
1. Solve Problem 2.5-3 using two beam elements. Write matrix equation after applying 
boundary conditions 
 
At hinge, no rotational DOFs are connected. Thus, the global DOF should be 
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For Element 2 (only for free DOFs), 
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After assembly, the matrix equation becomes 
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2. Consider a bar element with three nodes, as shown in the figure.  When the solution is approximated 

by 1 1 2 2 3 3( ) ( ) ( ) ( )u x N x u N x u N x u= + + , calculate interpolation functions 1 2 3( ), ( ), ( )N x N x N x . 

When a distributed load q0 is uniformly distributed on the element, calculate work-equivalent nodal 
forces. 

 

Solution: 
Since three nodes are available, we can use second-order approximation of the solution: 
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By imposing three nodal solutions, we have 
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By solving a1, a2, and a3 with respect to the nodal solution, we have 
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Thus, from the interpolation relation, we have 
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The work-equivalent load can be obtained from the expression of potential of applied load as 
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Thus, the work-equivalent load becomes 
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3. Use the Rayleigh-Ritz method to determine the deflection v(x), bending moment M(x), and shear 
force Vy(x) for the beam shown in the figure.  Assume EI = 1,000 N-m2, L = 1 m, and p0 = 100 N/m, and 
C = 100 N-m. The displacement is expressed as 2 3

0 1 2 3( )v x c c x c x c x= + + + .  Make sure the 
displacement boundary conditions are satisfied a priori. Hint: Potential energy of a couple is calculated as 

/V Cdv dx= − , where the rotation is calculated at the point of application of the couple. 

 

Solution: 
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Displacement boundary condition: 0 1(0) 0, (0) 0 0v v c c′= = ⇒ = =  
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Now we only need to determine c2 and c3. 
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Final results: 



 2 3( ) 0.035 0.005833v x x x= +  

 ( )
2

2
( ) 1000 2 0.035 6 0.005833 70 35

d v
M x EI x x

dx
= = × + × = +  

 
3

3
( ) 1000(6 0.005833) 35y

d v
V x EI

dx
= − = − × = −  

 
 
4. Solve problem 4.5-8. 

 



 
 
5. A space frame structure as shown in the figure consists of 25 truss members. All members have the 
same circular cross-sections with diameter d = 0.5 in. At nodes 1 and 2, a constant force F = 60,000 lb is 
applied in the y–direction. Four nodes (7, 8, 9, and 10) are fixed on the ground. The frame structure is 
made of a steel material whose properties are Young’s modulus E = 3×107 psi, Poisson’s ratio ν = 0.3. 
Calculate displacements of all nodes and stress of all members using finite element software. Provide a 
plot that shows labels for elements and nodes along with boundary conditions. Provide deformed 
geometry of the structure and a table of stress in each element. 


