DAG, estimating the
confidence intervals of system performance can be non-trivial, which
is the objective of the paper.
Figure 1 also shows an example of a sampling-based method of

calculating the probability of failure of a component. In this case,
componentA has k input random variables with n number of samples
from each random variable. In the figure, xi;j �i � 1; : : : ; n; j �
1; : : : ; k� represents the ith sample of the jth random variable for
componentA; xi represents the ith vector of samples from all random
variables; and yi represents the ith output of component A from
sample xi. Each component may have different numbers of random
variables and samples; therefore, the size and the number of the
random sample vector can vary.
The term “component confidence interval” (CCI) is used to

represent a confidence interval of the probability of failure of a
component, whereas “system confidence interval” (SCI) represents
that of the entire Bayesian network under consideration. These terms
are often used hereinafter to describe such intervals.
Two differentmethods are presented to build a confidence interval:

the interval method and bootstrap method. The interval method
assumes that the output distribution of a component follows a
binomial distribution with unknown probability of failure, where
analytical solutions are provided with different approaches to
building a confidence interval. The bootstrap method uses

Fig. 1 Example of Bayesian network and sampling-based method of calculating probability of failure.
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resampling to find an empirical distribution of the output, fromwhich

the desired percentile value is calculated as the bounds of the

confidence interval.

A. Component-Level Interval Estimation

Whenn number samples of output, yi �i � 1; : : : ; n�, are available,
the probability of failure (PF) of the component can be defined as the

sum of indicator functions over the total number of samples as

PF � 1

n

Xn
i�1

IF�yi� (1)

where the indicator function becomes 1 if yi belongs to the failure

region F; otherwise 0, as

IF�yi� �
�
yi if yi ∈ F
yi if yi ∈= F

(2)

The summation of the indicator function nPF follows a binomial

distribution B�n; PF� because it satisfies the following necessary

conditions [12].
1) The number of observations n is fixed.
2) Each observation is independent.
3) Each observation represents one of two outcomes (“success” or

“failure”).
4) The probability of failure PF is the same for each outcome.
Condition 4 is valid because both yth and the distribution of yi are

assumed to be fixed; the variability is only due to the aleatory

sampling randomness.
The simplest way to build a CCI is using a normal approximation.

When n is sufficiently large, the distribution of PF can be estimated

by a normal distribution with the mean μ � P̂F and the standard

deviation σF by the central limit theorem. Brown et al. claimed that n
must be large enough so that both nP̂F and n�1 − P̂F� are larger than
10 to be approximated as a normal distribution [13]. The standard

deviation of PF can be estimated as

σ̂F �
�������������������������
P̂F�1 − P̂F�

n

s
(3)

In this paper, the circumflex accent hereinafter represents an

estimate of the statistics. If the normality assumption holds, then the

confidence interval of PF (or so-called “Wald” confidence interval) is

provided as2
64P̂F − z1−α∕2

�������������������������
P̂F�1 − P̂F�

n

s
; P̂F � z1−α∕2

�������������������������
P̂F�1 − P̂F�

n

s 3
75 (4)

where z1−α∕2 is the z-score, and 1 − α is the corresponding confidence
level. If the number of samples is insufficient, however, this normality

assumption is no longer valid. This normality approximation has two

problems [14]. First, if PF is near 0 or 1, then σF ≃ 0. Thus, it
underestimates the uncertainty in PF. Second, the confidence interval

based on a normal distribution approximation has a domain of

�−∞;∞�, which easily exceeds the domain of PF, [0, 1]. To

compensate for domain exceedance, Wilson [15] developed a CCI

based on inverting the z-test,whichmay apply even for a small number

of samples or a very small probability. The lower and upper limits of

the confidence interval are estimated as the roots

of jp − P̂Fj � z1−α∕2
������������������������
p�1 − p�∕np

.

Lower limit:

0
BB@P̂F � z21−α∕2

2n
− z1−α∕2

�������������������������������������������
P̂F�1 − P̂F�

n
� z21−α∕2

4n2

s 1
CCA∕
�
1� z21−α∕2

n

�

(5a)

Upper limit:

0
BB@P̂F � z21−α∕2

2n
� z1−α∕2

�������������������������������������������
P̂F�1 − P̂F�

n
� z21−α∕2

4n2

s 1
CCA∕
 
1� z21−α∕2

n

!

(5b)

On the other hand, Clopper and Pearson proposed an exact

confidence interval [16]. The confidence interval can be obtained by
solving the following equation sets using the beta distribution [17]:

Xnf
x�0

�
n

x

�
px
U�1 − pU�n−x �

α

2

Xn
x�nf

�
n

x

�
px
L�1 − pL�n−x �

α

2
(6)

By introducing F-distribution, it is possible to approximate the
confidence interval as

"
nf

nf � �n − nf � 1�F1−α∕2;2nf;2�n−nf�1�
;

�nf � 1�F1−α∕2;2�n−nf�1�;2�n−nf�
�n − nf� � �nf � 1�F1−α∕2;2�nf�1�;2�n−nf�

#
(7)

Although the word “exact” has been used, this is still an
approximation of the true confidence interval because a binomial
distribution is discrete, whereas F-distribution is continuous. More

recently, Sauro andLewis [18] showed that the adjustedWaldmethod
works well for building a CCI with a small number of samples. The

formula is proposed as

2
4P̂adj − z1−α∕2

����������������������������
P̂adj�1 − P̂adj�

nadj

s
; P̂adj � z1−α∕2

����������������������������
P̂adj�1 − P̂adj�

nadj

s 3
5
(8)

where P̂adj � �nP̂F � z21−α∕2∕2�∕�n� z21−α∕2�, and nadj � n
�z21−α∕2. The CCI can be estimated using one of the four methods

described previously.

B. System-Level Interval Estimation

Although the component-level interval methods in the previous
section can be used to build a CCI, they cannot be used to build a
confidence interval for the system. The DAG in a Bayesian network

explains the relationship among the components, which makes it
possible to express the SCI as a function ofPi

F. In Bayesian network,

the probability of failure (Pi
F) of the ith component is, in fact, the

conditional PF, given its parent nodes. The system PF is provided as
an explicit form by DAG. However, propagating the confidence

interval of each component to obtain the confidence level of the
system is difficult in classical statistics [19]; that is, calculating an
analytical distribution of a function of random variables is

mathematically challenging. Instead, in this paper, the mean and
variance of the system PF are estimated as

E�Psys
F � � Psys

F �P̂1
F; P̂

2
F; : : : ; P̂

k
F� (9)

V�Psys
F � � E��Psys

F �2� − E�Psys
F �2 (10)

That is, the mean of the system PF is estimated using the means of
componentPF, whereas the variance is the mean of the square minus

the square of the mean. In Eq. (10), the variance of the system PF
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depends on both the mean and variance of component PF because

Psys
F is an uncertain variable that depends on themean and variance of

component PF through the Bayesian network.
Equations (9) and (10) can be calculated analytically through a

Bayesian network. In the case of a component, theCCI can be defined

in the form of μc;i � z1−α∕2σc;i, where μc;i and σc;i are, respectively,
the mean and standard deviation of the component PF. For Wald,

Wilson, and adjusted Wald methods, the mean and standard

deviations are listed in Table 1. The same idea can be used to calculate

an SCI by employing the mean and variance of the system given in

Eqs. (9) and (10). The mean of system probability of failure (P̂sys
F ) is

estimated by substituting Eq. (9) with the mean of each component,

whereas the standard deviation of systemPF (σ̂
sys
F ) can be obtained by

applying Eq. (10). Once the mean and standard deviation of system

PF are available, the SCI can be written as

h
P̂sys
F �μc� − z1−α∕2σ̂

sys
F �P̂sys

F �μc��; P̂sys
F �μc� � z1−α∕2σ̂

sys
F �P̂sys

F �μc��
i

(11)

where μc � fμc;1; μc;2; : : : ; μc;kg is the vector of estimated

component probabilities of failure, and σ̂sysF �P̂sys
F �μc�� is the square

root of the variance in Eq. (10).

C. Bootstrap Method

Resampling methods can play a significant role in finding a

distribution of the statistic of interest, and the bootstrapmethod is one

of them [20]. The bootstrap method generates pseudosample sets by

random sampling with replacement from the initial samples. There

are two bootstrap methods: nonparametric and parametric.
The nonparametric bootstrap method is used when the underlying

distribution of the samples is unknown. Figure 2 illustrates

the nonparametric bootstrap method. When ni number of output

samples, which are also called the initial sample set hereinafter, are

provided for a component, a nonparametric bootstrap sample set can

be obtained through resampling with replacement without assuming

any distribution type for the sample set. That is, a sample is randomly

chosen out of the initial samples, and it is replaced. This procedure is

repeated ni times, which is the equal number of the initial sample set,

to establish a set of pseudosamples, which is called a bootstrap

sample set. Using a bootstrap sample set, the statistic of interest can

be estimated. This procedure is repeated for m times, where m is a

desired number of repetition. The empirical distribution of the
statistic of interest can be found with m number of estimates.
On the other hand, the parametric bootstrap method is used when

the underlying output distribution is known or assumed. When the
output of a component follows a specific distribution, the bootstrap
sample sets are generated repeatedly from the distribution. Then, the
statistic of interest is estimated from each sample set, allowing the
statistics to form an empirical distribution.
As mentioned earlier, if the initial data set does not satisfy nP̂F >

10 and n�1 − P̂F� > 10 so that normal distribution approximation is
not justified, the nonparametric bootstrap method will be used in this
paper. The statistic of interest is the component PF. Using the
nonparametric bootstrap method, the distribution of P̂i

F is generated
by repetition. Here, the true PF is estimated through the distribution.
Last, a CCI is constructed by taking α∕2 and 1 − α∕2 percentile
values of the distribution as the lower and upper bounds of the
confidence interval where 1 − α is the corresponding con-
fidence level.
The system PF can be calculated by substituting the component

probabilities of failure in Eq. (9) with an estimate obtained from each
bootstrap sample set. As in the component level, the distribution of
the system PF can also be obtained by repeating this process. The
mean is estimated through the distribution, and finally, a SCI with the
�1 − α�% confidence level is built up by taking α∕2 and 1 − α∕2
percentile values of the distribution.

III. Global Sensitivity Analysis

Although the SCI can be obtained through different methods
introduced in Sec. II, the outcome may not be useful if the SCI is too
wide for a given design. When the estimated system PF has a
confidence interval, a conservative design has to be used to
compensate for it. In the conventional reliability-based design, a
conservative design is obtained that can compensate for either
aleatory uncertainty only [21] or both aleatory and epistemic
uncertainty [22,23]. When the SCI is too large, however, the design
becomes too conservative and may not be useful for practice.
Because the SCI in this paper is caused by sampling uncertainty of

components (i.e., CCIs), and because the CCIs are inversely
proportional to the number of samples as shown in Sec. II, it is
important to understand the effect of the number of samples on the
SCI. That is, it is important to understand how many samples should
be added to a component to reduce the SCI most effectively. In this
section, the global sensitivity analysis is performed to estimate the
significance of individual CCIs on the SCI such that the SCI can be
effectively reduced. In this paper, individual CCIs are represented by
using the variance of the component PF, which is controlled by
the number of samples used for evaluating the PF. It is noted that the
expected value of the system PF will not be varied, but only the
SCI is.
A schematic diagram for the effect of the variance on a component

level is illustrated in Fig. 3. In the figure, both systems have the same
expected PF: that is, E�psys

1 � � E�psys
2 �, but V�psys

1 � is larger than
V�psys

2 �. An important question on uncertainty management of a
system is: to which component should more samples be provided to
reduce the SCI most efficiently? To answer this question, global
sensitivity analysis can be used.
Global sensitivity analysis, as the name implies, estimates the

change of output as input variables vary over their entire domain.
Therefore, it is possible to figure out how the uncertainty of output
can be attributed to different uncertainty sources [24]. To perform

Table 1 Mean and standard deviation estimated from different methods

Method Mean �μc;i� Standard deviation �σc;i�
Wald P̂i

F

����������������������������������
�P̂i

F�1 − P̂i
F�∕n�

q
Wilson �P̂i

F � z21−α∕2∕2n�∕�1� z21−α∕2∕n�
��������������������������������������������������������������
�P̂i

F�1 − P̂i
F�∕n� � �z2α∕2∕4n2�

q
∕�1� �z2α∕2∕n��

Adjusted Wald P̂i
adj

������������������������������������������
�P̂i

adj�1 − P̂i
adj�∕nadj�

q

Initial sample, size ni

Bootstrap, size ni m bootstrap samples
Bootstrap, size ni

estimationˆ i
FP estimationˆ i

FP

Distribution of ˆ i
FP

Confidence interval of ˆ i
FP

Fig. 2 Procedure of nonparametric bootstrap method.
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global sensitivity analysis, analysis of variance (ANOVA)

decomposition is used. ANOVA decomposition is a method of

decomposing a function into subfunctions, which makes it possible to

decompose the variance of output into the main effect and interaction

effect. The main effect refers to the influence of a variable itself on the

output variance, whereas the interaction effect reflects the influence of

the interaction among multiple variables on the output variance.
A system probability of failure Psys

F is a function of the component

probability of failures PF � fP1
F; P

2
F; : : : ; P

m
F g, where m is the

number of the component probability of failures. Because of

sampling uncertainty, the component PF has uncertainty, whose

probability density function is defined as q�Pi
F�. Let h�PF� denote a

system PF; then, the system PF can be decomposed into the

summation of subfunctions h�PF� as

h�PF� � h0 �
X
i

hi �
X
j>i

hij � : : : � h12 : : : m (12)

where hi � hi�Pi
F� is a subfunction related to the ith component-

level probability; hij � hij�Pi
F; P

j
F� is a subfunction related to two

component-level probabilities, etc.; and the first term, h0, represents
the constant term. The subfunctions in Eq. (12) can be calculated as

h0 �
Z

1

0

h�PF�
Y
i

q�Pi
F� dPi

F (13)

hij; : : : ;r �
Z

1

0

h�PF�
Y

k≠i;j; : : : ;r
q�Pk

F� dPk
F−

X
k�i;j; : : : ;r

hk −
X

k�i;j; : : : ;r

X
l>k;l�i;j; : : : ;r

hkl − : : : − h0 (14)

The preceding decomposition allows the summation of the

variance of each subfunction to be equal to the output variance. In

other words, the output variance can be not only stated as a sum of

fractional variance but also decomposed into main effect and

interaction effect. The decomposition is shown as follows:

V�h�PF�� �
X
i

V�hi� �
X
j>i

V�hij� � : : : � V�h12 : : : m� (15)

Each term in Eq. (15) can be calculated as

V�h�PF�� �
Z

1

0

h2�PF�
Y
k

q�Pk
F� dPk

F − h20 (16)

V�hij; : : : ;r� �
Z

1

0

h2ij; : : : ;r
Y

k�i;j; : : : ;r

q�Pk
F� dPk

F − h20 (17)

The global sensitivity index is defined as the ratio of fractional
variance to the output variance. A sensitivity index with a single
subscript is called “main sensitivity index”, and the one with more
than two subscripts is called “interaction sensitivity index”:

Sij; : : : ;r �
V�hij; : : : ;r�
V�h�PF��

(18)

To figure out which variable affects the output variance the most,
both the main and interaction sensitivity index must be considered.
Therefore, another index, called “total sensitivity index”, is defined to
compare the effect of the variables:

STi � Si � S∼i (19)

where S∼i is the summation of all interaction sensitivity indices of
which subscript includes i.

IV. Confidence Interval in Component Level

A single component example is provided tomanifest how theCCIs
obtained from the four interval methods and the bootstrap method
behave differently. The interval methods are tested with different
levels of PF by gradually increasing the threshold value.

A. Comparison of Interval Methods for a Single Component

Consider a single component whose output y follows a normal
distribution, and the PF is determined based on a threshold yth:

y ∼ N�15.8; 52�; PF � P�y ≤ yth� (20)

When yth � 20, the truePF is 0.8. It is assumed that 1000 samples
are employed to estimate the PF for each component, assuming the
truePF is unknown. The estimated probability using 1000 samples is
0.792. In Table 2, the confidence intervals estimated using the four
methods are compared at the 95% confidence level. A distribution
made up of the 10,000 repetitions of probability calculation is
assumed to be the true distribution of probability.
Among the four methods, the most conservative confidence

interval (i.e., the widest interval) results from Wilson method,
whereas the adjustedWald andWaldmethod show a comparable size
of the confidence interval. However, when compared to the true

Fig. 3 Effect of variance of component probability of failure on system probability of failure.

Table 2 Comparison of confidence intervals

Method
Lower bound

(A)
Upper bound

(B)
Interval width

(B-A)

True 0.7780 0.8200 0.0420
Wald 0.7663 0.8177 0.0514
Wilson 0.7411 0.8406 0.0995
Clopper–Pearson 0.7655 0.8467 0.0812
Adjusted Wald 0.7657 0.8160 0.0503
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distribution of probability, all four methods yield a conservative

confidence interval; that is, the estimated interval is larger than the

true one. It is also apparent that the Wald confidence interval is the

only symmetric interval with respect to the sample PF.
Because most engineering systems require a small value of PF, it

would be interesting to study the confidence interval in an extreme PF,

which is shown in Fig. 4. The threshold yth in Eq. (20) is gradually

decreased so that the PF approaches zero. One thousand samples are

used to calculate a CCI while the truePF varies from 0.0 to 1.0%, in the

increment of 0.1%. In Fig. 4, the dashed curve represents the true PF,

and the piecewise linear solid line represents estimated PF. As

previously discussed in Sec. II, the Wald and adjusted Wald methods

resulted in a confidence interval exceeding the lower limit of probability,

which is [0,1].Wilson andClopper–Pearson (exact) confidence intervals

do not go below zero, although the interval widthwaswide compared to

the Wald and adjusted Wald methods, as in Table 2.

B. Bootstrap Method for Confidence Interval Estimation

Using the same analytical example as in the previous section, it is

investigated how the nonparametric bootstrap method predicts a

confidence interval. Note that the initial data set contains 1000 values

of either 0 or 1 by the indicator function in Eq. (2). As explained in

Fig. 3, it takes as many as the initial data set to obtain one bootstrap

sample set, which in this case is equal to 1000. Therefore, to obtainm
repetitions, 1000 ×m number of resampling is needed.
First, the number of samples in the initial data set is fixed as 1000,

and the number of repetition is varied to 100, 500, and 1000 to see the

effect of bootstrap repetitions, as listed in Table 3. It is noted that

generating initial samples is expensive because each sample requires

a computer simulation or solving partial differential equation,

whereas bootstrap repetition is not expensive because it is simply

taking samples from the existing samples. However, it might be

informative to test how many bootstrap repetitions are enough. The

effect of the initial data set is also observed by fixing the number of

bootstrap repetitions to 1000 while varying the number of initial data

set to 100, 500, and 1000, as listed in Table 4. The 95% confidence

level is employed in this example. As shown in Tables 3 and 4, the

number of repetitions does not affect the standard deviation or

confidence interval width. It is found that a confidence interval

estimation largely depends on the number of the initial data set. In
other words, adding more repetition does not influence the interval
width, whereas adding more initial data yields a narrower interval
width. Thus, the number of repetitions becomes a minor concern as
long as it is sufficient enough. Still, the question regarding howmany
repetitions are enough should be discussed in the future research.

V. Bayesian Network of PyrotechnicMechanical Device

A. Problem Definition

A pyrotechnic mechanical device (PMD) refers to a broad family
of devices using chemical reaction to initiatemechanical operation. It
is widely used in industry and military, such as airbag, rocket launch,
andmissile release,where a high-speed activation is required [25,26].
This disposable device is initiated by a chain of electrical, chemical,
and mechanical functions. Because of its high importance, PF must
bemaintained at a very low level.An example of PMD is illustrated in
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Fig. 4 Confidence interval estimation for high probability of failure.

Table 3 Effect of repetition on

confidence interval estimation

Initial samples 1000 1000 1000

Bootstrap repetitions 100 500 1000
Mean estimate 0.793 0.791 0.791
Standard deviation 0.013 0.012 0.012
Lower bound (A) 0.767 0.765 0.767
Upper bound (B) 0.822 0.815 0.816
Interval width (B-A) 0.055 0.050 0.049

Table 4 Effect of initial data set on

CCI estimation

Initial samples 100 500 1000

Bootstrap repetitions 1000 1000 1000
Mean estimate 0.82 0.80 0.791
Standard deviation 0.03 0.02 0.012
Lower bound (A) 0.70 0.76 0.767
Upper bound (B) 0.77 0.81 0.816
Interval width (B-A) 0.07 0.05 0.049
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Fig. 5, where the pressure generated by expanding gas pushes the

piston and releases the bolt. The PMD mainly consists of two parts

that are serially connected, called the initiator and the pyrolock.

When the initiator receives an electric signal, the temperature of the

heating element goes up due to the applied current. The

performance of the initiator is considered a success when the

temperature of the heating element exceeds a threshold temperature

to start a chemical reaction within 10 ms. Once initiated, the

chemical reaction generates pressure, pushes the piston in the

pyrolock, and releases the bolt. The system is considered a success

if the piston moves enough such that the locking balls are dropped

and the bolt is released.
The rate of temperature rise in the heating element is described by

the following equations:

dT

dt
� P�T�

CP

� 1

CP

"
I2R�T� − πκd2e�T − Tpin�

2lpin
− εσAsurf

e �T4 − T4
0�
#

(21)

R�T� � 0.0005
le
d2e

rw�T� (22)

rw�T� � 70.604� 0.06984T (23)

whereR�T� is the temperature-dependent resistance, and rw�T� is the
resistivity of the heating element. All other variables are explained in

the Nomenclature. Detailed explanations of the model can be found

by Jang et al. [25] and Hwang et al. [26].
The pyrolock starts working due to the pressure generated by the

initiator; its behavior is analyzed through three different stages, in

which a system of ordinary differential equations are employed. In

stage 1, the piston does not move, but the pressure must be large

enough to break the shear pin to proceed to the next stage. In stage 2,

once the shear pin is broken, the piston starts moving if the pressure

force is larger than the friction forces from the O-ring and balls. This

stage continues until the balls are detached from the piston. Last,

stage 3 explains the motion of the piston from the moment that the

balls are detached from the piston to the complete separation of the

bolt. The system is governed by the following differential equations

[25,26]:

dρc
dt

� 1

Vps

�
dmc

dt
− ρc�Ac;totrb � Apsvps�

�
(24)

dPps

dt
� 1

Vps

�
ηp

dmc

dt
RgγTg − �γ − 1�

�
PpsApsvps �

dQloss

dt

�

− Pps

dVps

dt

�
(25)

dVps

dt
� Ac;totrb � Apsvps (26)

de

dt
� rb (27)

dvps
dt

�

8>>><
>>>:
0 �stage 1�
PpsAps−For−Fba

mps
�stage 2�

PpsAps−For

mps
�stage 3�

(28)

Fsh �
�
234 �stage 1�
0 �stage 2; 3� (29)

For �
�
0 �stage 1�
2.6153E − 03P0.5563

ps � 22.18364 �stage 2; 3� (30)

Fba �
�
0 �stage 1; 3�
3000 �stage 2� (31)

where For and Fba are, respectively, the friction force at the O-ring

and the friction force by the balls. All other variables are explained

in the Nomenclature.
To add redundancy, two initiators are connected in parallel. For the

system to be successful, either one of the initiators must be operated.

It is noted that the mean lengths of the two initiators are slightly

different, as shown in Table 5, which reflects the effect of different

environmental conditions. Therefore, it is expected that the

probabilities of failure of the two initiators are different, as shown in

Table 6. A failure of the both initiators leads to a malfunction of the

PMD,which is undesirable. ADAG for this system is shown in Fig. 6.

Denoting each initiator as I1 and I2, the random variables used in the

equations are listed in Table 5. All the random variables are assumed

to follow a normal distribution, with 10% coefficient of variation. It is

noted that there exists a model form uncertainty in the performance

model, such as the shear-pin andO-ring forces. Therefore, it would be

more practical if the confidence interval of system reliability includes

the contribution from model form uncertainty, which would be the

future plan for research.

B. Bayesian Network Formulation

A simple Bayesian network is built for this system, as shown in

Fig. 6. To calculate PF, a set of samples are generated based on the

Ball

Bolt

Piston

Initiator

Fig. 5 Pyrotechnic mechanical device to release a bolt.

Table 5 Random variables in PMD system

Random variables
Mean
(I1∕I2) Random variables Mean (I1∕I2)

Initial temperature T0 20°C Heating element
length le

41∕40 mil

Heating element
diameter de

2.3 mil Conductivity κ 385 W∕m ⋅ K

Emissivity ε 0.03 Length of pin lpin 406 mil
Input current I 3.5 A Charge density ρc 2440 kg∕m3

Mass of piston (mps) 0.0152 kg Mass of ball (mba) 0.0696 kg
Ball friction Fsh 2500 N Mass of charge

(mgen)
20 mg

Shear pin force Fsh 233.9858 N — — — —

Table 6 Mean standard deviation estimation

Probability Sample Pi
F Mean �μc;i� Standard deviation �σc;i�

p1 0.2 0.21 0.040
p2 0.25 0.26 0.043
p3 0.1 0.11 0.030
p4�� p3� 0.1 0.11 0.030
p5�� p3� 0.1 0.11 0.030
p6 1.0 1.0 0.0
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distributions given in Table 5. Then, these input samples are used to
solve the differential equations in Eqs. (21–31), from which the
success or failure of the component can be determined. This is
equivalent to evaluating the indicator function in Eq. (2). This process
is repeated n times to calculatePF as in Eq. (1). For the two initiators,
PF is not conditional because they do not have any parent. On the
other hand, PF in the pyrolock is the conditional probability because
its calculation depends on the success or failure of the initiators.
For this example, PF is calculated using 100 samples randomly

generated from each of the variables listed in Table 5 for the initiator
and pyrolock. In the case of the initiators 1 and 2, exactly 20 and 25 of
the 100 samples failed, respectively. When the initiator succeeds, 10
out of the 100 samples failed in the pyrolock. When both initiators
fail, however, there is no chance to make the pyrolock work.
Therefore, the corresponding conditional PF is 100%; that is
p6 � 1.0.Moreover, the conditionalPF of the pyrolockwould be the
same if one or both initiators were a success; that is, p3 � p4 � p5.
Based on these results, the mean and standard deviation of

conditional PF are estimated as shown in Table 6. For the standard
deviation, the Wilson method in Table 1 has been used to make the
most conservative estimate. It is noted that, for the given number of
samples and the estimated conditional PF, the sampling uncertainty
in the pyrolock (p3) is the lowest. Because of the difference in the
heating element length of the two initiators, they are different by 25%.
In such a simple Bayesian network, the systemPF can be obtained

using the following equation:

Psys
F � p1p2 − p1p2p3 � p3 (32)

Then, the standard deviation of the system PF is calculated as in
Table 7, and the bounds of the SCI are obtained using Eq. (11) with
the 95% confidence level. In such a simple network, it is obvious that
the conditional PF of the pyrolock will contribute the most for the
system PF. The other contribution is PF due to the failure of the two
initiators. It is also noted that the uncertainty in the system PF is
smaller than that of the two initiators but slightly larger than that of
the pyrolock. The effect of large uncertainty in the two initiators is
diminishedwhen it goes through the network.Although conventional
reliability methods can calculate the system reliability as well as its
confidence intervals, this paper focuses on identifying the
contribution of component-level reliability and confidence intervals
to that of system. For this purpose, a Bayesian network provides a
unique framework to facilitate the relationship between components
and the system. In general, the methods of estimating the system
probability of failure and its confidence intervals depend on the level

of probability of failure and the amount of available resources, such
as the number of samples. Figure 7 shows the recommendedmethods
based on the level of probability and the amount of resources.

C. Global Sensitivity Analysis

The total sensitivity indices using ANOVA decomposition are
obtained in the PMDsystem to identify the probability that influences
the output variance the most. The decomposition is performed by
substituting h�PF� in Eqs. (13) and (14) with Eq. (32). There are
seven sensitivity indices for this example. Using the decomposed
functions, the total sensitivity indices are calculated in Table 8. Even
though the standard deviation of p3 was the smallest, as shown in
Table 6, the corresponding total sensitivity index is the highest. Thus,
the variance of the system is mainly due to p3, and therefore it is
necessary to provide more samples to p3 to efficiently reduce the
system variance.
This result can be explained based on the shape of the network.

Because the pyrolock is the end of the network, its CCI directly
affects the SCI. On the other hand, the effect of the initiators’ CCI is
diminished when it goes through the network. Therefore, the most
effective way of reducing the SCI is to reduce the CCI of the closest
component to the system. In practical systems, however, tests tend to
be more expensive toward the system level. Therefore, adding
samples at different components may cause different costs.
Therefore, the global sensitivity analysis has to be interpreted in
conjunction with the cost model of reducing sampling uncertainty.

VI. Conclusions

In this paper, four different interval methods and nonparametric
bootstrap method were used to establish a confidence interval of
components as well as the system in a Bayesian network. For a
midrange probability, all five methods showed a wider confidence
interval than the true one. If the most conservative decision is to be
made, then the Wilson method should be used because it showed the
widest confidence interval when the same number of samples are
employed.
A numerical example showed that the confidence interval is highly

dependent on the number of initial samples, not on the number of
bootstrap repetitions. However, a high enough number of bootstrap

Fig. 6 Bayesian network of pyrotechnic mechanical device.

Table 7 System probability of failure

and confidence interval

Psys
F σsysF Lower bound Upper bound

0.15 0.031 0.084 0.206

Table 8 Sensitivity index

S1 S2 S3 S12 S13 S23 S123
0.085 0.066 0.847 0.002 1E − 04 7.7E − 05 2.7E − 06

Fig. 7 Possible method for different combinations of resource and

probability.
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repetitions must be used, although how many is enough is to be
discussed in future research.
Out of four interval methods, the Wilson and Clopper–Pearson

methods succeeded to yield a reasonable confidence interval for an
extreme level of PF (97–99.9%), in which the upper bound does not
go beyond 1. The bootstrap method always gives a confidence
interval within the bound of a probability definition (0 to 1) because
the method is based on resampling.
Global sensitivity analysis using ANOVA decomposition works

well to resolve the resource allocation problem. As shown in Sec. V,
the highest variance does not guarantee the highest total sensitivity
index. Therefore, the global sensitivity analysis must be adopted to
efficiently reduce the confidence interval width.
Also, the four interval methods has been speculated considering the

target probability and available resources. If the target probability is
extreme and resource is insufficient, then there is no way to obtain a
reasonable confidence interval. If the situation reverses (i.e., when a
confidence interval is pursued a midrange target probability using the
abundant resource), then any method listed in Sec. II will work. When
the target probability is extreme and the resource is ample or the target
probability is not extreme but still the resource is insufficient,
bootstrap, Wilson, or Clopper–Pearson method will work. Wald and
adjusted Wald method may not work because of the normality
condition.
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