1. Solve Problem 2.5-3 using two beam elements. Write matrix equation after applying
boundary conditions

At hinge, no rotational DOFs are connected. Thus, the global DOF should be
{Q,}={v,0, 0,67, 67 v,0}" . Since Node 1 and Node 3 are clamped, the free DOFs are
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For Element 1 (only for free DOFs),
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After assembly, the matrix equation becomes
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2. Consider a bar element with three nodes, as shown in the figure. When the solution is approximated
by u(z) = Ny(z)u; + Na(z)uy + N3(x)uz, calculate interpolation functions N,(z), Ny(z), Ny(z).
When a distributed load qO is uniformly distributed on the element, calculate work-equivalent nodal

forces.
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Solution:

Since three nodes are available, we can use second-order approximation of the solution:
u(x) = a, + a,x + a,x?
By imposing three nodal solutions, we have

u@) =u, =a
U@z =U, =, +3a +3a,
u =u; =g, +a +4a,



By solving a;, a,, and a; with respect to the nodal solution, we have

a=U
a, = —-3u; +4u, — U,
a, = 2u, —4u, + 2u,

Thus, from the interpolation relation, we have

u(x) = (1= 3x + 2x*)u, + 4(x — X*)u, + (=X + 2x*)u,
= Nyu;, + N,u, + Nyu,

where

N, =1-3x+2x?
N, = 4x — 4x°
N, = =X+ 2%°

The work-equivalent load can be obtained from the expression of potential of applied load as
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Thus, the work-equivalent load becomes
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3. Use the Rayleigh-Ritz method to determine the deflection v(x), bending moment M(x), and shear
force V,(x) for the beam shown in the figure. Assume EI = 1,000 N-m? L =1 m, and py = 100 N/m, and
C = 100 N-m. The displacement is expressed as v(z) = ¢, + ¢,z + c,a” + c;z° . Make sure the

displacement boundary conditions are satisfied a priori. Hint: Potential energy of a couple is calculated as

V = —Cdv / dz, where the rotation is calculated at the point of application of the couple.
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Solution:



v(z) = ¢y + x + 1 + ¢’

d
d—; = ¢ + 267 + 303x2

Displacement boundary condition: »(0) = 0,2'(0) =0 = ¢, =¢, =0

v(z) = ¢,1° + cy7?

Now we only need to determine c, and cs.

% = 2¢,7 + 363.722
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Potential energy:
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= LL%EI(%Q + 603:5)2 dx — LL(c2x2 + 03x3>(—100x)d$ —(202 + 303)6'

- L 12000((:22 + Geyeyw + 9% ) do + fU 1(10002953 +100¢,2* )dz —100(2¢, + 3¢y )
= 2000( ¢, + Beyey + 3eg? ) + (256, + 20c5 ) — 100(2¢, + 3c)
= 2000(c)? + Beyey + 3eg? | — 175¢, — 280c,

9T _ 0 = 2000(2¢, + 3¢,) — 175 = 0
dc,
9T _ 0= 2000(3¢, + 6c;) — 280 = 0
dcey
¢, = 0.035
=
¢, = 0.005833

Final results:



v(z) = 0.0352% + 0.0058332>

2
M(z) = E[Z—2 = 1000(2 x 0.035 + 6 x 0. 00583311:) =70 + 35z
T
d3v
Vy(z) = —EIF = —1000(6 x 0.005833) = —35
T

4. Solve problem 4.5-8.
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5. A space frame structure as shown in the figure consists of 25 truss members. All members have the
same circular cross-sections with diameter d = 0.5 in. At nodes 1 and 2, a constant force F = 60,000 Ib is
applied in the y—direction. Four nodes (7, 8, 9, and 10) are fixed on the ground. The frame structure is
made of a steel material whose properties are Young’s modulus E = 3x10’ psi, Poisson’s ratio v = 0.3.
Calculate displacements of all nodes and stress of all members using finite element software. Provide a
plot that shows labels for elements and nodes along with boundary conditions. Provide deformed
geometry of the structure and a table of stress in each element.



