Chapter 3: BASIC ELEMENTS
Section 3.1: Preliminaries (review of
solid mechanics)
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Outline

» Most structural analysis FE codes are displacement
based

 In this chapter we discuss interpolation methods and
elements based on displacement interpolations

 Stiffness matrix formulations will be presented

« Shortcomings and restrictions of the elements due to the
interpolations used will be discussed

« We will review the governing equations (for solids elastic
bodies) to help us understand the solution methods and
accuracy
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Review of Solid Mechanics

» The analysis of any solid elastic body has to
define and develop the following quantities
and/or relations

— Stress

— Strain (strain-displacement relations)

— Constitutive Properties (Stress-Strain relations)
— Compatibility

— Equilibrium Equations

— Boundary Conditions
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Stress

» Stresses are distributed internal forces

that result from externally applied forces

B
R, ! R

Note: There are two types of forces: Surface forces that act on an area of
external surface and body force that acts on the volume of the body
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Stress/Force acting on a surface

» A force acting on a surface can be resolved into
two components: One tangential to the surface
(shear force) and the other normal to the surface

Force is a 1st order tensor (vector)
Ty S Stress is a 2nd order tensor.

Why is it a tensor?

Needs two vectors to specify it. One
is the vector of the internal force and

~t)

n .
o the other is the outward normal of the
defining area
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Representation of stress at a point

* In 3-D space the stress at a point is denoted by
the stresses acting on three mutually
perpendicular planes at that point

« Often we use a simple infinitesimal rectangular
solid and indicate the stresses on the faces of
that solid

« Stress terms have two indices.

— The first indicating the plane on which it acts
— The second indicating the direction in which it acts
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Stress at a point

» State of stress at a point in 3-D Cartesian Coordinates

Py
Matrix representation of state of stress
y T ; X O-xx z-xy sz
yz Ty
‘ / Ty Oy yz
sz —>

z X O sz z-yz O-zz

TZX rXZ

Sign Conventions:

Normal stresses are positive when acting outward from a surface
(tension)

Shear stresses are positive when they act in the +ve direction on a
positive face and —ve direction on a —ve face

R.T. Haftka EML5526 Finite Element Analysis University of Florida

Stress on an arbitrary plane (2-D)

We often need to enforce stress boundary conditions on surfaces
that are not always rectangular

Y
Let cos(#) = | and sin()= m
C N
If length of side BC = A, then
length of sides OC=Al and OB= r a
Am Xy .
O-X
If we write the force equilibrium
in X and Y-directions, we have 2 —a
o . B
XA=o,(Al)+7,,(Am) Yo
o

Which simplifies to
P X=0o/l+7,m

Y=ocm+r7,l

R.T. Haftka EML5526 Finite Element Analysis University of Florida




Stress on an arbitrary plane (3-D)

The forces (per unit area) in X, Y and Z-directions on
an arbitrary plane defined by its normal vector N is
given by

X =lo, +mz, +nz,
Y =lz,, +mo, +nz,,
Z=lz,, +mz, +No,

Where |, m and n are the direction
cosines of the normal vector of the
xarbitrary plane

| =cosNx, m=cos Ny, n=cosNz
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Stress transformations in 3D

Stress transformation in 3D space can be defined using the
directions cosines as follows.

o, =lfo, +mio, +njo, +2mlz, +2mnz, +2nlz,
o, = 120, + mzzay +n2o, +2myl,z, + 2m,n,z,, +2n,l,7,,
o, =ljo, +mio, +njo, +2ml,z, +2mnz,, +2n,l,7,,
7oy = hl,o, +mm,o, +nn,o, + (M, -ml,)z,

+(myn, — nlmZ)Tyz +(nl, =1n,)z,,
7., =bLlo, +mmo, +nno, +(1,m; —myl,)z,,

+(m,n, — anS)Tyz +(n,ly —1,n;)7,
Top = bLho, +mmo, +nno, +(I,;m —myl,)z,,

+(myn, — n3ml)z-yz + (Nl —lgny) 7,
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Direction cosines in 3D

The direction cosines I.m and n between the new coordinate
axes x’, ¥’ and z’ and the original coordinate system x, y and z
are defined as follows

Since the transformation

X y 7 is_ orthogona!, the
dlrgctlon cosines must
X’ |1 ml nl ;?glszt'?gse following
yi L | my, | n, |7 +m>+n?=1
2| 1, | m, | n, I +17 +12 =1

LI, +mm,+nn, =0
I,m, +1,m, +I;m, =0

Where, |, =cos xx’, m,= cos yy’
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Equilibrium Equations (2-D)

The 2-D stresses are
shown on a volume given oz

y
of length dx and dy in X- ‘
and Y-directions and unit TYX + d z-yX

thickness in the Z- y

direction dy
T F
il — o.+do
(TX X X
dX L Z FY ,
Summation of forces in T
X-direction L yX

(o, +do, )dy — o, dy + (rxy +drz,, )dX—Z'Xde-i- F, =0
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Equilibrium of forces in X-direction

(o, +do, )y —o,dy +(z,, +dz,, Jox 7, dx+ Fydxdy = 0

@
(o4 do, )dy — gydy + (/4 dz, Jdx — z/dx + F, dxdy = 0

do, = 9% dx
x = d
OX didxdy P’ dxdy + F, dxdy = 0
or dx dy
dr, =—>dy
oy

0
(agx + ;;y +F, ]dxdy -0
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2-D Equilibrium Equations

The force equilibrium provide the relations shown below
referred to as differential equation of equilibrium

0
9o, + v x—0
oX oy
0Ty, +8ay LY =0
OX oy

Establishing moment equilibrium by the same method will
provide the condition for symmetry of the stress tensor

Txy — Tyx
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Strain

» Why do we need the strain measures? Will
displacement not suffice?

» Strain better quantifies the deformation of the
body and eliminates rigid body motion/ rotation

« Strain in very general terms is a measure of
relative deformation
— Relative to what?
» Undeformed body : Lagrangian strain
* Deformed body:  Eulerian strain
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Strain-Displacement Relations

For uniaxial (1-D) case: y
=
AL Al
- &=— o A
| | PdxQ
X
P, P’ Q du
dv
P'=P’(x-+U,y+V,Z+W)
U =ui + vj + wk Q

P=P(X,y,Z)
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Strain 2-D : Normal strain

y

17

P, P’ ou
Q__ du du = dx
d;{d_ 2 6)(
xQ
% dv av
, dv=—d
dx’'—dx OX
&, = T
X Ql
2 2
ou ? ov ? 2 :1+1 28_“4_(8_“) +(Q] -1
\/(dx+axdx) +[6x dx) —dx &y ol “ax Tl ax ox
Fu = dx
2 2 2 2
exz\/1+26—u+(a—uj +(@) -1 c za_u+£ 8_u) + Qj
ox \ OX X “ox o 2| \ox ox
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STRAIN: Shear Strain
Y a dx
! 0 o Q ox B
0 @dx
! OX
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Shear strain

« With a bit of trigonometry (see for
example, Allen and Haisler,
Introduction to Aerospace Structural
Analysis, p.60)

oV Ou ouov ouoaou
=t — 4 —

"= ox oy oxox oy oy
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For small displacements

The normal and shear strains are expressed as

E, = a—u E = @ — @ + a_u . . .
X OX y = 5‘y Vyy = ox (9y Engineering Strains
1(ov ou ,
Ew =<| —+— Tensor strains
Yoo2lox oy

Shear strain definitions are of two forms.
The above form is referred to as engineering strains.

The alternate form referred as tensorial strains have a factor of 1%
applied to engineering strains.

To apply coordinate transformations need the tensor form.
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Compatibility

» Deformation must be such that the pieces fit together without any
gaps or overlap.

* Why is this an issue?

* In 2-D we require only 2 displacements u, and v to describe
deformation, but have three strain quantltles ExsEy, @Nd v,,. This
implies only two of the three strain terms are mdependent

ou ov av ou
E =— gy - }/XV
* O oy o EY
0* 0% (ou) &% (ov 0%, 0,
(7 xy) Pl v Rl v > T2
oxoy oy \ox,) ox“\oy oy OX
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Stress-Strain Relations

* The stress-strain relations in solid mechanics is often referred to as
the Hooke’s Law

* Hooke’s law of proportionality stated as “extension is proportional to
the force” refers to the axial extension of a bar under an axial force

* This can be extended to 3-D stress/strain state referred to as the
Generalized Hooke’s Law relates the components of the 3-D stress
state to 3-D strains as follows.

o] [ty Cp Cs Cu Cy Cylf&
Oy Chi Cyp Gy Gy Cyi Cylléy
O7 | _ Cy Gy Cy3 Cy G5 Gy )&,
Ty Ci Ca Cgz Cy Cus Cus || 7y
Ty, Csi G5, GCsy3 Gy Cis Coe |7y,
Tn) [C1 Ce2 Ces Cos Cos Cos |V
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Generalized Hooke’s Law

* In the most general form the generalized Hooke’s Law
requires 36 constants to relate the terms of a 3-D Stress
state to its corresponding 3-D strain state for an elastic
material

* However, from symmetry of the strain energy terms, it
can be shown that Cj = Cj;

- This reduces the number of unknown constants to 21

( _ 1 r

Oy Ci Cp G Gy G Cp | &
oy Co Cp Gz Gy Cs Gy [| €y
) op [ _ Ciz Cp Gy Gy Cg Cye ) &; [
Tyy Cu Cp Gy Cu Cps Cup || 7y
Ty Cs Cp Csi Cps Gy G ||7y,
Tox) LG Cs Css Cas Coss Cos | (V)
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Hooke’s Law: Orthotropy and Isotropy

+ If we assume the x, y and x coordinates provide the planes of
symmetry we can further reduce the number of constants to 9.

o, C, C, C3 0 0 0 |g

oyl [C2 Cp C 0 0 0]g This corresponds
o, C; Cy C 0 0 0 |g to an fully

Ty o 0 0 ¢, 0O O 7y orthotropic

7 0 0 0 0 c 0y, material

) L0 0 0 0 0 cgllrx

Isotropy assumes that there is no directional variation on property.
Using this argument we can obtain

€y =Cyp =Cy
Cp, =Cj3 =Cy

Cas = Co5 = Cgg
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Hooke's law : Engineering Elastic Constants

The two engineering elastic constants used to relate stress
to strain for isotropic materials are the Elastic modulus, E
and the Poisson’s ration v.

For uniaxial loading, strain in the loading direction
obtained from Hooke’s law, states

X

Transverse to loading direction &, =¢, =-ve, = _VE

The relation between the shear stress component and its
corresponding shear-strain component is called the modulus of
rigidity or modulus of elasticity in shear and is denoted by the letter
G.

E

21+v)

e
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Generalized Hooke’s Law from Isotropic
Materials

The generalized Hooke’s law expressed in engineering elastic
constants

&y E[J —V(O' +o )] 7Xy=%=2(1gv)rxy
gy:é[ —v(o, +0,) ] 7yzz%:2(lgv)ryz
&, :%[Gz _V(O-x +O—y)] Y :% = 2(1;V)sz

R.T. Haftka EML5526 Finite Element Analysis University of Florida




27

Plane state of stress

There are a large class of problems for which the stresses
normal to the plane of the solid are absent or negligibly
small. If we assume that the stresses are restricted to the x-
y plane, then

=T = 0

0, =7y yz

z

This simplifies the stress strain relationship to the form as
shown below.

£ 1 [0' Vo ] E [ + ] Ty
=— - o, =——|¢ ve = —
X E X y X 1— V2 X y 7/xy G
1 E =
&y = _[O-y _Vo-x] oy = 2 [gy +V€x] Ty =G
E 1-v
&, = —(O‘x + O'y)
R.T. Haftka EML5526 Finite Element Analysis University of Florida
28

Strains that deform the body normal to the reference plane
are absent or are negligible

& =Vw=7y=0

This indicates that the stress normal to the plane of
strain is dependent on the stresses in the plane of the

strain 8Z=é[O'Z—V(O'X+O'y)]=OZ>O'ZZV(O'X"'O-y)

Substituting o, into other strain expressions we obtain

1+v ___E&E 1— T,
T ?kl_v)o-x _Vo-y] 7 L+v)i-2v) [( Ve + ng] Vxy = Gy
1+v E
gy E [(1 V)O-Y VGX] Gy (1+ V)(l— 2V) [( V)gy VSX] Txy _ G}/Xy
o, = ' [SX +& ]
L+v)1-2v) Y
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Conversion from plane strain to plane stress
and vice-versa

The solution obtained for the stress and strains in plane
stress and plane strain states are qualitatively similar.

To use a plane strain solution for a plane stress or vice
versa, we simply interchange the appropriate constants as

shown below

For plane stress the expressions in E, v
For plane stress the expressions in E*, v*

or E'=E

1+2v

14
L) and v=—

1+v
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Solution of 3D Elasticity Problems

3  Equilibrium equations

6  Strain-displacement
equations

6 Hooke’s law equations

15  0,,0,,0,,T4,Ty,, Ty

Sx,gyygz,7xy17yz’7/zx
u,v,w

> |6

|

3 Equilibrium equations
3 Compatibility
Hooke’s law equations

12 O-X’Gy’o-z’rxy’ryzirzx
8x78y7gz'7xy17yz'72x

}
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3  Equilibrium equations
6  Strain displacement
equations

9 0, 0,,0,,T
u,v,w

Xy ? Tyz 1T

3 Equilibrium equations in displacements

3 u,v,w

3  Equilibrium equations
3 Compatibility equations
expressed in stress

6 Oy, 0,0, Ty, Ty Ty

Xy yz?

R.T. Haftka

EML5526 Finite Element Analysis

University of Florida




31

Principle of superposition

 Effects of several forces acting together
are equal to the combined effect of the
forces acting separately. This is valid only
when

— The stresses and displacements are directly
proportional to the load

— The geometry and loading of the deformed
object does not differ significantly from the
undeformed configuration
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Energy Principles

Strain Energy Density:

When an elastic body is under the action of external forces, the body
deforms and work is done by these forces. The work done by the
forces is stored internally by the body and is called the strain energy.

Let us consider the unit element of volume dxdydz with only the
normal stress o, acting on it. The work done, or work stored in the

element is
ZA c C O,=0y 8 Oy =0y
o o.d u+—udxjd dz— [o.d(u)dydz
Cana j( oo Joatomy
O-X B B o,=0
A AL, = I axa—udxdydz
o,=0 X

y
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Strain Energy

Using Hooke’s law 5_U _e = ﬂ
ox  E
Oy=0y 2
Work done = [ = do,dxdydz = = 7 dxdydz
o E 2 E

For shear stresses, it can be similarly shown that the work done is
17°
——dxdydz
2G

The strain energy stored in an element dxdydz under a
general three dimensional stress system is calculated as

1
dU = 5 (axgx +0,8,+0,6, T,V t TV + 1oV )dxdydz

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Strain Energy Density

The strain energy density refers to strain energy per unit volume

1
dUO :E(ngx to,&, +0,& +T,Vy1tT,7y +sz7/zx)

Using principal stresses and strains, this can be expressed as
1

du, =%(|f-2(1+v)|2)

l,=0,+0,+0,

|, =0,0,+0,0,+0,0;
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3.2 Interpolation Functions

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Introduction to Interpolation Functions

* Interpolation is to devise a continuous
function that satisfies prescribed
conditions at a finite number of points.

* In FEM, the points are the nodes of the
elements & the prescribed conditions are
the nodal values of the field variable

« Polynomials are the usual choice for FEM
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Polynomial interpolation

The polynomial function ¢(x) is used to interpolate a field variable
based on its values at n-points

p)=Yax o  ¢=|X|{a)

i=0

[X]=[1 x x* .. x"]and fal=|a, a a, .. a |

The number of terms in the polynomial is chosen to match the
number of given quantities at the nodes.

With one quantity per node, we calculate a;'s using the n-equations
resulting from the expressions for ¢; at each of the n-known points

o )=Yax G-l [l
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Shape Functions or Basis Functions

Traditional interpolation takes the following steps
1. Choose a interpolation function
2. Evaluate interpolation function at known points
3. Solve equations to determine unknown constants

¢=|Xlaj — ig.;=[Afa} — fa}=[A]"{p.} — ¢=[X]a)

In FEM we are more interested in writing ¢ in terms of the nodal values

p=|Xla} — ig,}=[Alla} — {a}=[A] g} —
— = X|[A] {4} — o=|NJ{a} — N]=| X][A]"
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Degree of Continuity

* In FEM field quantities ¢ are interpolated in piecewise
fashion over each element

« This implies that ¢ is continuous and smooth within the
element

* However, ¢ may not be smooth between elements

« An interpolation function with C™ continuity provides a
continuous variation of the function and up to the m-
derivatives at the nodes

— For example in a 1-D interpolation of f(x) C0 continuity indicates
that f is continuous at the nodes and f,, is not continuous.

— If the displacement u(x) is c? then displacements are continuous
between elements, but the strains are not (bar elements)

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Degree of Continuity

Function ¢, is C° continuous while ¢, is C' continuous

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Example: Deriving a 1D linear interpolation
shape function

« From ¢=|N|{¢} each interpolation
function is zero at all the dofs except one.

e This can allow us to derive interpolation
functions one at a time.

 For linear interpolation between x, and x,,
N,(x,)=1, N,(x,)=0, N,=a,x+a,. So
obviously, N,=7-(x-x,)/L, L=x,-X,.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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CO Interpolation -1D Element

1“ N, = (%, = X)X, —X)

X, X, X3 (%, =% )% = %,)
X, — X
S LI s
:/1 X — X X4 Xy X3 i (Xl =X )(X3 - Xz)
NZ ) X, =%
/ 1N — (Xl—X)(Xz—X)
o 2 ¢= LNJ{¢1} X, X, Xq P =% )6 = %)
—_ 4,
)
1oe——2 ¢, 2 _
. ¢1 ¢ - LNJ{@}
— I 4
P ;
‘ 1 2 3
Ty
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Lagrange Interpolation Formula

« Shape functions shown for the C°
interpolations are special forms of the
Lagrangian interpolation functions

f(x) :ZNk f
k=1

(% = X) (%, = X)...[ % = X]... (%, = X)
(%, = X ) (% =Xy ) e[ X = X ] (X, = %)

N, =

In above expressions for N, the terms in square brackets are omitted
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Properties of C Interpolation Shape
Functions

« All shape functions N,, along with function
¢ are polynomials of the same degree

» For any shape function N;, N;= 1 at node i
(x=x;) and zero at all other nodes j, (x; # x;)

« CY shape functions sum to one

SN, =1
k=1
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C' Interpolation

» Also called Hermitian interpolation
(Hermite polynomials)

» Use the ordinate and slope information at
the nodes to interpolate

Clinterpolation curve

C'interpolation curve

> X

45
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Hermitian interpolation used for beam
elements

k21 v=1_§_X22_+2_133__ U=X°T+-L—2
7y L L k22 321=1

k3;
©) (d)

v= iz - ﬁz‘f—:— ka3
L L ———3—— U= - -i + i
‘44*——— 1 A L L2

w: ko3 - '\Jku '\: kaa
—_—— 31 temmun—
k13 kig 2= E k3,

46

—htnq...._ ka1 Lot Ty
.~~----— ’ e ’k42
v = 1 kll
' k12
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2-D and 3-D Interpolation

The 2-D and 3-D shape functions follow the
same procedure as for 1-D

We now have to start with shape functions that
have two or more independent terms.

For example a linear interpolation in 2-D from 3
nodes will require an interpolation function

foy)=[1 x ylla a a]

If there are two or more components (e.g., u, v
and w displacements) then the same
interpolation function is used for all components

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Principle of Virtual Work

The principle of virtual work states that at
equilibrium the strain energy change due to a
small virtual displacement is equal to the work
done by the forces in moving through the virtual
displacement.

A virtual displacement is a small imaginary
change in configuration that is also a admissible
displacement

An admissible displacement satisfies kinematic
boundary conditions

Note: Neither loads nor stresses are altered by
the virtual displacement.
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Principle of Virtual Work

» The principle of virtual work can be written as follows
[toe}" {ojdv = [{au} {Fldv + [{ou}" {@}ds
» The same can be obtained by the Principle of Stationary
Potential Energy
» The total potential energy of a system IT is given by
Al=0U —W =06U +0V =0

— U is strain energy, W is work done, or V is potential of the forces

il U W

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Element and load derivation

Interpolation  {u}=[N]{d} (ul=|u v w]
Strain displacement {¢}=[B]{d} [B]=[d][N]
{
[E

Virtual {3u} ={3d}’ [N] and {3¢} = {84} [B]
Jie}

Constitutive law  {o} =
Altogether
{3d) (I[B] [E][B]dV {a j[B] [E]{e,}dV + [[B]

[ [N] {F}dv —[ [N] {g}ds )=0
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Stiffness matrix and load vector

Equations of equilibrium
[k]{d} ={r.}

Element stiffness matrix

[k]=[[B] [E][B]dV
Element load vector

(t} =[5 [Elajv—{[B {aov+] [N B+ [N {5 )

Loads due to initial strain, initial stress,
body forces and surface tractions

51
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Plane Problems: Constitutive Equations

* Constitutive equations for a linearly elastic and
isotropic material in plane stress (i.e., c,=1,,=1,,=0):

€, 1/E -v/E 0 o, €0
& ¢ = [— vJE 1/E 0 g, + {&0
Yis 0 0 1G| |z, Yiso

Initial thermal strains Exo =€y0 =0AT , yxyo=0
* [n matrix form,
e=E'o+eg o=Ee+ o, in which o, =-Eg,

where

B 1 v 0
E = - v 1 0 for plane stress
-y
0 0 (1-v)/2

52
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Plane Problems: Strain-Displacement
Relations

_ou _9 )
8"_&' E’_ay ""'@’Lac

or, in alternative matrix formats,

53

£ dlox 0
u
g+ = | 0 Jly {v} or £=du
i 3|y dox
R.T. Haftka EML5526 Finite Element Analysis University of Florida

Plane Problems: Displacement
Field Interpolated

g

U,

ul [N, O N, O ~Nd
U,

* From the previous two equations,
e=0dNd or e=Bd where B =N

where B is the strain-displacement matrix.

54
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Constant Strain Triangle (CST)
u3 u= P, + Box+ Bsy
Y v =P+ Bsx + oy

x, u

» The node numbers sequence must go counter
clockwise

* Linear displacement field so strains are constant!

Ex=ﬁl £y=p6 y13'=33+ﬁ5

R.T. Haftka EML5526 Finite Element Analysis University of Florida

CST ELEMENT

Constant Strain Triangular Element

Decompose two-dimensional domain by a set of triangles.
Each triangular element is composed by three corner nodes.

Each element shares its edge and two corner nodes with an adjacent
element

Counter-clockwise or clockwise node numbering
Each node has two DOFs: u and v

displacements interpolation using the shape functions and nodal
displacements.

Displacement is linear because three nodal data are available.
Stress & strain are constant.

y Vs,




CST ELEMENT cont.

Displacement Interpolation

— Since two-coordinates are perpendicular, u(x,y) and v(x,y) are
separated.

— u(x,y) needs to be interpolated in terms of u,, u,, and us,,
and v(x,y) in terms of v,, v,, and v;.

— interpolation function must be a three term polynomial in x and y.

— Since we must have rigid body displacements and constant strain
terms in the interpolation function, the displacement interpolation must
be of the form

{U(X,Y) = o+ apX + agy
V(X,y) = B1 + BoX + B3y

— The goal is how to calculate unknown coefficients a;and B8, i =1, 2, 3,
in terms of nodal displacements.

u(x,y) = Ny(x,y)us + Na(x, ¥ )uy + N(x,y)us

CST ELEMENT cont.

Displacement Interpolation

— x-displacement: Evaluate displacement at each node
u(Xy,y1) = Uy = oy + apXy + azyy
U(X2,Y2) = Uy = aq + apXy + a3y
U(X3,y3) = Uz = aq + axX3 + azys

— In matrix notation

Ui T X1 yr||o
Uyr=11 X2 Yolix
us 1 X3 y3|los

— Is the coefficient matrix singular?




CST ELEMENT cont.

« Displacement Interpolation

el T X1y - U 1 i Hh K|y

=1 X2 ¥ U2 (=52 by by b u;

Qg3 1T X3 ¥3 us C1 Co C3|lUs
— where

fi = Xo¥3 — X3¥2, by=Y2—V3, C1=X3—Xp
f = X3¥1— X1¥3, by =Y3—Y1, Cp = X1— X3
f3 = X4¥2 — Xo¥1, by =yi1—Y2, C3 =Xy — X

— Area:
1 T X1y
Azidet1 X2 y2
1 X3 Y3
59
CST ELEMENT cont.
1 —(fuy + Huy + Hus)
a1 = oA V1 2U> 3U3
1
oy = 2A(b1U1+b2U2 + bsus)
1
a3 = 2A(C1U1+02U2 + C3Us3)

 Insert to the interpolation equation

u(x,y) = aq + asX + azy
1

— T

— ﬂ(ﬂ + b1X + ¢y iy N;(x.y)

/_\

f2 + b2X + Coy Ju- NQ(X,y)

2A(

1
Har (- byx +cayls

2A Ny(x.y)

fiuy + fouy + f3us) + (biuy + bots + bauz )X + (Ciuy + Colly + C3U3 )Y |




CST ELEMENT cont.

Displacement Interpolation
— A similar procedure can be applied for y-displacement v(x, y).

1
u(x.y) =[Ny N Nalyuz Ni(x.y) =52 (fi + bix + cry)
- No(%y) = —(F, + b
V3 | |

Shape Function

— N,, N,, and Nj; are linear functions of x- and y-coordinates.

— Interpolated displacement changes linearly along the each coordinate
direction.

CST ELEMENT cont.

Displacement Interpolation

— Matrix Notation (U ]
V4

{U}E{u}:lM 0O N, 0O N3 O | u2

v 0O Ny O N, 0O N3j|v,

Us

j v
{uCy)y = [N(x,y)]{q}/

— [N]: 2x6 matrix, {q}: 6x%1 vector.

— For a given point (x,y) within element, calculate [N] and multiply it with
{q} to evaluate displacement at the point (x,y).




CST ELEMENT cont.

 Strain Interpolation
— differentiating the displacement in x- and y-directions.
— differentiating shape function [N] because {q} is constant.

ou 9L 0N, ~ b
Exx = W = 8_X ;N,'(X,y)u,' - ; 15)'% Up = P ﬂuj
v 0[S N, - S
g = — = — N; X\ Yy)Vi|= Vi = 24
w0y o Oy ; ey ;‘W I ;ZA |

U v g S b
7xy:@+a_x_;ﬂui+2ﬂvi

CST ELEMENT cont.

 Strain Interpolation

ou U
g)‘; (60 b 0 by 0 3
=1 5, [=24° @ 0 & O cs«vz»z[B]{q}
ou v ¢t by ¢y by c3 bs Us
@ 5‘ V3

— [B] matrix is a constant matrix and depends only on the coordinates of
the three nodes of the triangular element.

— the strains will be constant over a given element




Constant Strain Triangle (CST):
Stiffness Matrix
«Strain-displacement relation, e=Bd

full

Uy

& 13’23.0}’3103’|20u2

=— 0 xuf{y ¢

€ 2A 0 x5 0 x4 21 %
165 Xy Y X3 Yu Xa Y

Uy

LUJJ

Ais the area of the triangle and x;=X;- X;. (textbook has results for a
coordinate system with x aligned with side 1-2

* From the general formula k = BT EBtA
where t: element thickness (constant)
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CST ELEMENT cont.
« Strain Energy: yte) = ngf{g}T[C]{g}dA(e)

= 21y [ ©RalClsolBls.c dA)

1
= E{q(e)}T [k lexs {0’}

— Element Stiffness Matrix: |[k®)] = hA[B] [C][B]
— Different from the truss and beam elements, transformation matrix [T]
is not required in the two-dimensional element because [K] is
constructed in the global coordinates.
« The strain energy of the entire solid is simply the sum of the
element strain energies

assembly

NE 1 NE . 1 -
U=> U9 =2> VKK == U=5{Qs} KJKQs}
e=1 e=1




BEAM BENDING EXAMPLE

-F
2 4 6 8 10 ‘ im
1 3 S5 7 9
5m F
Maxv=0|.0018

o, IS constant
along the x-axis and
linear along y-axis

Exact Solution:

44

o,, = 60 MPa .
 Max deflection _ . |
Vmax - 00075 m 1.6 -1 0.6 0 0.6 1 x:ﬂ?
O-XX
¢
67
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Linear Strain Triangle (LST)

Ly &4

(a) (b) (c)

Fig. 3.3-1. (a) A linear strain triangle and its six nodal d.o.f. (b) Displacement mode associated
with nodal d.o.f. v,. (c) Displacement mode associated with nodal d.o.f. vs. (For visualization only,
imagine that displacement occurs normal to the plane of the element.) (b and c reprinted from [2.2]

by permission of John Wiley & Sons, Inc.)

* The element has six nodes and 12 dof.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Linear Strain Triangle (LST)

» The quadratic displacement field in terms of
generalized coordinates:

u= P, + Box + By + Bux® + Psxy + Boy’
U=ﬁ7+ﬁsx+ﬂ9y+ﬁlox2+ﬂuxy+ﬁlz)’2

* The linear strain field:
£ = P+ 2Px+ Bsy
&,= Po+ Pux + 22y
Yoo = (Bs + Be) + (Bs + 2B1o)x + (2Bs + Bun)y

R.T. Haftka EML5526 Finite Element Analysis University of Florida

Bilinear Quadrilateral (Q4): CQUAD4 in  »

NASTRAN
v
e—a—ste—a—> * Q4 element has four
:'M ol nodes and eight dof.
el % . KI « Can be quadrilateral;
! but for now rectangle.
=
b
3L 2[% y
1\01 021\
* Displacement field: u= P, + Box + By + Baxy

U-—'Bs‘*'ﬁﬁx'*'ﬂﬂ”"ﬁuxy
So, u and v are bilinear in x and y. Because of form,
sides are stiffer than diagonals-artificial anisotropy!

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Q4: The strain fields
« Strain field: £.=p+ By
gy=ﬁ7+ﬁ3x
Yoy = (B3 + Bo) + Pax + Poy

*Observation 1: g, # f(x) = Q4 cannot exactly model
the beam where g, «c X

y
P
A cantilever beam under
g transverse tip loading.
1\P
R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Q4: Behavior in Pure Bending of a Beam

* Observation 2: When B,# 0, g, varies linearly in y -
desirable characteristic for a beam in pure bending because
normal strain varies linearly along the depth coordinate. But
Yx,#0 is undesirable because there is no shear strain.

[ == = a/ \3
\ \
My /,r \ M, M ,’ y \ My
\ y | \
\ / x h
/ \ / A
/ \ / ¥
f“ l ‘f 1 2 \\
(a) (b)

* Fig. (a) is the correct deformation in pure bending while (b)
is the deformation of Q4 (sides remain straight).

* Physical interpretation: applied moment is resisted by a
spurious shear stress as well as flexural (normal) stresses.

R.T. Haftka EML5526 Finite Element Analysis University of Florida




Q4: Interpolation functions
« Easy to obtain interpolation functions

(u, )

U,

ul [N O N, O _Nd
v — 0 Nl 0 N2 1“2[‘ or u=

U,

where matrix N is 2x8 and the shape functions are

_(a-x)(b—y) N2=(a+x)(b—y)

73

N 4ab 4ab
-x)(b+
N, = (a+x)(b+Yy) N, = (a—x)(b+y)
4ab 4ab
R.T. Haftka EML5526 Finite Element Analysis University of Florida

Q4: The Shape (Interpolation) Functions

® N1=1, N2=N3=N4=O at nOde 1, X='a, y='b, SO U= N1 U1= U1
at that node.
« Similarly N=1 while all other Ns are zero at node i.

4

4 / 3
Shape function N, of the bilinear
— ——— quadrilateral.(For visualization

only, imagine that displacement

19 V 2 occurs normal to the xy plane.)
1

*See Eqn. 3.6-6 for strain-displacement matrix (e=0 Nd=Bd).

* All in all, Q4 converges properly with mesh refinement and
works better than CST in most problems.
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Coarse mesh results

* Q4 element is over-stiff in bending. For the following
problem, deflections and flexural stresses are smaller than
the exact values and the shear stresses are greatly in error:

I>|‘ Bilinear (Q4) elements 1 F

75

S LFE g, on bottom ‘\ \<FE Bact ™
g Exact k
\{/ i e e e e s “'Z—P""‘ﬂ:-“‘
N \I N

=
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BEAM BENDING PROBLEM cont.

 Sxx Plot Max v = 0.0051

£6 £ 1.6 -1 4.6 0 0.6 1 1.6 2 2.6
x 10"

« Stress is constant along the x-axis (pure bending)
« linear through the height of the beam

» Deflection is much higher than CST element. In fact, CST
element is too stiff. However, stress is inaccurate.




BEAM BENDING PROBLEM cont.

Caution:

— In numerical integration, we did not calculate stress at node points.
Instead, we calculate stress at integration points.

— Let’s calculate stress at the bottom surface for 4(0,1) 3(1,1)
element 1 in the beam bending problem.
— Nodal Coordinates:1(0,0), 2(1,0), 3(1,1), 4(0,1) + +
— Nodal Displacements:
u = [0, 0.0002022, -0.0002022, 0] + +
v = [0, 0.0002022, 0.0002022, 0] 1(0.0) 201,0)
— Shape functions and derivatives
N, =(x-D(y-1) ON,/ox=(y-1) ON, /oy =(x-1)
N, =-x(y-1) ON,/ox=-(y-1) ON, /oy =—-X
N, = xy ON,/ox=y ON, /0y =X
N, =—(Xx-1)y ON,/ox=-y ON, /oy =—(x-1)

BEAM BENDING PROBLEM cont.

At bottom surface, y = 0 4 3
ON,/ox=-1 N, /dy=x-1 + o+
ON,/ox=1 ON, /oy = —X + o+
ON,/ox=0 ON, /oy = X 1 5
ON,/ox=0 ON, /oy =—(x-1)

Strain <. o\ u = [0, 0.0002022, -0.0002022, O]|

E = Ha—X'U. =1x0.0002022 v = [0, 0.0002022, 0.0002022, 0]

4
- Z%v, =-0.0002022 x x +0.0002022x X = 0

1=1

€y

4
Vi = Z(aN' v, + oN, U, j = 0.0002022 — 0.0004044x
=\ X oy
1=1

Stress:
{c}=[C{e}={4.44, 1.33, 1.55}x10’




RECTANGULAR ELEMENT

y-normal stress and shear stress are supposed to be zero.

= ™

L} 4 2 1] 2 4 <] -8 L] -4 2 1] 2 4 <] -]

o,, Plot x 7, Plot x 10t
€, IS @ linear function of y alone ON,/ox=(y—-1) oON,/oy=(x-1)
gy, If @ linear function of x alone ON,/ox=—(y—1) &N, /dy=—x

2 2 -

Yxy IS @ linear function of x and y

4 ON
£, = Za—x’u, £,

1=1

ONg/ox =y ON, /oy =X

Vi

- = Oy

&N, N, /ox=—y N, /0y =—(x-1)

RECTANGULAR ELEMENT

Discussions

— Can'’t represent constant shear force problem because ¢, must be a
linear function of x.

— Even if ¢, can represent linear strain in y-direction, the rectangular
element can’t represent pure bending problem accurately.

— Spurious shear strain makes the element too stiff.

U=oy +a,X+a,y+a,Xy C | )Exact
V=L + X+ By + BXy { >

—_— - -

gxx :052 +a4y

. / \ ectangular
Eyy =5+ Bx C [ \\T element
z A
7xy:(a3+ﬂ2)+a4x+:84y a, #0




RECTANGULAR ELEMENT

* Two-Layer Model
— o, =3.48x107

— Voax = 0.0053

max

x 107

BEAM BENDING PROBLEM cont.

* Distorted Element
Max v = 0.004

b - -1.b -1 4.b u U.b 1 1.b 2 2.b

x 107

* As element is distorted, the solution is not accurate any more.




BEAM BENDING PROBLEM cont.

* Constant Shear Force Problem
Max v = 0.0035

£ 1.6 -1 4.6 1] 0.e 1 1.8 2
x1I:lr

« Sxx is supposed to change linearly along x-axis. But, the
element is unable to represent linear change of stress along
x-axis. Why?

« Exact solution: v =0.005 m and ¢, = 6e7 Pa.

BEAM BENDING PROBLEM cont.

» Higher-Order Element? s I 3
— 8-Node Rectangular Element o 6
u(x,y) =a, +a,x+a,y+a,x* +a,xy
+a Y’ +a X’y +a,xy’ 1 5 2
— Strain
ou(Xx,
% =a, +2a,X+a,y+2axy+a,y’
X

— Can this element accurately represent pure bending and constant
shear force problem?




BEAM BENDING PROBLEM cont.

» 8-Node Rectangular Elements

| N\
/\ \
= 0.6¢ /'/
D EERnit

» Tip Displacement = 0.0075 m, Exact!

BEAM BENDING PROBLEM cont.

* |f the stress at the bottom surface is calculated, it will be the
exact stress value.

—=

-4 k] 2 A i} 1 2 3 4 - 0.6 0 06 1 1.6 2
x10f x0?

Sxx Syy




Q6: Additional Bending Shape Functions

Q4: Artificial shear deformation under pure bending ~===
Additional shape functions to solve the issue
t t

N;i(s,t)u; +(1—s%)a; + (1—t?)a,

u

\
I
IN WMA
—

v=> Ni(sty, +(1-s?)a; + (1—t?)a,

i=1 | )
T

Bubble modes

Ny=1-¢ Ne=1-

Strain ¢,, can vary linear along x-dir.
Shear strain y,, can vanish for pure bending

Nodeless DOFs, a,, a,, a;, and a,, are condensed in the
element level (total 12 DOFs)
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Modeling Bending with the Q6 Element

Kdd Kda
Kad Kaa

d fd {a} = Kg;{fa - Kadd}
{a} a {fa } [Kdd - KdaK;rJKad]{d} = {fd - KdaK;;fa}

*Modeling the previous bending problem with Q6 elements
gives the following stresses:

¥ i S

éy Incompatible (Q6) elements F S~ - @, on bottom
-+- - = = ~
H ci S FE
B R
o el
1 .
FE and exact
yA £
s o LS T TS AR S R s T TR |
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Quadratic Quadrilateral (Q8)

Y . y

£ X K

—
L X8,
n

(@ (b) (c)

Fig. 371 A quadratic quadrilateral. (b,c) Shape functions N, and N . (For visualization only,
imagine that displacement occurs normal to the xy plane.)

*4 corner nodes and 4 side nodes and 16 nodal dof.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Quadratic Quadrilateral (Q8): Displacement
*The displacement field, which is quadratic in x and y:
u=)3[+[32x+[33y+[34:c2+Bsxy+ﬁt—,y2+ﬁ7xz)’+ﬁa’fy2
v =Po+ Biox + By + Biad® + Bixy + By + Pis®y + By’

» Two types of shape functions (¢=x/a, n=y/b):
Ny =31+ A-m-{(1-E) A-m)- L1+ A -1?)

Ng=1(1+8)(1-n?)

*The edges x=t+a deform into a parabola (i.e.,
quadratic displacement in y) (same for y=1b)

R.T. Haftka EML5526 Finite Element Analysis University of Florida




Quadratic Quadrilateral (Q8): Strains

« The strain field:

&= By + 2Bx + Bsy + 2Bpxy + Py
& =P+ Biax + 2B,y + B3+ 2B,6xy

Yo = (Bs + Bio) + (Bs + 2B)x + (2B, + Bi2)y
+ Box® + 2(Bg + Byshxy + By’

« Strains have linear and quadratic terms. Hence, Q8 can
represent many strain states exactly.

For example, states of constant strain, bending strain, etc.

91

R.T. Haftka EML5526 Finite Element Analysis University of Florida

3.11 Nodal loads

« Consistent (work-equivalent) loads

W =d"r, = [u"FdV + [u"®dS

 Mechanical loads: concentrated
loads, surface traction, body forces.

92
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Example: Beam under uniform loads

« Normal forces are

»v .
obvious. For
L
g i moments
 EEEEEEREER’
M, 6, =
' L L 2 3
e ' a2 Iquﬁldx = J‘q(x—zier—z)dX
qL® gL’ ? ’ L L
i T 1 2 1 L2
= L2 —_— 4t — :q_
] (2 3 4) 12
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Work equivalent (consistent)
normal loads
*Normal surface traction on a side of a plane
element whose sides remain straight (q is
force/length):

. | o
R ~ ~d
(a) (b) (c)
(a) Linearly varying distributed load on a linear-displacement edge.
(b,c) Work-equivalent nodal loads.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Loads on Quadratic sides

* P q=q(x)
Bl AR " '7t\3
F, j NWNbjg =z 216 2)ier 4o R

-0
F, s 2 4 |g it : i
5
Fy tF? A
o @
R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Distributed Shear Traction
» Shear traction on a side of a plane element whose
sides remain straight (q is force/length):

Uniform g gL 2gL qL 2qL qL

Ty ST DR S T (I SR 6 3 3 3 6
E‘E [ | |
| SRid PP

L

o df
(a) (b)
Figure 3.11-2. Allocation of uniformly distributed side-tangent load to

uniformly spaced nodes.

*In (b), a Q4 element and two LSTs share the top
midnode so that the nodal loads from Q4 and the right

LST are combined.

EML5526 Finite Element Analysis University of Florida
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Uniform Body Force

» Work-equivalent nodal forces corresponding to weight
as a body force:

w|=x

W Lud
4

wls
o
wl=s

Q4, Q6 Q8

kS
wls
wls
~ol=
w|s
w|=

W

12

wlE
INES

(a) (b) (c) (d)

Work-equivalent nodal forces associated with element weight W, for triangular and
rectangular quadrilateral elements.

* LST has no vertex loads and vertex loads of Q8 are upwards!
« The resultant in all cases is W, the weight of the element.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Connecting beam and plane elements
* Since the previous plane elements have translational dof only,

no moment can be applied to their nodes.

» The connection (a) of a beam and plane elements cannot
transmit a moment and the beam can freely rotate. (Singular K!)

o T
C B A
/r < o A ] 3 [) [ $ [}
K Beam Beam
(a) (b)

------ Connecting a 2D beam element to plane elements. (a) No moment is trans-
ferred. (b) Moment is transferred.

*In (b) the beam is extended. Rotational dof at A, B and C are
associated with the beam elements only. A plane element with
drilling dof would also work but is not recommended.

R.T. Haftka EML5526 Finite Element Analysis University of Florida
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Elements with Drilling DOF
* Drilling dof: rotational dof about axis normal to the plane.
» A CST with these added to each node has 9 dof.

* This dof allows twisting and bending rotations of shells
under some loads to be represented. See Section 3.10

The d.o.f. in a triangular element with drilling d.o.f.

R.T. Haftka EML5526 Finite Element Analysis University of Florida

Stress calculation

« Combining Hooke’s law with strain-displacement equation

o, £ 1 v 0 ol
6=E(Bd-¢g,) &g 10y =17V 1 0 Bd—<aT
Ty 0 0 1-v)/2 0

» Stresses are most accurate inside elements

Figure 3.12-1. Stress appears in element 2 but not in
element 1. The differential element (shaded) spans the
interelement boundary.

H,q
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Improving stresses at nodes and
boundaries

« One common technique is averaging, but

% — VN

Thickness Modulus
discontinuity discontinuity

B
(@) () ()

Figure 3.12-2. Some situations in which stresses should not be averaged at a node. (a,b)
Plane elements seen in cross section, with Cartesian coordinates xyz. (¢) Plane elements
seen in plan view, with interelement boundary AB.

» There are interpolation and extrapolation techniques that
we will study later
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Examples of poor meshing

» Do not create unnecessary discontinuities!

G
C E
O (S o S
A ® 9
LST Q6
B o ' @ ¢
D F .
Figure 3.12-3, Examples of how nof
Many poor connections! ~~ H to connect plane elements,
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Example of discontinuities in un-
averaged stresses

T TETTEEFRT T
T B T
! ; ‘ / LST elements
| </

Contours of o,

1R | ¢
' ' T 1.344
l Y i N

: . q 2.771/T\2.057

. .. 2.414

(a) (b)

Figure 3.14-1. (a) FE domain,
mesh, and boundary conditions
for modeling a hole in an
infinite plate. (b) Unaveraged
contours of o, from a portion
of the mesh in part (a).
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