1. Solve Problem 2.5-3 using two beam elements. Write matrix equation after applying boundary conditions
2. Consider a bar element with three nodes, as shown in the figure. When the solution is approximated by $u(x)=N_{1}(x) u_{1}+N_{2}(x) u_{2}+N_{3}(x) u_{3}$, calculate interpolation functions $N_{1}(x), N_{2}(x), N_{3}(x)$. When a distributed load q_{0} is uniformly distributed on the element, calculate work-equivalent nodal forces.

3. Use the Rayleigh-Ritz method to determine the deflection $v(x)$, bending moment $M(x)$, and shear force $V_{y}(x)$ for the beam shown in the figure. Assume $E I=1,000 \mathrm{~N}-\mathrm{m}^{2}, L=1 \mathrm{~m}$, and $p_{0}=100 \mathrm{~N} / \mathrm{m}$, and $C=100 \mathrm{~N}-\mathrm{m}$. The displacement is expressed as $v(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$. Make sure the displacement boundary conditions are satisfied a priori. Hint: Potential energy of a couple is calculated as $V=-C d v / d x$, where the rotation is calculated at the point of application of the couple.

4. Solve problem 4.5-8.
5. A space frame structure as shown in the figure consists of 25 truss members. All members have the same circular cross-sections with diameter $d=0.5 \mathrm{in}$. At nodes 1 and 2, a constant force $F=60,000 \mathrm{lb}$ is applied in the y-direction. Four nodes ($7,8,9$, and 10) are fixed on the ground. The frame structure is made of a steel material whose properties are Young's modulus $E=3 \times 10^{7}$ psi, Poisson's ratio $v=0.3$. Calculate displacements of all nodes and stress of all members using finite element software. Provide a plot that shows labels for elements and nodes along with boundary conditions. Provide deformed geometry of the structure and a table of stress in each element.

