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ABSTRACT: A novel finite element based micromechanical method is developed for
computing the plate stiffness coefficients (4, B, D matrices) and coefficients of thermal ex-
pansion (a’s and §'s) of a textile composite modeled as a homogeneous plate. Periocic
boundary conditions for the plate model, which are different from those for the continuum
model, have been derived. The micromechanics methods for computing the coefficients of
thermal expansion are readily extended to compute the thermal residual stresses due to
curing. The methods are first verified by applying to several examples for which solutions
are known, and then applied to the case of woven composites. The plate stiffness coeffi-
cients computed from direct micromechanics are compared with those derived from the
homogenized elastic constants in conjunction with the classical plate theory. It is found
that the plate stiffness coefficients of textile composites, especially the B and D matrices,
cannot be predicted from the homogenized elastic constants and the plate thickness.

KEY WORDS: fiber composites, finite elements, homogenization, micromechanics, tex-
tile composites, thermal stresses, unit-cell analysis, woven composites.

1. INTRODUCTION

C URRENTLY THE TWO well established methods of manufacturing fiber
composite structural elements are filament winding and lamination of pre-
pregs. Although filament winding is a highly automated process, it imposes limi-
tations on the shape and curvature of the parts and also on the fiber orientations
(Peters et al., 1990). The lamination method is labor intensive, which results in
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increased processing cost and time. Only plate or shell type structures can be fab-
ricated using the lamination process, which limits the shape and size of the struc-
tures built. Further, laminated composites possess a weak interlaminar plane,
where damage can initiate and cause delamination as in low-velocity foreign ob-
ject impact. These factors have limited the use of fiber composites in a variety of
structures.

Recent developments in textile technology and composite processing tech-
niques seem to be promising in overcoming the aforementioned difficulties. Ad-
vances in textile technology have given rise to novel weaving and braiding tech-
niques, which can be used to weave or braid fibers into structural preforms of
complicated shapes. The skeletal preforms can be impregnated with appropriate
matrix materials in molds to create composite structural components. The
modern weaving and braiding machines can also produce structural shapes such
as seamless cylinders, cones, domes and beams of various cross-sections such as
I, H, L, etc. Textile composites do not have interlaminar planes as in tape lami-
nates, although they have inter-yarn regions. However the impact resistance of
textile composites, eg., braided composites (Gong and Sankar, 1991), seem to be
higher than laminated composites due to the intertwining nature of the fiber tows.
Further, the preforms can be stitched together using fiber materials, such as glass
or Kevlar®, before resin impregnation to form integral parts, thus avoiding
various types of joints (Dexter and Funk, 1986; Sharma and Sankar, 1995). Resin
transfer molding—a faster and less labor intensive fabrication process—com-
bined with the three-dimensional fiber preforms can greatly reduce the manufac-
turing time and cost of composite parts.

With the advancements in aforementioned technologies there is a need to de-
velop scientific methods of predicting the mechanical behavior of textile compos-
ites. There are numerous variables involved in textile processes besides the
choice of the fiber and matrix materials that will affect the properties of the com-
posite. This, for example, includes the number of filaments in the yarn specified
by the yarn linear density, and the fiber architecture determined by the type of
weaving or braiding processes. Ideally, a structural engineer would like to model
textile composites as a homogeneous anisotropic material —preferably orthotro-
pic—so that the structural computations can be simplified, and also the existing
computer codes can be used in the design. Thus, there is a need to predict the
macroscopic properties of the composites from the micromechanical details such
as fiber and matrix properties, fiber-matrix interface characteristics and the fiber
architecture. This will be possible, if we assume that there is a representative
volume element or a unit-cell that repeats itself throughout the volume of the
composite, which seems to be true in the case of textile composites. Any varia-
tions that may occur near the free edge or a hole, and the inhomogeneities intrin-
sic to the manufacturing process have to be dealt separately as a perturbation in
the homogeneous material.

An extensive amount of work on modeling textile composite materials has been
done by Chou and his coworkers. Ishikawa and Chou (1982, 1983a, 1983b) devel-
oped the mosaic, fiber undulation and fiber bridging models to predict the
thermo-mechanical behavior of woven composites. The basic principle in their
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model is to approximate the woven composite as a composite laminate and com-
pute the properties using lamination theory. Corrections are applied to account
for the fiber continuity in the thickness direction and the fiber undulations that
occur in the woven composite. Ma et al. (1986) developed an energy approach to
determine the elastic constants of three-dimensional braided composites.
Whitney and Chou (1989) extended the method to 3-D angle interlock compos-
ites. All these methods are simple to apply, but yield only approximate results.
However, they will be very useful in the preliminary selection of textile process
and in generating performance maps of composites for various fiber architectures
(Yang and Chou, 1987).

A detailed micromechanical stress analysis of woven composites was per-
formed by Yoshino and Ohtsuka (1982) using finite elements. They modeled the
unit-cell of a plain-weave glass/epoxy using plane triangular elements to identify
the regions of initiation of failure, which were verified using photoelastic ex-
perimental analysis. Dasgupta et al. (1990) used a homogenization scheme to pre-
dict the effective thermo-elastic properties of woven fabric composites. The
microscale boundary value problem was solved using the finite element method.
Whitcomb (1991) analyzed the unit-cell of a plain-weave composite using three-
dimensional finite elements to determine the effect of the yarn geometry and yarn
volume fraction on the composite thermo-elastic constants. He took advantage of
some symmetry in the way yarns are stacked and avoided using explicit periodic
boundary conditions. Foye (1993) developed a finite element scheme in which the
unit-cell was modeled using inhomogeneous elements called replacement ele-
ments. The model was able to predict the elastic constants reasonably well. There
are several other models that idealize the textile composite as simple structures
and use lamination theory or strength of material approach to determine the elas-
tic constants. Naik (1994) used a simple stiffness averaging method to compute
the effective thermo-elastic constants of various textile composites. Sankar and
Marrey (1993) studied the stress gradient effects in thin textile composite beams
by performing a finite element analysis of the unit-cell. They computed the flex-
ural rigidity and transverse shear stiffness of a plain-weave beam, and showed
that the beam stiffness properties could not have been predicted from the equiva-
lent elastic constants of the material and beam thickness.

This paper is concerned with a direct micromechanical approach for comput-
ing the plate thermo-mechanical properties of a textile composite plate. The unit-
cell is analyzed using three-dimensional finite elements. In Section 2 the periodic
boundary conditions for modeling the composite as a homogeneous material are
described for the sake of completion. The modified approach for textile compos-
ite plates is described in Section 3. The methods for computing thermal residual
stresses are given in Section 4. The results are discussed in Section 5. The
methods are verified first by applying to some simple cases and comparing the
results with available analytical solutions. Then, the current methods are applied
to the case of a plain-weave composite plate and a five-harness satin-weave plate.
It is shown that the plate stiffness and plate thermal expansion coefficients cannot
be computed from the thermo-elastic constants obtained by using the conven-
tional homogenization procedures.
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2. MODELING TEXTILE COMPOSITES
AS HOMOGENEOUS MATERIALS

In this section, we describe a finite element based micromechanical analysis
procedure to predict the effective stiffness properties and coefficients of thermal
expansion of a textile composite modeled as a homogeneous material (thermo-
elastic constants of the homogenized medium). The macroscopic properties of
the composite are determined at a scale much larger than the dimensions of the
unit-cell, but comparable to the dimensions of the structural component. The av-
erage stresses at a point at the structural scale will be called the macroscale
stresses or macrostresses. The actual stresses at a point at the continuum
level —either in the yarn or in the interstitial matrix—will be called the microscale
stresses or microstresses. In order to distinguish the macroscale deformations
and stresses from their microscale counterparts, a superscript “M” will be used
to denote the macroscale quantities.

In the unit-cell analysis we assume that the textile composite is subjected to a
uniform state of strain at the macroscale, and the average stresses (macrostresses)
required to create such a state of strain are computed from the finite element
model. In the microscale, the stresses within the unit-cell (microstresses) may
not be uniform, but all unit-cells will have identical stress and strain fields. Thus
the variation of stresses and strains will be periodic. Continuity of stresses across
the unit-cell then requires that tractions be equal and opposite at corresponding
points on opposite faces of the unit-cell. Since the displacement gradients are
constant for a homogeneous deformation, the displacements at corresponding
points on opposite faces of the unit-cell differ only by a constant (Sankar and
Marrey, 1993). Consider a rectangular parallelepiped as the unit-cell of the three-
dimensional textile composite as shown in Figure 1. The edges of the unit-cell are
assumed to be parallel to the coordinate axes x;, x, and x;, with unit-cells repeat-
ing in all three directions. The length of the unit-cell in the x; direction is defined
as L. On the macroscale the composite is assumed to be homogeneous, and its
behavior characterized by the following constitutive relation:

M
ol Cu Cy, Cis Cu Cis Cis €11 af

0% Cy, Cys Caa Cys Cus 1313 as

% _ Css Csy Css Css ] €% _ o AT V(1)
n( tri C. C C. % s
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where {o™} and {e™]} are the macroscale stresses and strains, respectively; {o <}
and [C] are respectively the macroscale CTE’s and elasticity matrix to be deter-
mined; and AT is a uniform temperature difference throughout the unit-cellT.
The temperature difference AT is computed from a reference state at which no

TThere are situations wherein the microscale temperature will vary within the unit-cell, e.g., the heat transfer
problem to determine the effective thermal conductivities of a textile composite (Hart, 1994).



A Micromechanical Model for Textile Composite Plates 1191

L L L
e

N
N

N
1 AN AN AR ARARAN A

of off off of o o
'ﬂ'ﬂ’ﬂ’ﬂ'ﬂ
P o of o o o
F ot of of of of
P of of o ot o o
P of of off of o *
ot of af ot ~

ad

N
b |
b \® S\ ¥

' IR EB IR R HR AR

’\ N\
AN A AN AV AN WY

Composite Unit-Cell

Figure 1. Unit-cell of a three-dimensional textile composite.

stresses exist. For the purpose of determining the residual thermal stresses due
to fabrication, the temperature difference is measured from the composite curing
temperature.

The periodic boundary conditions (BC’s) consist of: (a) periodic displacement
boundary conditions, which ensure compatibility of displacements on the oppo-
site faces of the unit-cell; and (b) periodic traction boundary conditions to
enforce the continuity of stresses across the unit-cell boundaries. A macrosco-
pically homogeneous deformation can be represented as

uM = Hijxj i,j = 1,2,3 ()

where H;; are the displacement gradients. Then the periodic displacement bound-
ary conditions to be imposed between nodes on the facesx;, = Oand x, = L, are:

u;(Ly,x2,x3) — ui(0,x2,x3) = HyL,
wi(x1,Ly,x3) — u:i(x1,0,x3) = Hul, 3)
u;(x1,X2,L3) — w:(x1,x2,0) = HsL,

The traction boundary conditions to be imposed on the faces x;, = Oand x; = L;
are:

Fi(Li,x2,%3) = —Fi(0,x3,x3)
Fi(xy,Ly,x3) = —Fi(x,,0,x3) (€]
Fi(xy,x2,L3) = —Fi(x1,%2,0)

In Equations (3) and (4) the index i takes values 1 through 3. The above periodic
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BC’s are imposed in the finite element model by using multi-point constraint ele-
ments or by using transformation equations to eliminate the constrained displace-
ments (Cook et al., 1989). Both methods require a finite element model in which
opposite faces of the unit-cell have identical FE mesh so that periodic BC’s can
be imposed between corresponding nodes. The periodic BC’s are summarized in
the first six rows in Table 1.

The unit-cell is discretized with three-dimensional finite elements, e.g., eight-
node brick elements, such that opposite faces of the unit-cell have identical
nodes. Periodic displacement and traction boundary conditions are enforced as
explained above. The periodic displacement BC’s are imposed such that only one
of the components of the macrostrains is non-zero, and the uniform temperature
difference AT is set to zero. Then the difference in displacements between corre-
sponding points on opposite faces of the unit-cell will be equal to that in a homo-
genous material subject to the same deformation. The average stresses (macro-
stresses) required to create such a deformation are obtained from the finite
element results. Two different methods of computing macrostresses are presented
at the end of this section. Substituting the macrostresses and macrostrains in the
composite constitutive relation given by Equation (1), the stiffness coefficients in
the column corresponding to the non-zero macrostrain can be evaluated. For ex-
ample, if we assume that ¢}; = 1 and all other macrostrains to be equal to zero
(Case 1 in Table 1), then from the macrostresses we should be able to compute
the first column C;, of [C]. This procedure is repeated for other macrostrain com-
ponents (keeping the temperature difference as zero) to obtain the entire stiffness
matrix [C]. The elastic constants of the composite material can be easily deter-
mined by inverting the stiffness matrix to obtain the compliance matrix [S], and
comparing the compliance coefficients with that of an anisotropic material, e.g.,
S, = VE,, (Agarwal and Broutman, 1990). It can be shown that the stiffness

Table 1. Periodic displacement BC’s to obtain
3-D elastic constants and CTE’s.

Macrostrain Non-Zero Displacement BC’s
1. e =1 Ug(Ly, Xgy X3) — U(0, Xo,%3) = Ly
2. e =1 Up(Xy,Lg, Xg) — Up(X4,0,X35) = L,
3. efp =1 Ug( Xy, X, Lg) — Us(Xy,%5,0) = Ly
4. v =1 Up(Xq, X, Lg) — Uy (X4, %,,0) = Ly/2
Ug(Xy,La, X) — Ug(X4,0,X5) = L,/2
5. ¥ o=1 ul(Xy, X5 L) — Uy (X4, X5,0) = Ly/2
Ug(Ly, X5 X5) — Ug(0, X5, X5) = Ly/2
6. i =1 Uy (xq,La, X5) — Uy (xy,0,x3) = L,/2
Uy(Ly, X0, X5) — Uo(0, X5, X5) = Ly/2
7. AT =T, All relative displacements are set to
zero

All macrostrains
set to zero
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matrix [C] computed by using the procedure described above will always be sym-
metric (see Appendix).

To compute the six CTE’s, a finite temperature change AT, is applied to all ele-
ments in the unit-cell, and periodic displacement BC’s are imposed such that all
the macrostrain components are zero. Then the composite constitutive relation
(Equation 1) will reduce to

{ = —[Cl{a}AT &)

The macrostresses for such a deformation are computed by using one of the two
procedures described at the end of this section. Since the stiffness matrix [C] is
known, the composite CTE’s can be found from Equation (5) as:

1
() = =37 [CT"(0™) ©

The last row in Table 1 presents the periodic displacement BC’s imposed on the
unit-cell to obtain the CTE’s {«°}. It may be noted that the value of AT is arbitrary
and usually taken as unity.

The macrostresses for a given deformation state can be found by one of the fol-
lowing two methods. In the first method, the macrostresses are obtained by aver-
aging the nodal forces on each face of the unit cell. For example, the macrostress
component ¢} can be obtained as

1
ot = T L F (Lo %) @)
L.L, ~

where F{™ is the nodal force in the x, direction at the nth node, and L, denotes
summation over all nodes on the face x, = L,. Alternatively, the macrostresses
can be computed by volume-averaging the corresponding microstress component
in the unit-cell. Then ¢% is obtained as

1
ol = ’—/s oulx,y,z)dv ®
4

where V is the volume of the unit-cell. In the FE model Equation (8) is im-
plemented by computing microstresses at the Gauss quadrature points, and by
performing numerical integration over the volume in each element of the unit-
cell. Even though expressions given by Equations (7) and (8) are equivalent,
from the programming point of view Equation (8) is much easier to implement.

3. MODELING TEXTILE COMPOSITES AS HOMOGENEOUS PLATES

For efficient structural design, one may expect to use textile composites as thin-
walled structures, e.g., plate/shell/beam. Unlike the model described in Section
2, thin-walled structures will have fewer unit-cells in the thickness direction, say
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z-direction. This will violate the assumption of unit-cells repeating themselves in
the z-direction. Further, the surfaces normal to the z-axis will be free of tractions,
and there will be stress gradients through the thickness of the structure. In gen-
eral, the textile composite will behave more like a plate than a three-dimensional
structure. In that case the elastic constants computed in Section 2 will not be
useful (Sankar and Marrey, 1993). In such situations it may be a good idea to use
the homogenization procedure to compute the effective plate properties rather
than the elastic constants. Thus one may need to compute plate stiffness coeffi-
cients, such as flexural stiffness. Typically composite plate theories use the so
called [A4, B, D] matrices (Agarwal and Broutman, 1990). These stiffness coeffi-
cients cannot be calculated from the homogenized elastic constants computed us-
ing methods in Section 2. For example, if one uses the macroscale elastic con-
stants computed from [C], then one will be computing the plate stiffness using
formulas of the typet D = ER*/12(1 — »?), which is not the true representation
of the textile composite plate behavior. In some situations the elastic constants of
the homogenized material will not reflect the bending-stretching coupling that
may really exist in the textile composite plate. This coupling will reveal itself by
a non-zero [B] in the plate model.

In the following we suggest a micromechanical analysis for modeling textile
composites as homogeneous plates, and describe a procedure to compute the [4],
[B] and [D] matrices directly from the micromechanics rather than computing
them from the elastic constants of the homogenized continuum and the plate
thickness. The procedure is analogous to that for estimating the continuum prop-
erties (Section 2) except for the periodic boundary conditions. The major differ-
ence is that the top and bottom surfaces of the plate—planes normal to the z-
axis—are left traction-free, i.e., no constraints are imposed between the nodes on
the top and bottom surfaces [Figure 2(a)]. Periodic boundary conditions are ap-
plied only between nodes on the two pairs of lateral surfaces as explained later.
The textile composite plate is assumed to be in the xy-plane with unit-cells re-
peating in the x- and y- directions. The mid-plane of the plate is assumed to coin-
cide with the y-plane. The lengths of the unit-cell in the x- and y-directions are
assumed to be a and b respectively, and the unit-cell thickness as 4. On the
macroscale the plate is assumed to be homogeneous and the plate behavior is
characterized by the Classical Plate Theory constitutive relations:

Ay A A B, B, Bis € af
Ay Ay Ay B, B, By €2 ol
Aie Az A66 BIG st Bss ’Yf;o al,

Bn an Bxs Du Dn Dm Jtiw (9)

B, Bzz Bs Dlz D;, D6 %ﬁ,"
Bie st Bss D6 D Dqs )tf;

ggngg 32*2"2

P
x
p
y

P

xy

1This is the formula for flexural rigidity of isotropic plates. E, v, and k are the Young’s modulus, Poisson’s ratio
and thickness of the plate, respectively.
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Composite
(a

(0)

Figure 2. (a) Unit-cell of a textile composite plate and (b) support boundary conditions on
the unit-cell.

where €4, v and k¥ are the midplane axial strain, midplane shear strain and
curvatures, respectively; «? and 37 are the plate thermal expansion and bending
coeflicients; N; and M, are the axial force and bending moment resultants respec-
tively in the homogeneous plate. The midplane strains and curvatures are related
to the midplane displacements as:

ou v, ou av
e%=——xg, e%=g;o, 72§o=a—;+3—; 10)
0w ’w %w
! = T ox2’ == ay?’ xo = —2 dxdy an

The plate thermo-mechanical properties are obtained by modeling the unit-cell
with three-dimensional finite elements, e.g., eight-node brick elements, and sub-
jecting the unit-cell to six linearly independent deformations (Table 2). The unit-
cell is subjected to minimum support constraints to prevent rigid body rotation
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and translation [Figure 2(b)]. The top and bottom surfaces of the plate were
assumed to be free of tractions. The faces x = 0 and x = g have identical nodes
in the finite element model, and so do the pair of faces y = 0 and y = b. The
corresponding nodes on opposite faces of the unit cell are constrained to enforce
the periodic BC’s. The traction boundary conditions on the lateral faces of the
unit-cell were:

Fi(a,y,z) = —F.0,y,2), Fix,b,2) = —F:(x,0,2), i=x,y,z (12)

The periodic displacement boundary conditions are inferred as follows. Let us
first consider the case where the plate is deformed in such a way that €% is the
only nonzero deformation. If the plate were homogeneous, then the relationship
between displacements of corresponding nodes on the faces x = O and x = a
will be such that

u(a,y,z) — u(0,y,2) = ae¥ (13)

The v and w components of relative displacements between points on planes
x = 0 and x = a, and also all relative displacements between corresponding
points on planes y = 0 and y = b will be identically equal to zero. In the case
of textile composite plates, the plate is assumed to behave as a homogeneous plate
in macroscale, and hence the BC’s in Equation (13) can be assumed to be valid

Table 2. Periodic displacement BC’s imposed on the lateral faces
of the plate unit-cell.

z

—

b

u(@y)- v(@y- w(@y- uxb- vi(x,b)— wix,b)—
u(0,y) v(0,y) w(0,y) u(x,0) v(x,0) w(x,0) AT

1. M =1 a 0 0 0 0 0 0
2. e% =1 0 0 0 0 b 0 0
3. 'yf"’yn =1 0 al2 0 bl2 0 0 0
4. xM=1 az 0 —a?/2 0 0 0 0
5. uyz 1 0 0 0 0 bz —b2/2 0
6. any =1 0 az/2 —ayl2 bz/2 0 —bx/2 0
7. AT =T, 0 0 0 0 0 0 T,
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u(a,y, z) — u(0,y,2) = xMaz
(a)
z
i
a J
K
r‘\;\
: X
\/ u(a’yaZ) - u(O,y,z) = XxMaZ
2
wa,,2) = w0,,2) = — x{%

(b)

Figure 3. Periodic displacement BC’s for non-zero curvature.

also. Similar BC’s corresponding to €}5 and vy, can be derived. They are pre-
sented in the first three rows of Table 2. These three boundary conditions are sim-
ilar to the three boundary conditions for modeling the textile composite as a ho-
mogeneous material as explained in Section 2 (cf. rows, 1, 2, and 6 in Table 1).

The BC’s for curvatures are derived as follows. Consider a plate that is
deformed such that x ¥ is the only nonzero deformation. Then the unit-cell will
undergo cylindrical bending and will be bent in the shape of an arc of a circle
with curvature equal to x2 (see Figure 3). The plane x = a will be rotated
through an angle equal to ax ¥ relative to the plane x = 0. Then the relative dis-
placements between points on the pair of surfaces normal to the x-axis will be
given by

u(a,y,Z) - “(ansl) = XxMaZ (14)

The displacement field defined by Equation (14) introduces a transverse shear
deformation in the plate due to the presence of nonzero du/dz. The effect of the
boundary condition given by Equation (14) is depicted in Figure 3(a). This shear
has to be eliminated by superposing transverse displacements given by

2

W@.y.2) = w0,y,2) = —x¥5 (15)

In deriving Equation (15), the circular arc mentioned above has been approx-
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imated as a parabola. The effect of adding this transverse displacement is shown
in Figure 3(b). Thus Equations (14) and (15) constitute the periodic displacement
BC for the case of non-zero x» 2 Similar BC’s can be derived for cases where the
nonzero deformations are xand x¥, respectively (Marrey, 1995; Sankar and
Marrey, 1995). The periodic displacement BC’s corresponding to the curvatures
are presented in rows 4 through 6 of Table 2.

The macroscale force and moment resultants can be computed by averaging the
actual force and moment resultant over the area of the plate unit-cell. Thus

1
(N.,N,.N,,) = %s (s (oxx,oyy,rx,,)dz) dA (16)
A z

In the above equation the inside integral represents the force resultant at a point
in the plate unit-cell, and the outside integral represents averaging of the micro-
force-resultants over the area of the plate to obtain macro-force-resultants. The
above equation can be written as a volume integral over the volume of the unit-
cell:

1
(N..N,,N,,) = ab 5 (Ouxs Oyys Ty)dV (17)
14
Similarly the macroscale moment resultants can be derived as
1
MM, .M,,) = Es U0, 0y, T )dV (18)
Vv

In the FE model, integrations in Equations (17) and (18) were performed using the
Gauss quadrature method.

The analysis procedures described above was carried out separately for six dif-
ferent cases. In each case, one of the six plate deformations was kept equal to
unity, and the rest were set to zero. The macroscale force and moment resultants
were computed for each case. The temperature difference was also set to zero in
all six cases. Substituting the values of the deformation and the force resultants
in the plate constitutive relation, Equation (9), the stiffness coefficients in the col-
umn corresponding to the non-zero deformation can be computed. Using a proce-
dure similar to that described in the Appendix, it can be shown that the [4, B, D]
matrix must be symmetric.

To predict the CTE’s, the plate unit cell is subjected to a uniform temperature
difference, say AT = T, and periodic displacement BC’s are applied such that
all six components of the macroscale deformations are zero (seventh case in Table
2). The force resultants {N} and moment resultants {M} are computed using the
procedure described earlier. Then the plate constitutive relations (Equation 9)
can be used to compute the unknown CTE’s. The plate thermal expansion coeffi-
cients «” and thermal bending coefficients 37 are then obtained from the relation:

{§2;= 7.|B D]-l {M] (19)
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4. THERMAL RESIDUAL STRESSES

We will explain the procedure for computing thermal residual stresses in detail
for the case of continuum modeling of the textile composite. Let 7, be the
difference between the composite fabrication temperature and the room tempera-
ture. Since the composite is assumed to be stress free at the fabrication tempera-
ture—which is above the room temperature, AT is generally negative, say
AT = —T,. The residual microstresses in the yarn and the matrix are obtained
by superposing the microstresses due to the two load cases as explained below.
In the first load case [Figure 4(a)], the unit-cell is constrained from expanding by
fixing the eight corner nodes of the unit-cell and enforcing zero displacement dif-
ference and equal-opposite tractions between corresponding nodes on opposite
faces of the unit-cell (periodic BC’s). A temperature difference AT is applied to
all elements in the finite element model. This is exactly the same problem we
solve for finding the three-dimensional CTE’s. The applied boundary conditions
mean that all the macroscopic strain components are equal to zero ({e*} = 0,
AT = —T,). Then the corresponding macroscopic stresses required to restrain
the unit-cell expansion can be derived from Equation (1) as:

{0} = [CHar}To (20)

In the second load case [Figure 4(b)], deformations are applied to the unit-cell so
as to reverse the macrostresses developed in the first load case. This is because
a cured composite plate is not subjected to any net external forces, and hence the
macrostresses must be zero. This can be accomplished by imposing a set of
deformations given by {¢”}= —{«°}T, on the unit-cell and setting AT = 0. It
may be noted that the macrostresses due to the deformations in the second load-
ing case are equal to —[C]{a°}T,, which are equal and opposite to the macro-
stresses given in Equation (20). The microstresses from both load cases are
superposed to obtain the residual microstresses due to free thermal expansion.

7 Y
Z
unit-cell % unit-cell
7 Y
2
() =0 (") = - (a9} T,
AT = - T, AT =0
(o™} = [CNa®}T, [6") = - [Cla“1T,
(@) (b)

Figure 4. Load cases to compute the thermal residual microstresses.
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'

(@) (b)

Figure 5. Yarn pattern in textile preforms (unit-cell boundary in dotted lines): (a) plain-weave
and (b) 5-harness satin-weave.

The same idea can be extended to finding the residual microstresses in the plate
model also. Then, the deformations to be applied to the unit-cell in the first load
case are: {e”} = 0, {x™} = 0and AT = —T,; and the deformations in the sec-
ond load case are: {e™} = —{a”}T,, {(x™} = —{B?}T, and AT = 0.

5. RESULTS AND DISCUSSION

The micromechanics procedures described in Sections 2 through 4 were first
verified by applying them to problems for which exact solutions are known. Then
they were applied to the case of unidirectional fiber composites for which approx-
imate analytical solutions are available. Finally, several textile architectures were
considered and compared with available experimental and analytical solutions.
The examples considered can be classified as follows: Ex. 1. Bimaterial
medium —both materials are assumed isotropic; Ex. 2. Unidirectional composite
with different Poisson’s ratios for fiber and matrix, fiber and matrix materials are
isotropic; Ex. 3. Plain-weave textile composite (yarn geometry and properties ob-
tained from Dasgupta et al., 1990); Ex. 4. Plain-weave textile composite (yarn
geometry and properties obtained from Naik, 1994); Ex. 5. Five-harness satin
weave (yarn geometry and properties obtained from Naik, 1994). In the textile
composite examples, Examples 3-5 [Figures 5(a) and 5(b)], the yarn is assumed
to be transversely isotropic and the matrix material is assumed isotropic. The
constituent material properties used in the examples are listed in Table 3.

The unit-cell was modeled using eight-node brick elements. We used the inho-
mogeneous elements similar to that developed by Foye (1993). The unit-cell was
discretized using rectangular parallelepiped elements of uniform size. Thus there
is a possibility that a given element would contain both yarn and matrix
materials. The effect of the inhomogeneity within the element was accounted by
considering appropriate elastic constants in the Gauss integration of the stiffness
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matrix. For the plain weave composite the yarn shape was generated by translat-
ing an elliptical cross section along a sinusoidal path. The unit-cell was modeled
using 15 X 15 X 10 mesh resulting in about 6,000 degrees of freedom. The
problem was solved using a finite element program called uTEx — 10, which was
specially developed for NASA (Marrey and Sankar, 1995). This program has a
built-in capability of enforcing periodic boundary conditions for both the con-
tinuum and plate models.

The results for continuum modeling of unit-cells in Examples 1-5 are given in
Tables 4-6. The results for the bimaterial medium is given in Table 4. The
bimaterial medium is an infinite solid with two alternating layers of isotropic
materials. It may be noted that the present micromechanical model yields exact
solution for all thermoelastic constants. This example is indeed a verification of
the finite element program. The exact solution for the bimaterial medium was ob-
tained by “rule of mixtures” type formulas, the details of which can be found in
Marrey (1995) and Marrey and Sankar (1996). The thermoelastic constants of the
unidirectional composite (Example 2) are compared with available analytical
solutions in Table 5. The fibers were assumed to be of circular cross section in
a square array. Rule of mixtures and Halpin-Tsai equations for elastic constants,
and Schapery’s expressions for CTE’s were used to verify the present
micromechanical results (Agarwal and Broutman, 1990). From Table 5 it may be
seen that the agreement is good for all elastic constants except for »rr and also

Table 3. Properties of constituent materials for Examples 1-5.

Example 1 Layer 1 (E-glass): E, = 70 GPa, v; = 0.200, o; = 5 x 107¢/°C,
V,=05

Layer 2 (epoxy): £, = 3.50 GPa, v, = 0.350, o, = 60 x 107¢/°C,
V, =05

Unit-cell size: 0.500 x 0.500 x 0.256 mm

Example 2 Fiber (E-glass): E, = 70 GPa, », = 0.200, o, = 5 x 10%/°C, V, = 0.6
Matrix (epoxy): E,, = 3.50 GPa, »,, = 0.350, o, = 60 x 10-/°C
Unit-cell size: 10 x 10 x 10 um

Example 3 Yarn (glass-epoxy):
E, = 58.61 GPa, E; = 14.49 GPa, G,; = 5.38 GPa, »,; = 0.250
vy = 0.247, o, = 6.15 x 10°%/°C, a; = 22.64 x 10°5/°C, V, = 0.26
Matrix (epoxy):
E = 3.45GPa, » = 0.37, « = 69 x 10°%°C
Unit-cell size: 1.680 x 1.680 x 0.228 mm

Examples 4,5 Yarn (graphite-epoxy):
E, = 144.80 GPa, E; = 11.73 GPa, G,; = 5.52 GPa, »,; = 0.230
vy = 0.300, ¢, = —0.324 x 10°%°C, a; = 14.00 x 10°/°C,
V, = 0.64 Matrix (epoxy):
E = 3.45GPa, » = 0.35, « = 40 x 10°%°C
Unit-cell size: 2.822 x 2.822 x 0.2557 mm (Example 4)
7.055 x 7.055 x 0.2557 mm (Example 5)

V; stands for the volume fraction of the constituent material.
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Grr [in fact the analytical value of Grr was calculated from E; and vrr as
Grr = Er/2(1 + vrr)]. The reason may be that the Halpin-Tsai equations are
essentially empirical equations designed to fit the results for £ and G,r well and
in general they are not suitable for computing v,r. Marrey and Sankar (1996)
have developed an analytical method called Selective Averaging Method which
compares well with the present micromechanical result for Gyr. The Selective
Averaging Method yielded G, = 3.04 GPa for Ex. 2, which is closer to the
present micromechanical result.

The results for continuum properties for all three textile composite examples
(Examples 3-5) are compared with available analytical and experimental results
in Table 6. Given the uncertainties and approximations in constituent material
properties, description of fiber architecture, and fiber volume ratios, the results
from the present method can be considered to be in good agreement with the ex-
perimental and other analytical results. It is interesting to note that the present
analysis has consistently yielded slightly lower values for all elastic constants
(Young’s moduli and shear moduli) compared to other analytical methods. How-
ever the present method has done well in predicting the Poisson’s ratios measured
in tests (Foye, 1992). The Poisson’s ratios agree very well with the results of
Dasgupta et al. (1990). The coefficients of thermal expansion predicted by the
present method are again slightly higher than those obtained using the methods
of Dasgupta et al. (1990) and Naik (1994). This is due to the lower modulus
values predicted by the present method.

The agreement of the method with the stiffness averaging method of Naik
(1994) is only fortuitus because all the textile composite examples considered
here had balanced properties in the x- and y-directions (e.g., E. = E,,
G.. = G,,). If the properties in the x- and y-directions were drastically different
as in the case of a simple unidirectional fiber composite, then the stiffness averag-
ing method will predict the same E; and E,, whereas rigorous micromechanics
methods such as the present method will yield accurate results (see Table 5). Fur-
ther, if one is interested in failure analysis of textile composites (Marrey and
Sankar, 1993; Whitcomb and Srirengan, 1995), a reasonably accurate description
of the stress field within the unit-cell is required and micromechanical analyses
similar to the present method will have to be used.

The real thrust of this paper is to show that the plate stiffness properties of thin
textile composites cannot be inferred from the continuum properties and plate
thickness. The following results will demonstrate the need for computing the
plate stiffness properties directly from micromechanical analysis. The equivalent
[A], [B], [D] matrices and plate CTE’s were computed for the five examples. The
plate properties for the bimaterial case are presented in Table 7. In this case the
bimaterial plate consisted of only two layers—one layer of each material. The
bimaterial plate properties were also computed using the lamination theory for
two plies, and from the continuum elastic constants presented in Table 4. For ex-
ample, the coefficient D, is obtained from the 3-D elastic constants as

E¥n?

Du =10 —vm
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The finite element results for the bimaterial case were exact, i.e., identical to the
results obtained with the two-ply lamination theory. The agreement in [4] and
[D] matrices computed from the bimaterial continuum elastic constants and the
two-ply lamination theory is only fortuitous because both the layers were equal
in thickness. In general, however the plate properties obtained from the con-
tinuum elastic constants would be different from the two-ply lamination theory
results.

The plate properties for the single-ply unidirectional composite are presented
in Table 8, and for the textile composite examples in Table 9. From Tables 8 and
9 it can be seen that the plate stiffness properties and plate CTE’s computed using
direct micromechanics is different from those computed from continuum thermo-
elastic constants and plate thickness. This is especially striking in the case of [B],
D,,, {a*} and {3}. It must be noted that the comparison in Table 9 is for a single
layer of textile composite with one unit-cell in the thickness direction. The two
results are expected to converge as the number of layers and hence the number of
unit-cells in the thickness direction is increased. The actual number of unit-cells
for which the continuum elastic constants can be used depends upon the inhomo-
geneity within the unit-cell in the thickness direction. However in many light-
weight structures one can expect to use textile composites with fewer unit-cells
in the thickness direction, and the present micromechanical analysis will be a
useful tool. Even in thick laminated textile composites the stress distribution near
the surface layers will be affected by the lack of constraints (periodic boundary
conditions) on the surface, and the stress gradients obtained using the plate
micromechanical analysis will shed some light on the deviation from the con-
tinuum behavior.

Ishikawa and Chou (1982, 1983a, and 1983b) have proposed computationally
efficient mosaic models and other improvements of the mosaic models for pre-
dicting the plate stiffness properties of textile composites. The basic idea in these
methods is that the textile composite can be modeled as a set of laminates con-
nected in series and parallel depending on the loading direction. For the purpose
of comparison the [A4, B, D] matrices of the plain-weave composites (Examples 3
and 4) were computed using the mosaic model, and they are presented in Table
9. It may be noted that the mosaic model highly over-predicts the plate stiffness
properties. A similar observation was made by Sankar and Marrey (1993) earlier
also. Some of the reasons for the over-prediction are: the actual yarn cross sec-
tion in the micromechanical model is elliptical where as the mosaic model
assumes a larger rectangular cross section for the yarn, and the fiber inclinations
are not considered in the results presented. Even if these factors are taken into ac-
count it is expected that approximate plate models will yield a higher plate
stiffness than that predicted by the rigorous micromechanical methods.
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APPENDIX

In this section we will show that the stiffness matrix derived using the
micromechanical analysis method described in Section 2 will always be symme-
tric. Without loss of generality let us consider a two-dimensional unit-cell of
dimension a X b as shown in Figure 6. Let the thickness of the unit-cell in the
z-direction be unity. Figure 6 depict the cases wherein the unit-cell is subjected
to unit normal macrostrains in the x- and y-directions, respectively (¥ = 1 in
Figure 6(a), and €); = 1 in Figure 6(b), and all other macrostrain components
are equal to zero). Let us define a system of notations to denote the forces acting

——

1
A

[ o

(b)

Figure 6. Notations for forces and displacements on the unit-cell boundary.
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on the sides of the unit-cell. The forces acting on the surfaces of the unit cell are
denoted by f. Suffixes x and y denote forces acting in the x and y directions, re-
spectively. Further the suffixes / and r denote the left and right surfaces of the
unit-cell. Similarly suffixes ¢ and b denote top and bottom surfaces of the unit-
cell. Superscripts (1) and (2) are used to denote the loading cases 1 and 2 [Figure
6(a) and 6(b)] respectively. For example, f#’ refers to forces acting on the left
face (x = 0) in the y-direction in Figure 6(b). In the case of displacements, u and
v refer to displacements in the x- and y-directions. For example, »{*’ denotes dis-
placement in the y-direction of points on the bottom surface (y = 0) of the unit-
cell in Case 1.

Let us apply the Betti-Rayleigh reciprocal theorem (Fung, 1965) to the load
cases depicted in Figure 6. Let W, be equal to the work done by the forces in
Figure 6(a) through the corresponding displacements in Figure 6(b). Similarly
W, represents the work done by the forces in Figure 6(b) through the correspond-
ing displacements in Figure 6(a). Then the expressions for W, and W, can be
derived as:

(b (b
W= | (0w + fu@)dy + | (P + £ v)dy
Jo Jo
22)
P a fa
R uf + fOuydx + | (fD v + fPve)dx
Jo Jo
(b (b
W= | (FRut + fPumydy + | (FPv + fPvidy
Jo Jo
(23)
PR uf + fPuydx + | (FP v + fPvi0)dx
Jo Jo

Since periodic boundary conditions are applied on the surfaces of the unit-cell,
the forces on the left and right surfaces should be equal and opposite, and so are
the forces on the top and bottom surfaces. For example, f{’ = —fi}’. The dis-
placements of points on opposite faces of the unit-cell differ by a constant, either
0 or a or b depending on the loading case [see Figures 6(a) and 6(b)]. Substitut-
ing the periodic BC’s in Equations (22) and (23), we find that all terms on the
right hand side of Equations (22) and (23) vanish except the last term in Equation
(22) and the first term in Equation (23). Then equating W, and W, we obtain

bs fPdx = a s fPdy (24)
0 0
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The above equation can be rewritten as

b
0

i 1
;s fibdx = gs firdy (25)
0

From the definition of macrostresses given by Equation (8) we obtain
g = gt (26)

Substituting the above relation in the constitutive equation of the homogenized
medium (Equation 1) we obtain

C21 = Cu (27)
In a similar manner all other symmetry relations (C;; = C;;) can be derived.
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