EAS4200C Aerospace Structures Homework \#4 (Due: Oct. 2nd)

1. Show that there is no warping in the bar of circular cross-section

Hint: First, calculate the constant C in $\phi(x, y)=C\left(\frac{x^{2}}{a_{2}}+\frac{y^{2}}{a_{2}}-1\right)$ from the compatibility equation. Second, calculate shear strains $\gamma_{x z}$ and $\gamma_{y z}$ from shear stresses $\tau_{x z}$ and $\tau_{y z}$. Third, integrate $w(x, y)$ from the definition of shear strains: $\gamma_{x z}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}, \quad \gamma_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}$.
2. Consider a straight bar of a uniform elliptical cross-section. The semimajor and semiminor axes are a and b, respectively. (a) Show that the stress function of the following form:
$\phi(x, y)=C\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)$
provides the solution of the torsion of the bar. That is, show that the stress function satisfies equilibrium and boundary conditions. (b) Find the expression of C from the compatibility equation and show that
$J=\frac{\pi a^{3} b^{3}}{a^{2}+b^{2}}, \quad \tau_{x z}=\frac{-2 T y}{\pi a b^{3}}, \quad \tau_{y z}=\frac{2 T x}{\pi a^{3} b}$
Hint: The area of the ellipse can be obtained by $\iint_{A}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) d A=\pi a b$

