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Introduction
The rigidity of the mathematical problem posed by the general optimization
formulation given in GP (Equation 3-1) is often remote from that of a practical
design problem. Rarely does a single objective with several hard constraints
adequately represent the problem being faced. More often there is a vector of
objectives that must be traded off in some
way. The relative importance of these objectives is not generally known until
the system’s best capabilities are determined and tradeoffs between the
objectives fully understood. As the number of objectives increases, tradeoffs
are likely to become complex and less easily quantified. There is much
reliance on the intuition of the designer and his or her ability to express
preferences throughout the optimization cycle. Thus, requirements for a
multiobjective design strategy are to enable a natural problem formulation to
be expressed, yet to be able to solve the problem and enter preferences into a
numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of
objectives F(x) that can be the subject of a number of constraints or bounds.
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(3-44)

Note that, because F(x) is a vector, if any of the components of F(x) are
competing, there is no unique solution to this problem. Instead, the concept
of noninferiority [41] (also called Pareto optimality [4] and [6]) must be used
to characterize the objectives. A noninferior solution is one in which an
improvement in one objective requires a degradation of another. To define
this concept more precisely, consider a feasible region, , in the parameter
space x is an element of the n-dimensional real numbers that satisfies
all the constraints, i.e.,

(3-45)

subject to

This allows definition of the corresponding feasible region for the objective
function space .

(3-46)

The performance vector, F(x), maps parameter space into objective function
space, as represented in two dimensions in the figure below.

Figure 3-7: Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.
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Definition: point is a noninferior solution if for some neighborhood of
there does not exist a such that and

(3-47)

In the two-dimensional representation of the figure below, the set of
noninferior solutions lies on the curve between C and D. Points A and B
represent specific noninferior points.

Figure 3-8: Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement
in one objective, , requires a degradation in the other objective, , i.e.,

.

Since any point in that is not a noninferior point represents a point in which
improvement can be attained in all the objectives, it is clear that such a point
is of no value. Multiobjective optimization is, therefore, concerned with the
generation and selection of noninferior solution points. The techniques for
multiobjective optimization are wide and varied and all the methods cannot
be covered within the scope of this toolbox. Subsequent sections describe
some of the techniques.

Weighted Sum Method
The weighted sum strategy converts the multiobjective problem of minimizing
the vector into a scalar problem by constructing a weighted sum of all
the objectives.
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(3-48)

The problem can then be optimized using a standard unconstrained
optimization algorithm. The problem here is in attaching weighting
coefficients to each of the objectives. The weighting coefficients do not
necessarily correspond directly to the relative importance of the objectives
or allow tradeoffs between the objectives to be expressed. Further, the
noninferior solution boundary can be nonconcurrent, so that certain solutions
are not accessible.

This can be illustrated geometrically. Consider the two-objective case in the
figure below. In the objective function space a line, L, is drawn.
The minimization can be interpreted as finding the value of c or which L just
touches the boundary of as it proceeds outwards from the origin. Selection
of weights and , therefore, defines the slope of L, which in turn leads to
the solution point where L touches the boundary of .

Figure 3-9: Geometrical Representation of the Weighted Sum Method

The aforementioned convexity problem arises when the lower boundary of is
nonconvex as shown in the figure below. In this case the set of noninferior
solutions between A and B is not available.
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Figure 3-10: Nonconvex Solution Boundary

Epsilon-Constraint Method
A procedure that overcomes some of the convexity problems of the weighted
sum technique is the -constraint method. This involves minimizing a
primary objective, , and expressing the other objectives in the form of
inequality constraints

(3-49)

subject to

The figure below shows a two-dimensional representation of the -constraint
method for a two-objective problem.
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Figure 3-11: Geometrical Representation of ε-Constraint Method

This approach is able to identify a number of noninferior solutions on
a nonconvex boundary that are not obtainable using the weighted sum
technique, for example, at the solution point and . A
problem with this method is, however, a suitable selection of to ensure a
feasible solution. A further disadvantage of this approach is that the use of
hard constraints is rarely adequate for expressing true design objectives.
Similar methods exist, such as that of Waltz [40], that prioritize the objectives.
The optimization proceeds with reference to these priorities and allowable
bounds of acceptance. The difficulty here is in expressing such information at
early stages of the optimization cycle.

In order for the designers’ true preferences to be put into a mathematical
description, the designers must express a full table of their preferences
and satisfaction levels for a range of objective value combinations. A
procedure must then be realized that is able to find a solution with reference
to this. Such methods have been derived for discrete functions using the
branches of statistics known as decision theory and game theory (for a basic
introduction, see [26]). Implementation for continuous functions requires
suitable discretization strategies and complex solution methods. Since it
is rare for the designer to know such detailed information, this method is
deemed impractical for most practical design problems. It is, however, seen as
a possible area for further research.
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What is required is a formulation that is simple to express, retains the
designers’ preferences, and is numerically tractable.

Goal Attainment Method
The method described here is the goal attainment method of Gembicki [18].
This involves expressing a set of design goals, , which
is associated with a set of objectives, . The
problem formulation allows the objectives to be under- or overachieved,
enabling the designer to be relatively imprecise about initial design goals. The
relative degree of under- or overachievement of the goals is controlled by a
vector of weighting coefficients, , and is expressed as a
standard optimization problem using the following formulation.

(3-50)

such that

The term introduces an element of slackness into the problem, which
otherwise imposes that the goals be rigidly met. The weighting vector, w,
enables the designer to express a measure of the relative tradeoffs between
the objectives. For instance, setting the weighting vector w equal to the
initial goals indicates that the same percentage under- or overattainment
of the goals, , is achieved. You can incorporate hard constraints into the
design by setting a particular weighting factor to zero (i.e., ). The
goal attainment method provides a convenient intuitive interpretation of the
design problem, which is solvable using standard optimization procedures.
Illustrative examples of the use of the goal attainment method in control
system design can be found in Fleming ([12] and [13]).

The goal attainment method is represented geometrically in the figure below
in two dimensions.
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Figure 3-12: Geometrical Representation of the Goal Attainment Method

Specification of the goals, , defines the goal point, P. The weighting
vector defines the direction of search from P to the feasible function space,

. During the optimization is varied, which changes the size of the
feasible region. The constraint boundaries converge to the unique solution
point .

Algorithm Improvements for the Goal Attainment
Method
The goal attainment method has the advantage that it can be posed as a
nonlinear programming problem. Characteristics of the problem can also be
exploited in a nonlinear programming algorithm. In sequential quadratic
programming (SQP), the choice of merit function for the line search is not
easy because, in many cases, it is difficult to “define” the relative importance
between improving the objective function and reducing constraint violations.
This has resulted in a number of different schemes for constructing the
merit function (see, for example, Schittkowski [38]). In goal attainment
programming there might be a more appropriate merit function, which you
can achieve by posing Equation 3-50 as the minimax problem
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(3-51)

where

Following the argument of Brayton et. al. [2] for minimax optimization using
SQP, using the merit function of Equation 3-41 for the goal attainment
problem of Equation 3-51 gives

(3-52)

When the merit function of Equation 3-52 is used as the basis of a line search
procedure, then, although might decrease for a step in a given search
direction, the function max might paradoxically increase. This is accepting
a degradation in the worst case objective. Since the worst case objective is
responsible for the value of the objective function , this is accepting a step
that ultimately increases the objective function to be minimized. Conversely,

might increase when max decreases, implying a rejection of a step
that improves the worst case objective.

Following the lines of Brayton et. al. [2], a solution is therefore to set
equal to the worst case objective, i.e.,

(3-53)

A problem in the goal attainment method is that it is common to use a
weighting coefficient equal to 0 to incorporate hard constraints. The merit
function of Equation 3-53 then becomes infinite for arbitrary violations of
the constraints.

To overcome this problem while still retaining the features of Equation
3-53, the merit function is combined with that of Equation 3-42, giving the
following:
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(3-54)

Another feature that can be exploited in SQP is the objective function . From
the KT equations it can be shown that the approximation to the Hessian of
the Lagrangian, H, should have zeros in the rows and columns associated
with the variable . However, this property does not appear if H is initialized
as the identity matrix. H is therefore initialized and maintained to have zeros
in the rows and columns associated with .

These changes make the Hessian, H, indefinite. Therefore H is set to have
zeros in the rows and columns associated with , except for the diagonal
element, which is set to a small positive number (e.g., 1e-10). This allows use
of the fast converging positive definite QP method described in “Quadratic
Programming Solution” on page 3-33.

The preceding modifications have been implemented in fgoalattain and
have been found to make the method more robust. However, because of
the rapid convergence of the SQP method, the requirement that the merit
function strictly decrease sometimes requires more function evaluations than
an implementation of SQP using the merit function of Equation 3-41.
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