EML 5526

FINITE ELEMENT ANALYSIS \& APPLICATIONS

Instructor: Nam-Ho Kim, Raphael T. Haftka
Class hour: 12:50-1:40 PM, MWF
Class room: 102 NEB
Office: 210 MAE-A
Office hour: MWF $5^{\text {th }}$ period (11:45-12:35)
Phone: 352-846-0665
E-mail: nkim@ufl.edu
http://www.mae.ufl.edu/nkim/eml5526/

SYLLABUS

- Teaching Assistants
- Mr. Vijay Jagdale
- Office: 235 NEB, Phone: 392-2524
- Office hour: TTh $4^{\text {th }}$ period (10:40-11:30), e-mail: vjagdale@ufl.edu
- Textbooks:
- Concepts and Applications of Finite Element Analysis $4^{\text {th }}$ Ed, by R. D Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Wiley, 2002
- Required.
- Software:
- Projects and some HWs will require FE software Abaqus
- Download and install from http://campus.3ds.com/simulia/freese
- Must use your personal computer, not lab computers

OFFICE HOURS

Period	Mon	Tue	Wed	Thu	Fri
$7: 25-8: 15$					
$8: 30-9: 20$					
$9: 35-10: 25$					
10:40-11:30		TA Vijay		TA Vijay	
11:45-12:35	Office hour		Office hour		Office hour
12:50-1:40	EML5526		EML5526		EML5526
$1: 55-2: 45$					
3:00-3:50					
$4: 05-4: 55$					

Instructor: Nam Ho Kim, 210 MAEA, 846-0665, nkim@ufl.edu
Instructor: Raphael T. Haftka, 220 MAEA, 392-9595, haftka@ufl.edu
Vijay Jagdale: 235 NEB, 392-2524, vjagdale@ufl.edu
Class Website: http://www.mae.ufl.edu/nkim/eml5526.htm|
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GRADES

- Homework
- All assigned homeworks must be submitted before starting the due date class. Solution will be posted on the class website. No late homeworks will be accepted.
- Exams
- Two, equally contributing examinations
- Tentative schedules: Feb. 24 (Exam1), Apr. 21 (Exam2)
- Quiz: There will be quizzes during the class

- Projects

- Two projects in finite element analysis using Abaqus. Formal report is required. 10% penalty for late submission and no acceptance after one week. \qquad
- Grading
- Exams (40\%), Projects (40\%), Homework+Quiz (20\%) \qquad
\qquad

COURSE SCHEDULES COnt.		
Date	Class	Reading Assignment
$1 / 6 \mathrm{~W}$	Introduction to finite element analysis	Chapter 1
$1 / 8 \mathrm{~F}$	1-D Bar element, assembly, applying BC	$2.1,2.2,2.5,2.7$
$1 / 11 \mathrm{M}$	Stress, strain, stifness matrix, plane truss	$2.4,2.6$
$1 / 13 \mathrm{~W}$	Space truss, sparsity, Mechanical load, stress	$2.8,2.9$
$1 / 15 \mathrm{~F}$	Thermal strain, stress; modeling symmetry	$2.10,2.11$
$1 / 18 \mathrm{M}$	M. L. King Holiday, No class	
$1 / 20 \mathrm{~W}$	Introduction to Abaqus	
$1 / 22 \mathrm{~F}$	Beam theory	$2.3,4.1,4.2$
$1 / 25 \mathrm{M}$	Potential energy	$4.3,4.4$
$1 / 27 \mathrm{~W}$	Rayleigh-Ritz method, FE interpolation	$4.5,4.6$
$1 / 29 \mathrm{~F}$	FE equation for beam, distributed load	4.8
$2 / 1 \mathrm{M}$	Plane frame, convergence	4.9
$2 / 3 \mathrm{~W}$	FE analysis of beam using Abaqus	
$2 / 5 \mathrm{~F}$	CST, LST elements	$3.1,3.2,3.3,3.4,3.5$
$2 / 8 \mathrm{M}$	Q4, Q8, Q9 elements	$3.6,3.7$
$2 / 10 \mathrm{~W}$	Project 1 assignment	
$2 / 12 \mathrm{~F}$	Numerical integration	3.9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COURSE SCHEDULES cont.		
Date	Class	Reading Assignment
2/15 M	Drilling DOF, incompatible modes, reduced integration	3.10, 3.11
2/17 W	Stress calculation	3.12
2/19 F	FE analysis of stress concentration	
2/22 M	Review of exam	
$2 / 24$ W	First In term exam	
2/26 F	Galerkin Method in one dimension	5.1,5.3
3/1 M	Galerkin Method in 2 D and mixed formulations	5.5, 5.6.
$3 / 3 \mathrm{~W}$	Review of formulation techniques.	Project 1 due
3/5 F	Isoparametric elements	6.1,6.2
$3 / 8 \mathrm{M}$	Spring break, no class	
3/10 W	Spring break, no class	
3/12 F	Spring break, no class	
3/15 M	Quadrature and Q8,Q9 elements	6.3, 6.4
3/17 W	Incompatible modes, and static condensation	6.6, 6.7
3/19 F	Stress calculations	6.10, 6.11
3/22 M	Validity of isoparameteric elements and patch test	6.11, 6.12.
$3 / 24 \mathrm{~W}$	Review of Chapter 6.	

COURSE SCHEDULES cont.		
Date	Class	Reading Assignment
$3 / 26 \mathrm{~F}$	Isoparametric triangles and tetrahedral	$7.1,7.2$
$3 / 29 \mathrm{M}$	Coordinate transformation	$8.1,8.2,8.3$
$3 / 31 \mathrm{~W}$	Connecting dissimilar elements and fracture mechanics	$8.5,8.7$
$4 / 2 \mathrm{~F}$	Reanalysis.	8.9
$4 / 5 \mathrm{M}$	III-conditioning and the condition number	$9.1-9.3$
$4 / 7 \mathrm{~W}$	Decay test, residual and convergence rate	$9.4-9.6$
$4 / 9 \mathrm{~F}$	Multi-mesh extrapolation	9.7
$4 / 12 \mathrm{M}$	Mesh revision and gradient recovery	$9.8,9.9$
$4 / 14 \mathrm{~W}$	Adaptive meshing	$9.9,9.11$
$4 / 16 \mathrm{~F}$	Review of Chapter 9	
$4 / 19 \mathrm{M}$	Review for second in-term exam.	
$4 / 21 \mathrm{~W}$	Second in-term exam.	

TIPS FOR A

- Be patient and persistent
- Read the text repeatedly until you understand it.
- If you don't understand it, ask a question until you get answered. \qquad
- Follow equations
- Do not just read the equation.
- You must follow all equations by HAND, not EYE.
- Try to understand the meaning of equations
- If you memorize an equation that you don't understand, you can't solve the problem. Math is a language.
- Follow the instruction carefully
- Read carefully what is asked. If A is asked, then answer A not B.
- Do not submit a blank answer. \qquad

INTRODUCTION TO FINITE ELEMENT METHOD

- What is the finite element method (FEM)?
- A technique for obtaining approximate solutions to boundary value problems.
- Partition of the domain into a set of simple shapes (element)
- Approximate the solution using piecewise polynomials within the element

$$
\left\{\begin{array}{l}
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0 \\
\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+b_{y}=0
\end{array}\right.
$$

INTRODUCTION TO FEM cont.

- How to discretize the domain?
- Using simple shapes (element)
$\circ-$

- All elements are connected using "nodes".

- Solution at Element 1 is described using the values at Nodes 1, 2, 6, and 5 (Interpolation).
- Elements 1 and 2 share the solution at Nodes 2 and 6.

INTRODUCTION TO FEM cont.

- Finite element analysis solves for Nodal Solutions
- All others can be calculated (or interpolated) from nodal solutions

- Displacement within the element

$$
u(x)=a+b x=u_{1}+\frac{u_{2}-u_{1}}{L} x=\left(\frac{L-x}{L} u_{1}+\left(\frac{x}{L} u_{2}\right.\right.
$$

- Strain of the element

Interpolation (Shape) Function

$$
\varepsilon(x)=\frac{\partial u}{\partial x}=-\frac{1}{L} u_{1}+\frac{1}{L} u_{2}
$$

\qquad

INTRODUCTION TO FEM cont.

- How to calculate nodal solutions?

Construct a huge simultaneous system of equations and solve for nodal solutions.

- Different physical problems have different matrices and vectors.

$$
\left[\begin{array}{cccc}
K_{11} & K_{12} & \cdots & K_{1 n} \\
K_{21} & K_{22} & \cdots & K_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
K_{n 1} & K_{n 2} & \cdots & K_{n n}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right\}=\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{n}
\end{array}\right\}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE: FINITE ELEMENTS

- Plastic Wheel Cover Model
- 30,595 Nodes, 22,811 Elements
- Matrix size is larger than $150,000 \times 150,000$.
- MSC/PATRAN (Graphic user interface)

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE: AIRBAG DEPLOYMENT

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

