EAS4200C Aerospace Structures Homework \#2 (Due: Sep. 11th)

1. Consider a unit cube of a solid occupying the region $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$. After loads are applied, the displacements are given by $u=\alpha x, v=\beta y, w=0$. (a) Sketch the deformed shape for $\alpha=0.03, \beta=-0.01$. (b) Calculate the six strain components. (c) Find the volume change $\Delta V\left[\Delta V=V\right.$ (the volume after deformation) $-V_{0}$ (the original volume) $]$ for this unit cube. Show that $\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z} \approx \Delta V$.
2. The state of stress in a body is uniform and is given by $\sigma_{x x}=4 \mathrm{MPa}, \sigma_{y y}=3 \mathrm{MPa}, \sigma_{z z}=0 \mathrm{MPa}, \tau_{x y}=2 \mathrm{MPa}$, $\tau_{y z}=0 \mathrm{MPa}, \tau_{x z}=0 \mathrm{MPa}$. (a) Find the three components of the stress vector t on the surface ABCD as shown in the figure. (b) Find the normal component σ_{n} of the stress vector.
3. Find the principal stresses and corresponding principal directions for the stresses given in Problem 2. Check the
 result with other methods such as Mohr's circle.
