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Chapter 3: BASIC ELEMENTS
Section 3 1: Preliminaries (review ofSection 3.1: Preliminaries (review of 

solid mechanics)
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OutlineOutline

• Most structural analysis FE codes are displacement y p
based

• In this chapter we discuss interpolation methods and 
l t b d di l t i t l tielements based on displacement interpolations

• Stiffness matrix formulations will be presented

• Shortcomings and restrictions of the elements due to the• Shortcomings and restrictions of the elements due to the 
interpolations used will be discussed

• We will review the governing equations (for solids elastic 
bodies) to help us understand the solution methods and 
accuracy
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Review of Solid MechanicsReview of Solid Mechanics

• The analysis of any solid elastic body has to y y y
define and develop the following quantities 
and/or relations

St– Stress
– Strain (strain-displacement relations)
– Constitutive Properties (Stress-Strain relations)Constitutive Properties (Stress Strain relations)
– Compatibility
– Equilibrium Equations
– Boundary Conditions
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StressStress

• Stresses are distributed internal forcesStresses are distributed internal forces 
that result from externally applied forces

B1 FF1
F2

B1 F1

ΔF

F3

F4
F5

F5

Note: There are two types of forces: Surface forces that act on an area of
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Note: There are two types of forces: Surface forces that act on an area of 
external surface and body force that acts on the volume of the body
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Stress/Force acting on a surfaceStress/Force acting on a surface

• A force acting on a surface can be resolved intoA force acting on a surface can be resolved into 
two components: One tangential to the surface 
(shear force) and the other normal to the surface

Force is a 1st order tensor (vector)
Stress is a 2nd order tensor.Sτ

Why is it a tensor?

Needs two vectors to specify it Onet̂ Needs two vectors to specify it. One 
is the vector of the internal force and 
the other is the outward normal of the 
defining area

n̂
t

σ
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Representation of stress at a pointRepresentation of stress at a point

• In 3-D space the stress at a point is denoted byIn 3 D space the stress at a point is denoted by 
the stresses acting on three mutually 
perpendicular planes at that point

• Often we use a simple infinitesimal rectangular 
solid and indicate the stresses on the faces of 
that solid

• Stress terms have two indices.
– The first indicating the plane on which it acts

– The second indicating the direction in which it acts

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka



7

Stress at a point

• State of stress at a point in 3-D Cartesian Coordinates

σ

y

σyy

τyx xx xy zxσ τ τ⎡ ⎤
⎢ ⎥

Matrix representation of state of stress

x

y

z

τyz

σxx

τxy

τ

τzy

τ

xx xy zx

xy yy yz

xz yz zz

τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦τxz

σzz

τzx
⎣ ⎦

Sign Conventions:
Normal stresses are positive when acting outward from a surface 
(tension)

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

Shear stresses are positive when they act in the +ve direction on a 
positive face and –ve direction on a –ve face
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Stress on an arbitrary plane (2-D)

Y
Let cos(θ) = l and sin(θ)= m

We often need to enforce stress boundary conditions on surfaces 
that are not always rectangular

C N

τ α

Let cos(θ) = l and sin(θ)= m

If length of side BC = A, then 
length of sides OC=Al and OB= 

X
xσ

xyτ αlength of sides OC Al and OB  
Am

If we write the force equilibrium 

O B
xyτ

π/2 −α
q

in X and Y-directions, we have

)()( AmAlA τσ +=X
yσ

y)()( AmAlA xyx τσ +=X

ml xyx τσ +=X
Which simplifies to
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Stress on an arbitrary plane (3-D)Stress on an arbitrary plane (3 D)

The forces (per unit area) in X, Y and Z-directions on 
 bit  l  d fi d b  it  l t  N i  

x xy zxX l m nσ τ τ= + +

an arbitrary plane defined by its normal vector N is 
given by

xy y yz

xz yz z

Y l m n

Z l m n

τ σ τ

τ τ σ

= + +

= + +

y

NB

Where l, m and n are the direction 
cosines of the normal vector of the 
arbitrary planexA

O

NznNymNxl cos  ,cos  ,cos ===

arbitrary planex

z

A
C
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Stress transformations in 3DStress transformations in 3D

Stress transformation in 3D space can be defined using the 
directions cosines as followsdirections cosines as follows.

2 2 2
' 1 1 1 1 1 1 1 1 1

2 2 2
' 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

x x y z xy yz zx

y x y z xz yz zx

l m n m l m n n l

l m n m l m n n l

σ σ σ σ τ τ τ

σ σ σ σ τ τ τ

= + + + + +

= + + + + +2 2 2 2 2 2 2 2 2

2 2 2
' 3 3 3 3 3 3 3 3 3

' ' 1 2 1 2 1 2 1 2 1 2

2 2 2

( )

y x y z xz yz zx

z x y z xy yz zx

x y x y z xy

l m n m l m n n l

l l m m n n l m m l

σ σ σ σ τ τ τ

τ σ σ σ τ

= + + + + +

= + + + −1 2 1 2 1 2 1 2 1 2

               

x y x y z xy

1 2 1 2 1 2 1 2

' ' 2 3 2 3 2 3 2 3 2 3

                            ( ) ( )

( )

yz zx

y z x y z xy

m n n m n l l n

l l m m n n l m m l

τ τ

τ σ σ σ τ

+ − + −

= + + + −

2 3 2 3 2 3 2 3

' ' 3 1 3 1 3 1

                                          ( ) ( )

(

y y y

yz zx

x z x y z

m n n m n l l n

l l m m n n

τ τ

τ σ σ σ

+ − + −

= + + + 3 1 3 1) xyl m m l τ−
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Direction cosines in 3DDirection cosines in 3D

The direction cosines l.m and n between the new coordinate 
axes x’, y’ and z’ and the original coordinate system x, y and z

x y z

axes x , y  and z  and the original coordinate system x, y and z
are defined as follows

Since the transformation 
is orthogonal, the x y z

x’ l1 m1 n1

is orthogonal, the 
direction cosines must 
satisfy the following 
properties

y' l2 m2 n2

z’ l3 m2 n3
1

1
2
3

2
2

2
1

2
1

2
1

2
1

=++

=++

lll

nml

Where  l ’ ’

0

0

332211

212121

=++
=++

mlmlml

nnmmll
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Where, l1 =cos xx’, m2= cos yy’
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Equilibrium Equations (2-D)Equilibrium Equations (2 D)

σThe 2-D stresses are 
shown on a volume given yσ

yxyx dττ +
shown on a volume given 
of length dx and dy in X-
and Y-directions and unit 
thickness in the Z-

xx dσσ +xyτ
xσ

dy
FX

thickness in the Z
direction 

τ

x

dx FY

Summation of forces in 
yxτSummation of forces in 

X-direction

( ) ( ) 0=+−++−+ XFdxdxddydyd xyxyxyxxx τττσσσ
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Equilibrium of forces in X-directionEquilibrium of forces in X direction

( ) ( ) 0=++++ dxdyFdxdxddydyd τττσσσ( ) ( ) 0=+−++−+ dxdyFdxdxddydyd xyxyxyxxx Xτττσσσ

( ) ( ) 0d dFdddddd
1 1 2 2

dxd x∂
=

σσ

( ) ( ) 0=+−++−+ dxdyFdxdxddydyd Xxyxyxyxxx τττσσσ

ddx
x

d x ∂
=σ

dyd xy
xy

∂
=

τ
τ

0=++ dxdyFdxdy
dy

d
dxdy

dx

d
X

xyx
τσ

y
yxy ∂

0=⎟⎟
⎞

⎜⎜
⎛

+
∂

+
∂

dxdyFX
xyx

τσ
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⎠

⎜⎜
⎝

+
∂

+
∂

dxdyF
yx X
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2-D Equilibrium Equations2 D Equilibrium Equations

The force equilibrium provide the relations shown below 
referred to as differential equation of equilibrium

0=+
∂

∂
+

∂
∂

X
yx
xyx

τσ
referred to as differential equation of equilibrium

y

0=+
∂

∂
+

∂

∂
Y

yx
yxy στ

∂∂ yx

Establishing moment equilibrium by the same method will 
provide the condition for symmetry of the stress tensorp y y

yxxy ττ =
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StrainStrain

• Why do we need the strain measures? WillWhy do we need the strain measures? Will 
displacement not suffice?

• Strain better quantifies the deformation of the q
body and eliminates rigid body motion/ rotation

• Strain in very general terms is a measure of y g
relative deformation
– Relative to what?

• Undeformed body : Lagrangian strain

• Deformed body:     Eulerian strain

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Strain-Displacement RelationsStrain Displacement Relations
For uniaxial (1-D) case: y

P’

y

P’
l

P Qdx
dy

P’
Q’

P QdxP Qdx
dy

P’
Q’Δl

l

lΔ
=ε

Q’

xx

P, P’ Q du

P’

u

Q
dv

P

u

u =ui + vj + wk

P P(x y z)

P’=P’(x+u,y+v,z+w)

Q’
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Strain 2-D : Normal strainStrain 2 D : Normal strain

P  P’ ∂
yy

P, P’ Q du

dv

dx
x

u
du

∂
∂

=

∂

P Qdx
dy

P’
Q’

P QdxP Qdx
dy

P’
Q’

dv

Q’

dx
x

v
dv

∂
∂

=

dx

dxxd
x

−′
=ε

xx

Q’dx

dxdx
x
v

dx
x
u

dx 2
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STRAIN: Shear StrainSTRAIN: Shear Strain
y

O dx’

O Q Bdx
x

u

∂
∂

v∂

dx

P

Q
dx

dy
O

P

Q’
O

dy’

dx

Q’

dx
x

v

∂
∂

dy

1θ

x

P

2θ
21 θθγ +=

P

P’A
dy

u∂

dy
y

v

∂
∂

21 θθγ +

dy
y∂
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Shear strainShear strain

• With a bit of trigonometry (see for 
example, Allen and Haisler, 
Introduction to Aerospace Structural 
Analysis, p.60)

xy

v u u v u u

x y x x y y
γ ∂ ∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂y x y x x y y∂ ∂ ∂ ∂ ∂ ∂
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For small displacementsFor small displacements
The normal and shear strains are expressed as

x

u
x ∂

∂
=ε

y

v
y ∂

∂
=ε

y

u

x

v
xy ∂

∂
+

∂
∂

=γ Engineering Strains

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
y

u

x

v
xy 2

1ε Tensor strains

• Shear strain definitions are of two forms. 
• The above form is referred to as engineering strains. 
• The alternate form referred as tensorial strains have a factor of ½ 

applied to engineering strains. 
• To apply coordinate transformations need the tensor form.
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CompatibilityCompatibility

• Deformation must be such that the pieces fit together without any 
gaps or overlapgaps or overlap.

• Why is this an issue?

• In 2-D we require only 2 displacements u, and v to describe 
deformation, but have three strain quantities εx,εy, and γxy. This 
implies only two of the three strain terms are independent.

x

u
x ∂

∂
=ε y

v

y
ε ∂

=
∂ y

u

x

v
xy ∂

∂
+

∂
∂

=γ
x∂ y y

( )
2

2

2

2

2

2

2
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Stress-Strain RelationsStress Strain Relations

• The stress-strain relations in solid mechanics is often referred to as 
the Hooke’s Lawthe Hooke s Law

• Hooke’s law of proportionality stated as  “extension is proportional to 
the force” refers to the axial extension of a bar under an axial force

• This can be extended to 3-D stress/strain state referred to as the 
G li d H k ’ L l t th t f th 3 D tGeneralized Hooke’s Law relates the components of the 3-D stress 
state to 3-D strains as follows.
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Generalized Hooke’s Law
• In the most general form the generalized Hooke’s Law

requires 36 constants to relate the terms of a 3-D Stress 
state to its corresponding 3-D strain state for an elasticstate to its corresponding 3 D strain state for an elastic 
material

• However, from symmetry of the strain energy terms, it 
can be shown that cij = cjiij ji

• This reduces the number of unknown constants to 21
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Hooke’s Law: Orthotropy and IsotropyHooke s Law: Orthotropy and Isotropy

• If we assume the x, y and x coordinates provide the planes of 
symmetry we can further reduce the number of constants to 9symmetry we can further reduce the number of constants to 9. 
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Isotropy assumes that there is no directional variation on property. 
Using this argument we can obtainUsing this argument we can obtain
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Hooke’s law : Engineering Elastic Constants
The two engineering elastic constants used to relate stress 
to strain for isotropic materials are the Elastic modulus, E
and the Poisson’s ration ν. 

For uniaxial loading, strain in the loading direction 
obtained from Hooke’s law, states

Transverse to loading direction

E
x

x

σε =

xσννεεε ===Transverse to loading direction

The relation between the shear stress component and its 
corresponding shear-strain component is called the modulus of

Exzy ννεεε −=−==

corresponding shear strain component is called the modulus of 
rigidity or modulus of elasticity in shear and is denoted by the letter 
G.

μτ
==G ( )=

E
G
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Generalized Hooke’s Law from Isotropic 
M t i lMaterials

The generalized Hooke’s law expressed in engineering elastic 
constants

( )[ ]zyxx E
σσνσε +−=

1 ( )
xy

xy
xy EG

τντ
γ +

==
12

( )[ ]

( )[ ]
zxyy E

σσνσε
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1
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yz
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yz EG

τντγ

τντ
γ

+
==

+
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12
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( )[ ]yxzz E
σσνσε + zxzx EG

τγ
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Plane state of stressPlane state of stress

There are a large class of problems for which the stresses 
l t  th  l  f th  lid  b t  li ibl  normal to the plane of the solid are absent or negligibly 

small. If we assume that the stresses are restricted to the x-
y plane, then

0=== yzxzz ττσ

This simplifies the stress strain relationship to the form as p p
shown below.

[ ]yxx E
νσσε −=
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E νεε
ν

σ +
−

=
21
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xy G

τ
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xyy E

σσνε

νσσε

+
−

=

−=
1 [ ]xyy

E νεε
ν

σ +
−

=
21

xyxy G
G
γτ =
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Plane strainPlane strain

Strains that deform the body normal to the reference plane 
are absent or are negligibleare absent or are negligible

0=== yzxzz γγε

This indicates that the stress normal to the plane of 

( )[ ] ( )yxzyxzz E
σσνσσσνσε +=⇒=+−= 0

1

p
strain is dependent on the stresses in the plane of the 
strain

Substituting σz into other strain expressions we obtain
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xyxy Gγτ =
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Conversion from plane strain to plane stress 
d iand vice-versa

The solution obtained for the stress and strains in plane 
stress and plane strain states are qualitatively similar.

To use a plane strain solution for a plane stress or vice p p
versa, we simply interchange the appropriate constants as 
shown below

For plane stress the expressions in E, ν
For plane stress the expressions in E*, ν∗

( ) ν
νν

ν
ν

ν
νν

ν +
=

+
+

=
−

=
−

=
1

   and     
1

21
      

1
   ,  

1 2
*

*

*

*

*

EEor
E

E
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Solution of 3D Elasticity ProblemsSolution of 3D Elasticity Problems
3 Equilibrium equations
6 Strain-displacement 

equations

3 Equilibrium equations
3 Compatibilityequations

6 Hooke’s law equations
-----
15

p y
6 Hooke’s law equations
-----
12 , , , , zxyzxyzyx

γγγεεε
τττσσσ ,

 , ,,, ,
 , , , , 

zxyzxyzyx

zxyzxyzyx

γγγεεε
τττσσσ ,

   wv,u,
 ,, ,, , zxyzxyzyx γγγεεε ,,,,, zxyzxyzyx γγγ

3 Equilibrium equations in displacements
-----

3 Equilibrium equations
6 Strain displacement 

equations 3 Equilibrium equations

3 wv,,u

-----
9

wvu
 , , , , zxyzxyzyx

,,
, τττσσσ

3 Equilibrium equations
3 Compatibility equations 

expressed in stress
-----
6 zxyzxyzyx , , ,, τττσσσ ,
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Principle of superpositionPrinciple of superposition

• Effects of several forces acting togetherEffects of several forces acting together 
are equal to the combined effect of the 
forces acting separately This is valid onlyforces acting separately. This is valid only 
when

The stresses and displacements are directly– The stresses and displacements are directly 
proportional to the load

– The geometry and loading of the deformedThe geometry and loading of the deformed 
object does not differ significantly from the 
undeformed configuration

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Energy PrinciplesEnergy Principles
• Strain Energy Density: 

When an elastic body is under the action of external forces, the body 
deforms and ork is done b these forces The ork done b thedeforms and work is done by these forces. The work done by the 
forces is stored internally by the body and is called the strain energy.

• Let us consider the unit element of volume dxdydz with only the 
normal stress acting on it The work done or work stored in thenormal stress σx acting on it. The work done, or work stored in the 
element is

C’ Cz

( )dydzuddydzdx
x

u
ud

xx

x

xx

x

xx −⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+ ∫∫
=

=

=

=

σσ

σ

σσ

σ

σσ
00

B’

D’

B

C
D

xσ xσ

dxdydz
x

uxx

x

x ∂
∂

= ∫
=

=

σσ

σ

σ
0

              A’
B

A

B

x

x
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Strain EnergyStrain Energy

Using Hooke’s law u σ∂

xx 21 σσσσ

∫
=

Using Hooke’s law

Ex

u x
x

σε ==
∂
∂

dxdydz
E

dxdydzd
E

x
x

x

x 0 2

1
doneWork 

σσσ

σ

== ∫
=

For shear stresses  it can be similarly shown that the work done is

h d l d

For shear stresses, it can be similarly shown that the work done is

dxdydz
G

2

2

1 τ

The strain energy stored in an element dxdydz under a 
general three dimensional stress system is calculated as

( )dxdydzdU γτγτγτεσεσεσ +++++=
1
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( )dxdydzdU zxzxyzyzxyxyzzyyxx γτγτγτεσεσεσ +++++=
2
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Strain Energy DensityStrain Energy Density

The strain energy density refers to strain energy per unit volumegy y gy p

( )zxzxyzyzxyxyzzyyxxdU γτγτγτεσεσεσ +++++=
2

1
0

Using principal stresses and strains, this can be expressed as

( )3322110 2

1 εσεσεσ ++=dU
2

( )2
2

10 )1(2
2

1 ν+−= II
E

dU

3132212

3211

σσσσσσ
σσσ

++=
++=

I

I
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3 2 Interpolation Functions3.2 Interpolation Functions
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Introduction to Interpolation FunctionsIntroduction to Interpolation Functions

• Interpolation is to devise a continuousInterpolation is to devise a continuous 
function that satisfies prescribed 
conditions at a finite number of pointsconditions at a finite number of points.

• In FEM, the points are the nodes of the 
elements & the prescribed conditions areelements & the prescribed conditions are 
the nodal values of the field variable

P l i l th l h i f FEM• Polynomials are the usual choice for FEM

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Polynomial interpolationPolynomial interpolation

The polynomial function φ(x) is used to interpolate a field variable 
based on its values at n points

{ }
0

( )       or         
n

Ti
i

i

x a xφ φ= = ⎢ ⎥⎣ ⎦∑ X a

based on its values at n-points

0i=

The number of terms in the polynomial is chosen to match the

⎣ ⎦ ⎣ ⎦ { } ⎣ ⎦n
n aaaaxxx ...    and   ...1 210

2 == aX

The number of terms in the polynomial is chosen to match the 
number of given quantities at the nodes.

With one quantity per node we calculate a ’s using the n equationsWith one quantity per node, we calculate ai s using the n-equations 
resulting from the expressions for φi at each of the n-known points

∑=
n

ixax )(φ { } [ ]{ }aA=φ { } [ ] { }φ1−= Aa
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∑
=

=
i

jij xax
0

)(φ { } [ ]{ }aA=eφ { } [ ] { }eφ= Aa
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Shape Functions or Basis FunctionsShape Functions or Basis Functions

Traditional interpolation takes the following steps
1. Choose a interpolation function
2. Evaluate interpolation function at known points
3. Solve equations to determine unknown constants

{ } [ ] { }eφ1−= Aa⎣ ⎦{ }aX=φ { } [ ]{ }aA=eφ ⎣ ⎦{ }aX=φ

In FEM we are more interested in writing φ in terms of the nodal values

{ } [ ] { }eφ1−= Aa⎣ ⎦{ }aX=φ { } [ ]{ }aA=eφ
1 1{ }⎢ ⎥
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[ ] { }1

eϕ φ−= ⎢ ⎥⎣ ⎦X A [ ] 1
A

−=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦N X{ }eϕ φ= ⎢ ⎥⎣ ⎦N
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Degree of Continuity

• In FEM field quantities φ are interpolated in piecewise 
fashion over each element

• This implies that φ is continuous and smooth within the 
element

• However, φ may not be smooth between elements

• An interpolation function with Cm continuity provides a 
continuous variation of the function and up to the m-continuous variation of the function and up to the m
derivatives at the nodes
– For example in a 1-D interpolation of f(x) C

0
continuity indicates 

that f is continuous at the nodes and f is not continuousthat f is continuous at the nodes and f,x is not continuous.

– If the displacement u(x) is C
0

then displacements are continuous 
between elements, but the strains are not (bar elements)
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Degree of ContinuityDegree of Continuity

Function φ1 is C0 continuous while φ2 is C1 continuous

φ(x) dx

dφ

dx

d 1φ

C0
C1

2φ1φ

C0 C1
dx

d 2φ

xx0 x1 x2
xx0 x1 x2
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Example: Deriving a 1D linear interpolation 
h f tishape function

• From each interpolation{ }Nφ φ= ⎢ ⎥⎣ ⎦From each interpolation 
function is zero at all the dofs except one.

• This can allow us to derive interpolation

{ }eNφ φ⎢ ⎥⎣ ⎦

• This can allow us to derive interpolation 
functions one at a time.

F li i t l ti b t d• For linear interpolation between x1 and x2, 
N1(x1)=1, N1(x2)=0, N1=a1x+a2. So 
b i l N 1 ( )/L Lobviously, N1=1-(x-x1)/L, L=x2-x1.
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C0 Interpolation -1D Element

x1
x2 x3

1 ( )( )
( )( )1312

32
1 xxxx

xxxx
N

−−
−−

=

1

12

2
1 xx

xx
N

−
−

=

x1 2 3

x x

1 ( )( )
( )( )

31
2 xxxx

xxxx
N

−−
−−

=

φφ

1

⎣ ⎦
⎫⎧ 1φ

12

1
2 xx

xx
N

−
−

=
x1

x2 x3

1

( )( )2321 xxxx

( )( )
( )( )

21
3

xxxx
N

−−
=

1 2

x1 x2

φ2φ1 ⎣ ⎦
⎭
⎬
⎫

⎩
⎨
⎧

=
2

1

φ
φ

φ N

2φ 3φ

x1
x2 x3

⎣ ⎦
⎪
⎬

⎫
⎪
⎨

⎧ 1

φ
φ

φ N

( )( )3231
3 xxxx −−

x

3

x1
x2 x3

1φ
2φ 3 ⎣ ⎦

⎪
⎭

⎬
⎪
⎩

⎨=

3

2

φ
φφ N
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Lagrange Interpolation FormulaLagrange Interpolation Formula

• Shape functions shown for the C0Shape functions shown for the C
interpolations are special forms of the 
Lagrangian interpolation functionsLagrangian interpolation functions

∑=
n

kk fNxf )(
=k 1

( )( ) [ ] ( )1 2 ... ...k nx x x x x x x x
N

− − − −( )( ) [ ] ( )
( )( ) [ ] ( )

1 2

1 2 ... ...
k n

k
k k k k n k

N
x x x x x x x x

=
− − − −

In above expressions for N the terms in square brackets are omitted
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In above expressions for Nk the terms in square brackets are omitted
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Properties of C0 Interpolation Shape 
F tiFunctions

• All shape functions Ni along with functionAll shape functions Ni, along with function 
φ are polynomials of the same degree

• For any shape function Ni, Ni = 1 at node i 
( ) d t ll th d j ( ≠ )(x=xi) and zero at all other nodes j, (xj ≠ xi)

• C0 shape functions sum to one
1

n

kN =∑
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C1 Interpolationp
• Also called Hermitian interpolation 

(Hermite polynomials)
• Use the ordinate and slope information at 

the nodes to interpolate

φ
φ

φ

C0 interpolation curve

φ,x2

φ,x1

C0 interpolation curve

φ1

φ2
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x
C1 interpolation curve

x

φ1

46

Hermitian interpolation used for beam 
l telements
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2-D and 3-D Interpolation2 D and 3 D Interpolation

• The 2-D and 3-D shape functions follow the p
same procedure as for 1-D

• We now have to start with shape functions that 
have two or more independent termshave two or more independent terms. 

• For example a linear interpolation in 2-D from 3 
nodes will require an interpolation function

• If there are two or more components (e g

1 2 3( , ) 1
T

f x y x y a a a= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
• If there are two or more components (e.g., u, v

and w displacements) then the same 
interpolation function is used for all components

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Principle of Virtual WorkPrinciple of Virtual Work
• The principle of virtual work states that at 

equilibrium the strain energy change due to a q gy g
small virtual displacement is equal to the work 
done by the forces in moving through the virtual 
displacement.displacement.

• A virtual displacement is a small imaginary 
change in configuration that is also a admissible 
displacementdisplacement

• An admissible displacement satisfies kinematic 
boundary conditionsy

• Note: Neither loads nor stresses are altered by 
the virtual displacement.
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Principle of Virtual Work

• The principle of virtual work can be written as follows

{ } { } { } { } { } { }∫∫∫ Φ+= dSudVFudV TTT δδσδε
• The same can be obtained by the Principle of Stationary 

Potential Energy

∫∫∫

• The total potential energy of a system Π is given by

0Π VUWU δδδδδ

– U is strain energy, W is work done, or V is potential of the forces

0  =+=−=Π VUWU δδδδδ

  WU −=Π
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Element and load derivationElement and load derivation

• Interpolation { } [ ]{ } { }N u v w= = ⎢ ⎥⎣ ⎦u d uInterpolation

• Strain displacement  

Vi t l

{ } [ ]{ } { }N u v w⎢ ⎥⎣ ⎦u d u

{ } [ ]{ } [ ] [ ][ ]B B Nε = = ∂d

{ } { } [ ] { } { } [ ]T TT T T T

• Virtual 

• Constitutive law

{ } { } [ ] { } { } [ ]T TT T T T
N and Bε= =δu δd δ δd

{ } [ ]{ }Eσ ε=

• Altogether 

{ } [ ] [ ][ ] { }( [ ] [ ]{ } [ ] { }0 0

T T TT
B E B dV B E dV B dVε σ− +∫ ∫ ∫δd d{ } [ ] [ ][ ] { }( [ ] [ ]{ } [ ] { }

[ ] { } [ ] { } )
0 0

0
T T

B E B dV B E dV B dV

N dV N dS

ε σ

φ

+

− − =

∫ ∫ ∫
∫ ∫

δd d

F
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Stiffness matrix and load vectorStiffness matrix and load vector

• Equations of equilibrium

• Element stiffness matrix

[ ]{ } { }k = ed r

Element stiffness matrix

El t l d t

[ ] [ ] [ ][ ]T
k B E B dV= ∫

• Element load vector

{ } [ ] [ ]{ } [ ] { } [ ] { } [ ] { } )0 0

T T T T

er B E dV B dV N dV N dSε σ φ= − + +∫ ∫ ∫ ∫F

• Loads due to initial strain, initial stress, 
body forces and surface tractions

∫ ∫ ∫ ∫
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Plane Problems: Constitutive Equations

C tit ti ti f li l l ti d• Constitutive equations for a linearly elastic and 
isotropic material in plane stress (i.e., σz=τxz=τyz=0):

• In matrix form

0    , xy000 === γαεε Tyx ΔInitial thermal strains

In matrix form,

where

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Plane Problems: Strain-Displacement 
Relations

•.

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Plane Problems: Displacement 
Field InterpolatedField Interpolated

•

• From the previous two equations, 

where B is the strain displacement matrix

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

where B is the strain-displacement matrix.
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Constant Strain Triangle (CST)

• The node numbers sequence must go counter• The node numbers sequence must go counter 
clockwise 

• Linear displacement field so strains are constant!p

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

•

CST ELEMENT
• Constant Strain Triangular Element

– Decompose two-dimensional domain by a set of triangles.

– Each triangular element is composed by three corner nodes.

– Each element shares its edge and two corner nodes with an adjacent g j
element

– Counter-clockwise or clockwise node numbering

– Each node has two DOFs: u and vEach node has two DOFs: u and v

– displacements interpolation using the shape functions and nodal 
displacements. 

– Displacement is linear because three nodal data are available– Displacement is linear because three nodal data are available.

– Stress & strain are constant.

v3
y

u

v1

u3
3

56

u1

u2

v21

2 x



CST ELEMENT cont.

• Displacement Interpolation• Displacement Interpolation
– Since two-coordinates are perpendicular, u(x,y) and v(x,y) are 

separated.

( ) d t b i t l t d i t f d– u(x,y) needs to be interpolated in terms of u1, u2, and u3, 
and v(x,y) in terms of v1, v2, and v3.

– interpolation function must be a three term polynomial in x and y.

– Since we must have rigid body displacements and constant strain 
terms in the interpolation function, the displacement interpolation must 
be of the form

α α α
β β β

⎧ = + +⎪⎪⎨⎪ = + +⎪⎩

1 2 3

1 2 3

( , )

( , )

u x y x y

v x y x y

– The goal is how to calculate unknown coefficients αi and βi, i = 1, 2, 3, 
in terms of nodal displacements.

+ +( ) ( ) ( ) ( )N N N

57

= + +1 1 2 2 3 3( , ) ( , ) ( , ) ( , )u x y N x y u N x y u N x y u

CST ELEMENT cont.

• Displacement Interpolation• Displacement Interpolation
– x-displacement: Evaluate displacement at each node

α α α⎧ ≡ = + +⎪⎪ 1 1 1 1 2 1 3 1( , )u x y u x y

α α α
α α α

⎪⎪ ≡ = + +⎨⎪⎪ ≡ = + +⎪⎩

1 1 1 1 2 1 3 1

2 2 2 1 2 2 3 2

3 3 3 1 2 3 3 3

( )

( , )

( , )

y y

u x y u x y

u x y u x y

– In matrix notation

α⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥
1 1 1 11u x y

α
α

⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

2 2 2 2

3 3 3 3

1

1

u x y

u x y

– Is the coefficient matrix singular?
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CST ELEMENT cont.

• Displacement Interpolation• Displacement Interpolation

α
α

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

1
1 1 1 1 1 2 3 1

2 2 2 2 1 2 3 2

1
1

1
2

x y u f f f u

x y u b b b u
A

– where

α
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

2 2 2 2 1 2 3 2

3 3 3 3 1 2 3 3

2
1

y
A

x y u c c c u

⎧ f b⎧ = − = − = −⎪⎪⎪ = − = − = −⎨⎪⎪ = − = − = −⎪⎩

1 2 3 3 2 1 2 3 1 3 2

2 3 1 1 3 2 3 1 2 1 3

3 1 2 2 1 3 1 2 3 2 1

, ,

, ,

, ,

f x y x y b y y c x x

f x y x y b y y c x x

f x y x y b y y c x x

– Area:
⎩ 3 3 3

1 11
1

det 1

x y

A x y= 2 2

3 3

det 1
2

1

A x y

x y
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CST ELEMENT cont.

1
α

α

= + +

= + +

1 1 1 2 2 3 3

2 1 1 2 2 3 3

1
( )

2
1

( )
2

f u f u f u
A

b u b u b u
A

Insert to the interpolation equation

α = + +3 1 1 2 2 3 3

2
1

( )
2

A

c u c u c u
A

• Insert to the interpolation equation

α α α= + +1 2 3( , )

1

u x y x y

[ ]= + + + + + + + +

= + +

1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1

1
( ) ( ) ( )

2
1

( )
2

f u f u f u b u b u b u x c u c u c u y
A

f b x c y u
A N1(x y)+ +

+ + +

1 1 1 1

2 2 2 2

( )
2
1

( )
2
1

y
A

f b x c y u
A

N1(x,y)

N2(x,y)
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CST ELEMENT cont.

• Displacement Interpolation• Displacement Interpolation
– A similar procedure can be applied for y-displacement v(x, y).

⎧ ⎫⎪ ⎪⎪ ⎪1u
⎧ 1⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

⎧ ⎫

1

1 2 3 2

3

( , ) [ ]u x y N N N u

u

⎧⎪⎪ = + +⎪⎪⎪⎪⎪ = + +⎨⎪

1 1 1 1

2 2 2 2

1
( , ) ( )

2
1

( , ) ( )
2

N x y f b x c y
A

N x y f b x c y
A⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

1

1 2 3 2

3

( , ) [ ]

v

v x y N N N v

v

⎨⎪⎪⎪⎪⎪ = + +⎪⎪⎩

2 2 2 2

3 3 3 3

( , ) ( )
2
1

( , ) ( )
2

y y
A

N x y f b x c y
A

– N1, N2, and N3 are linear functions of x- and y-coordinates. 

Shape Function

– Interpolated displacement changes linearly along the each coordinate 
direction.
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CST ELEMENT cont.

• Displacement Interpolation• Displacement Interpolation
– Matrix Notation ⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

1

1

u

v
⎪ ⎪⎪ ⎪⎡ ⎤⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥≡ =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

1 2 3 2

1 2 3 2

0 0 0
{ }

0 0 0

N N N uu

N N N vv

u

u

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

3

3

u

v

{ ( )} [ ( )]{ }x y x yu N q

– [N]: 2×6 matrix, {q}: 6×1 vector.

={ ( , )} [ ( , )]{ }x y x yu N q

– For a given point (x,y) within element, calculate [N] and multiply it with 
{q} to evaluate displacement at the point (x,y).
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CST ELEMENT cont.

• Strain Interpolation• Strain Interpolation
– differentiating the displacement in x- and y-directions.

– differentiating shape function [N] because {q} is constant.

ε
= = =

⎛ ⎞∂ ∂ ∂⎟⎜ ⎟≡ = = =⎜ ⎟⎜ ⎟∂ ∂ ∂⎜⎝ ⎠
∑ ∑ ∑

3 3 3

1 1 1
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i i
xx i i i i

i i i

u N b
N x y u u u

x x x A

ε
= = =

⎛ ⎞∂ ∂ ∂⎟⎜ ⎟≡ = = =⎜ ⎟⎜ ⎟∂ ∂ ∂⎜⎝ ⎠
∑ ∑ ∑

3 3 3

1 1 1
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2

i i
yy i i i i

i i i
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N x y v v v
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γ
= =

∂ ∂
≡ + = +

∂ ∂ ∑ ∑
3 3

1 12 2
i i

xy i i
i i

u v c b
u v

y x A A
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CST ELEMENT cont.

• Strain Interpolation• Strain Interpolation

⎧ ⎫⎪ ⎪⎧ ⎫⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
1uu

v⎪ ⎪ ⎪ ⎪⎪ ⎪∂ ⎪ ⎪⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥∂⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥= = ≡⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪∂⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦

ε

1
1 2 3

2
1 2 3

2

0 0 0
1

{ } 0 0 0 [ ]{ }
2

vx b b b
uv

c c c
y A v

c b c b c b

B q

[B] t i i t t t i d d d l th di t f

⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭

1 1 2 2 3 3
3

3

c b c b c b
u v u
y x v

– [B] matrix is a constant matrix and depends only on the coordinates of 
the three nodes of the triangular element. 

– the strains will be constant over a given element 
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Constant Strain Triangle (CST): 
Stiffness MatrixStiffness Matrix

•Strain-displacement relation, ε=Bd

A is the area of the triangle and xij=xi- xj. (textbook has results for a 
coordinate system with x aligned with side 1-2

• From the general formula 

where t: element thickness (constant)

Tk B EBtA=

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

CST ELEMENT cont.

• Strain Energy: ∫∫( ) ( ){ } [ ]{ }e T eh
U dAC• Strain Energy: ε ε

× × ×

=

=

∫∫

∫∫

( ) ( )

( ) ( )
6 3 3 3 3 6

{ } [ ]{ }
2

{ } [ ] [ ] [ ] { }
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e T e
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q B C B q× × ×

×≡

∫∫ 6 3 3 3 3 6

( ) ( ) ( )
6 6

2

1
{ } [ ] { }

2

A

e T e eq k q

– Element Stiffness Matrix:

– Different from the truss and beam elements transformation matrix [T]

=( )[ ] [ ] [ ][ ]e ThAk B C B
Different from the truss and beam elements, transformation matrix [T] 
is not required in the two-dimensional element because [k] is 
constructed in the global coordinates. 

• The strain energy of the entire solid is simply the sum of the• The strain energy of the entire solid is simply the sum of the 
element strain energies

∑ ∑( ) ( ) ( ) ( )1
{ } [ ]{ }

NE NE
e e T e eU U k

1
{ } [ ]{ }TU Q K Q

assembly
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BEAM BENDING EXAMPLE
-F

1 m
1

2

3
4

5
6

7

8

9

10

• σxx is constant 
l th i d

5 m F

Max v = 0.0018

along the x-axis and 
linear along y-axis

• Exact Solution:Exact Solution:
σxx = 60 MPa

• Max deflection 
0 0075vmax = 0.0075 m

σxx

67

x

68

Linear Strain Triangle (LST)

• The element has six nodes and 12 dof.

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka



69

Linear Strain Triangle (LST)
• The quadratic displacement field in terms of• The quadratic displacement field in terms of 
generalized coordinates:

• The linear strain field:

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

70Bilinear Quadrilateral (Q4): CQUAD4 in 
NASTRAN

• Q4 element has four 
nodes and eight dofnodes and eight dof.

• Can be quadrilateral; 
but for now  rectangle.g

• Displacement field:

So, u and v are bilinear in x and y. Because of form, 
id tiff th di l tifi i l i t !

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

sides are stiffer than diagonals-artificial anisotropy!
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Q4: The strain fields
• Strain field:

Observation 1: ≠ f(x) ⇒ Q4 cannot exactly model•Observation 1: εx ≠ f(x) ⇒ Q4 cannot exactly model 
the beam where εx ∝ x

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Q4: Behavior in Pure Bending of a Beam

• Observation 2: When β ≠ 0 varies linearly in y• Observation 2: When β4 ≠ 0, εx varies linearly in y -
desirable characteristic for a beam in pure bending because 
normal strain varies linearly along the depth coordinate. But y g
γxy≠0 is undesirable because there is no shear strain. 

• Fig (a) is the correct deformation in pure bending while (b)• Fig. (a) is the correct deformation in pure bending while (b) 
is the deformation of Q4 (sides remain straight).

• Physical interpretation: applied moment is resisted by a 

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

y p pp y
spurious shear stress as well as flexural (normal) stresses.
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Q4: Interpolation functions
E t bt i i t l ti f ti• Easy to obtain interpolation functions

where matrix N is 2x8 and the shape functions are

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Q4: The Shape (Interpolation) Functions

• N1=1, N2=N3=N4=0  at node 1, x=-a, y=-b, so u= N1 u1= u1  
at that node.
• Similarly N =1 while all other Ns are zero at node i• Similarly Ni=1 while all other Ns are zero at node i.

Fig 3.6-2

•See Eqn. 3.6-6 for strain-displacement matrix (ε=∂ Nd=Bd).
All in all Q4 converges properly with mesh refinement and

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

• All in all, Q4 converges properly with mesh refinement and 
works better than CST in most problems.
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Coarse mesh results
• Q4 element is over-stiff in bending. For the following 
problem, deflections and flexural stresses are smaller than 
the exact values and the shear stresses are greatly in error:g y

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

• Sxx Plot

BEAM BENDING PROBLEM cont.

• Sxx Plot Max v = 0.0051

• Stress is constant along the x axis (pure bending)• Stress is constant along the x-axis (pure bending)

• linear through the height of the beam

• Deflection is much higher than CST element In fact CST

76

Deflection is much higher than CST element. In fact, CST 
element is too stiff. However, stress is inaccurate.



BEAM BENDING PROBLEM cont.

• Caution:• Caution:
– In numerical integration, we did not calculate stress at node points. 

Instead, we calculate stress at integration points.

L t’ l l t t t th b tt f f– Let’s calculate stress at the bottom surface for
element 1 in the beam bending problem.

– Nodal Coordinates:1(0,0), 2(1,0), 3(1,1), 4(0,1)

3(1,1)4(0,1)

– Nodal Displacements:

u = [0, 0.0002022, -0.0002022, 0]

v = [0, 0.0002022, 0.0002022, 0]
1(0 0) 2(1 0)[ , , , ]

– Shape functions and derivatives

1(0,0) 2(1,0)

( 1)( 1)N / ( 1)N∂ ∂ / ( 1)N∂ ∂1

2

( 1)( 1)

( 1)

N x y

N x y

N xy

= − −
= − −
=

1

2

/ ( 1)

/ ( 1)

/

N x y

N x y

N x y

∂ ∂ = −
∂ ∂ = − −
∂ ∂ =

1

2

/ ( 1)

/

/

N y x

N y x

N y x

∂ ∂ = −
∂ ∂ = −
∂ ∂ =
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3

4 ( 1)

N xy

N x y

=

= − −
3

4

/

/

N x y

N x y

∂ ∂ =

∂ ∂ = −
3

4

/

/ ( 1)

N y x

N y x

∂ ∂ =

∂ ∂ = − −

BEAM BENDING PROBLEM cont.

• At bottom surface y = 0 34• At bottom surface, y = 0 4

1 1

2 2

/ 1 / 1

/ 1 /

N x N y x

N x N y x

∂ ∂ = − ∂ ∂ = −
∂ ∂ = ∂ ∂ = −

1 2

2 2

3 3

4 4

/ 0 /

/ 0 / ( 1)

y

N x N y x

N x N y x

∂ ∂ = ∂ ∂ =

∂ ∂ = ∂ ∂ = − −

• Strain 4

1
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xx I

I

N
u

x
ε

=

∂
= = ×

∂∑
u = [0, 0.0002022, -0.0002022, 0]
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yy I

I

N
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N N

ε
=

∂
= = − × + × =

∂

⎛ ⎞∂ ∂

∑

• Stress:

4

1

0.0002022 0.0004044I I
xy I I

I

N N
v u x

x y
γ

=

⎛ ⎞∂ ∂
= + = −⎜ ⎟∂ ∂⎝ ⎠

∑
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Stress:
7{ } [ ]{ } {4.44, 1.33, 1.55} 10σ ε= = ×C



RECTANGULAR ELEMENT

• y normal stress and shear stress are supposed to be zero• y-normal stress and shear stress are supposed to be zero.

σyy Plot τxy Plotyy xy

1 / ( 1)

/ ( 1)

N x y

N x y

∂ ∂ = −
∂ ∂ =

1 / ( 1)

/

N y x

N y x

∂ ∂ = −
∂ ∂

εxx is a linear function of y alone

εyy if a linear function of x alone
2

3

4

/ ( 1)

/

/

N x y

N x y

N x y

∂ ∂ = − −
∂ ∂ =

∂ ∂ = −

2

3

4

/

/

/ ( 1)

N y x

N y x

N y x

∂ ∂ = −
∂ ∂ =

∂ ∂ = − −

yy

γxy is a linear function of x and y

4
IN∂∑

4
IN∂∑
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4 y 4 ( )y

1

I
xx I

I

N
u

x
ε

=

∂
=

∂∑
1

I
yy I

I

N
v

y
ε

=

∂
=

∂∑

RECTANGULAR ELEMENT

• Discussions• Discussions
– Can’t represent constant shear force problem because εxx must be a 

linear function of x.

E if t li t i i di ti th t l– Even if εxx can represent linear strain in y-direction, the rectangular 
element can’t represent pure bending problem accurately.

– Spurious shear strain makes the element too stiff.

1 2 3 4u x y xyα α α α
β β β β

= + + +
Exact

1 2 3 4v x y xyβ β β β= + + +

2 4

3 4

xx

yy

y

x

ε α α
ε β β

= +

= + Rectangular
element
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3 2 4 4( )xy x yγ α β α β= + + +
4 0α ≠



RECTANGULAR ELEMENT

• Two Layer Model• Two-Layer Model
– σxx = 3.48×107

– vmax = 0.0053

81

BEAM BENDING PROBLEM cont.

• Distorted Element• Distorted Element
Max v = 0.004

• As element is distorted the solution is not accurate any more• As element is distorted, the solution is not accurate any more.
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BEAM BENDING PROBLEM cont.

• Constant Shear Force Problem• Constant Shear Force Problem
Max v = 0.0035

• Sxx is supposed to change linearly along x axis But the• Sxx is supposed to change linearly along x-axis. But, the 
element is unable to represent linear change of stress along 
x-axis. Why?
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• Exact solution: v = 0.005 m and σxx = 6e7 Pa.

BEAM BENDING PROBLEM cont.

• Higher Order Element? 34 7• Higher-Order Element?
– 8-Node Rectangular Element

68
2

0 1 2 3 4( , )u x y a a x a y a x a xy= + + + +

– Strain

1 25

0 1 2 3 4

2 2 2
5 6 7

( , )u x y a a x a y a x a xy

a y a x y a xy

+ + + +

+ + +

2
1 3 4 6 7

( , )
2 2

u x y
a a x a y a xy a y

x

∂
= + + + +

∂

– Can this element accurately represent pure bending and constant 
shear force problem?
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BEAM BENDING PROBLEM cont.

• 8 Node Rectangular Elements• 8-Node Rectangular Elements

• Tip Displacement = 0.0075 m,   Exact!

85

BEAM BENDING PROBLEM cont.

• If the stress at the bottom surface is calculated it will be the• If the stress at the bottom surface is calculated, it will be the 
exact stress value.

Sxx Syy
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Q6: Additional Bending Shape Functions

• Q4: Artificial shear deformation under pure bending• Q4: Artificial shear deformation under pure bending

• Additional shape functions to solve the issue

=
= + − + −∑

4
2 2

1 2
1

4

( , ) (1 ) (1 )i i
i

u N s t u s a t a

=
= + − + −∑

4
2 2

3 4
1

( , ) (1 ) (1 )i i
i

v N s t v s a t a

Bubble modes

• Strain εxx can vary linear along x-dir.

• Shear strain γ can vanish for pure bending

Bubble modes

• Shear strain γxy can vanish for pure bending

• Nodeless DOFs, a1, a2, a3, and a4, are condensed in the 
element level (total 12 DOFs)
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Modeling Bending with the Q6 Element

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎣ ⎦ ⎩ ⎭

dd da d

ad aa a

K K fd

K K fa

−= −1{ } { }aa a ada K f K d

− −− = −1 1[ ]{ } { }dd da aa ad d da aa aK K K K d f K K f

•Modeling the previous bending problem with Q6 elements 
gives the following stresses:gives the following stresses:
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Quadratic Quadrilateral (Q8)

3.7-1

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

•4 corner nodes and 4 side nodes and 16 nodal dof.

90

Quadratic Quadrilateral (Q8): Displacement

•The displacement field, which is quadratic in x and y:

• Two types of shape functions (ξ=x/a, η=y/b) :

•The edges x=±a deform into a parabola (i.e., 
quadratic displacement in y) (same for y=±b)

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Quadratic Quadrilateral (Q8): Strains

• The strain field:

• Strains have linear and quadratic terms. Hence, Q8 can 
represent many strain states exactly.represent many strain states exactly.

For example, states of constant strain, bending strain, etc.

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

p g
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3.11 Nodal loads3.11 Nodal loads

• Consistent (work-equivalent) loadsConsistent (work equivalent) loads

eW dV dS= = +∫ ∫T T Td r u F u Φ

• Mechanical loads: concentrated 
loads surface traction body forcesloads, surface traction, body forces.  

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Example: Beam under uniform loadsExample: Beam under uniform loads

• Normal forces areNormal forces are 
obvious. For 
moments

1 1

2 32
( )

L L

M

x x
N d d

θ

θ

=

∫ ∫2 1 2
0 0

2
2

( )

1 2 1
( )

qN dx q x dx
L L

qL
qL

θ = − +

= + =

∫ ∫

( )
2 3 4 12

qL= − + =
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Work equivalent (consistent) 
normal loadsnormal loads

•Normal surface traction on a side of a plane 
element whose sides remain straight  (q is 
force/length):

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

•
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Loads on Quadratic sidesLoads on Quadratic sides

*

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka
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Distributed Shear Traction
• Shear traction on a side of a plane element whose• Shear traction on a side of a plane element whose 
sides remain straight (q is force/length):

• In (b), a Q4 element and two LSTs share the top 
midnode so that the nodal loads from Q4 and the right

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

midnode so that the nodal loads from Q4 and the right 
LST are combined.
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Uniform Body Force

W k i l t d l f di t i ht• Work-equivalent nodal forces corresponding to weight 
as a body force:

• LST has no vertex loads and vertex loads of Q8 are upwards!

University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

• The resultant in all cases is W, the weight of the element.
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Connecting beam and plane elements
• Since the previous plane elements have translational dof only, p p y
no moment can be applied to their nodes. 

• The connection (a) of a beam and plane elements cannot 
t it t d th b f l t t (Si l K!)transmit a moment and the beam can freely rotate. (Singular K!)

……

•In (b) the beam is extended. Rotational dof at A, B and C are 
associated with the beam elements only A plane element with

.

……
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associated with the beam elements only. A plane element with 
drilling dof would also work but is not recommended.
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Elements with Drilling DOF
• Drilling dof: rotational dof about axis normal to the plane.

• A CST with these added to each node has 9 dof. 

• This dof allows twisting and bending rotations of shells• This dof allows twisting and bending rotations of shells 
under some loads to be represented. See Section 3.10
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Stress calculationStress calculation

• Combining Hooke’s law with strain-displacement equation g p q

( )0 2

1 0

. . 1 0
1

x

y

T
E

E B e g B T

σ ν α
σ ν α

ν

⎧ ⎫ ⎛ ⎞⎡ ⎤ ⎧ ⎫
⎜ ⎟⎪ ⎪ ⎪ ⎪⎢ ⎥= − = −⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥

⎪ ⎪ ⎪ ⎪⎜ ⎟
σ d ε d

• Stresses are most accurate inside elements

1
0 0 (1 ) / 2 0xy

ν
τ ν

⎜ ⎟⎢ ⎥−⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥−⎣ ⎦ ⎩ ⎭⎝ ⎠⎩ ⎭
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Improving stresses at nodes and 
b d iboundaries

• One common technique is averaging, butq g g,

• There are interpolation and extrapolation techniques that 
we will study later
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10
2

Examples of poor meshingExamples of poor meshing

• Do not create unnecessary discontinuities!y
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Example of discontinuities in un-
d taveraged stresses
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