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ABSTRACT

An approximate Green's function for surface displacements in an orthotropic
beam is derived as the superposition of the half-plane solution for
displacements and the beam theory deflections. The Green's function is used to
Jormulate the integral equation for the problem of smooth contact between a
rigid cylinder and a simply supported orthotropic beam. The in tegral equation
is solved using a least-squares approximation procedure. The contact stress
distribution is presented for three materials with different degrees of
orthotropy. Numerical results are given for contact Jforce—contact length and
contact force—indentation relations. The effects of curvature of the deflected
beam, shear deformation and length-to-thickness ratio of the beam on the
contact behavior are discussed.

1 INTRODUCTION

The problem of contact between arigid cylinder and an orthotropic beam
has two important applications: flexure tests for characterizing composite
materials and low-velocity foreign object impact force estimation. In three-
point and four-point flexure tests, the loading fixture consists of loading
noses which have finite radius of curvature. It has also been reported that
the stresses in short orthotropic beams under flexure are significantly
different from those derived from beam theory results.! So an estimation of
actual contact area and the contact stresses therein is essential for
meaningful interpretation of test results. In low-velocity ‘foreign object
: 95
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impact problems it is assumed that the local elastodynamic effects can be
approximated by static contact behavior.? In that case the results of contact
problems find application in the computation of impact force history, and

- also an estimation of stress concentrations in the vicinity of impact. In some

cases static indentation tests can provide information on the impact
resistance of a composite laminate.® Hence there is a need to develop simple
analytical methods to solve contact problems involving laminated
composite structures. In this paper we consider the simplest composite
structural element, namely an orthotropic beam.

The problem of contact between a rigid cyhnder and an orthotroplc beam
has been previously solved by Sun and Sankar,* and by Keer and Ballarini.”
The basic principle in both methods was the use of elasticity equations to
describe the local behavior and of beam theory for the global behavior. In
this paper it is shown that the Green’s function for surface displacements in
an orthotropic beam can be obtained by adding the Green’s functions for an
orthotropic half-plane and an orthotropic beam. Then the Green’s function
can be used to formulate the integral equation for the contact problem,

- which can be solved numerically.

Numerical examples are given for the problem of central indentation of an
orthotropic beam by a rigid, smooth cylindrical indenter. The results
reported are contact stress distribution beneath the indenter, contact force—
contact length relations and contact force—indentation relaticns. The
contact stress distribution is computed for beams of three materials
(graphite/epoxy, glass/epoxy and boron/epoxy) with different degrees of
orthotropy. The effects of shear deformation on the contact behavior are
discussed by considering the graphite/epoxy beam as an example.

2 APPROXIMATE GREEN’S FUNCTION

In this section an approximate Green’s function for surface displacements in
an orthotropic beam is proposed, and its accuracy is demonstrated using
some numerical examples. The procedure is similar to that used for the case
of an isotropic beam,® and is based on the superposition procedure
explained in Ref. 7. Consider the problem of a simply supported orthotropic
beam of rectangular- cross-section and unit width subjected to a
concentrated force, P, as shown in Fig. 1(a). The principal material directions
1 and 2 are parallel to the x and y axes respectively. A state of plane stress
parallel to the x—y plane is assumed. In the context of contact problems our
interest is in determining the surface displacements, v(x, 0), in the y-direction.
We shall show than an approximate expression for displacements can be
obtained as the superposition of the orthotropic half-plane solution for v-
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Fig. 1. Principle of superposition for calculating surface displacements in an orthotropic
beam.

displacements and the beam theory deflections due to the concentrated force
P ie.

o(x, 0) = 0,,(x, 0) + 1, () (1)

where v, and v, denote the half-plane displacements and beam theory
deflections respectively.

The solution to the problem in Fig. 1(a) can be obtained as the
superposition of solutions of systems shown in Fig. 1(b) and (c). The
expression for surface displacements due to a concentrated force, P, in an
orthotropic half-plane under plane stress can be derived as®

v,(x,0) = —k, Plog|x| + const. S V)
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where k, =(, + 1,)/nE,, A, and 1, being the roots of the characteristic
equation

S11/14 - (2512 + Sss)/lz + Szz =0

where S;; =1/E,;, S,,=1/E,, S¢¢ =1/G, and S|, =—v,,/E;. E; and E, are
the Young’s moduli in the 1 and 2 directions, G, , is the shear modulus in the
1-2 plane and v, , is the Poisson’s ratio. The constant term in eqn (2) cannot
be determined uniquely in half-plane problems, but it will be seen later that
in contact problems we need only relative displacements, and there is no
need to evaluate the constant. ,

The displacements, v,,(x,0), of the system shown in Fig. 1(c) may be
obtained from beam theory equations. The justification for using beam
theory is that now the load is somewhat distributed and also the
displacements are evaluated not on the loading face but on the opposite face
given by y=0. Further it will be shown that the displacements, v,,, are
approximately equal to the deflection, v,, in a beam subjected to a
concentrated force, P, as shown in Fig. 1(d). The stresses in the half-plane due
to the concentrated force are®

—P(L; + )</ S11S,,c088
Opr = : ;rL(@)n 22 oo = Trg =0 3)

where

L(0) = S, sin* 0 + (25, , + Se¢) sin? Hcos? 6 + S,, cos* B

and 6 is measured counter-clockwise from the y-axis. The tensile radial
tractions, ,,, acting on the beam in Fig. 1(c) are equal and opposite to g,,
given in eqns (3), i.e. ¢,, = — g,,. The bending moment about the centroid at a
section passing through the point E (Fig. 1(c)) can be easily calculated if we
note that the radial tractions on face ABE are statically equivalent to the
radial pressure over the circular arc FG of an arbitrary radius r in Fig. 1(b).
The resultants of the radial tractions on face ABE are F, and F, acting at the
origin, and they can be derived as

/2
F.= J (¢,,sin B)r d6 4
@
C /2
F,= J (¢,,cos O)rdo %)
¢

where ¢ = tan™(x/h). After evaluating the integrals in eqns (4) and (5) we
obtain
F.= P2 ,[In (x? + 23h%) — In (x* + AZh®)]/27(A, — Ay) (6)
F,=(P/2) = P[4y tan™" (x/A,h) — 2, tan™" (x/2 i)]/n(Ay — 42) - (7)
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The expression for bending moment is
| M(x)=E,Id%,,/dx* = F.hj2 — Fjx — Pg(s — x) (8)

In eqn (8) 7=/%/12 and the reaction P, = P(1—s/I). The beam deflections
can be obtained by integrating eqn (8) twice.

In the numerical examples the orthotropic elastic constants were assumed
to be £, =200GPa, E|/E, =40, E,/G,, =2, v;, =025 and s=1/2. The Ifh
ratio was varied from 8 to 20. The constants of integration in eqn (8) were
evaluated using the conditions that v, =0 at x=/and du,,/dx =0 at x=0.
The displacements were then compared with beam theory deflections due to
the concentrated force, P, acting at x=0 given by ’

v(X) = P(I® — 61x* + 4x3)/48E, I

Comparison of v, and v, for //4=101is given in Table 1. Tt may be seen that
the maximum difference of about 4% occurs at the center of the beam. The
error in approximating the system in Fig. 1(c) as that in Fig. 1(d) increased as
the //h ratio was decreased. For slender beams, [/ = 20, the max1imum error
was about 1%, and for //h=8 the error was about 6%. It should also be

' remembered that v, is only part of the solution to which vy, the half-plane

displacements, have to be added to obtain the surface displacements. This
will further reduce the error due to the approximation. Thus we have shown
that the surface displacements due to a concentrated force in an orthotropic
beam can be approximated as the sum of the half-plane solution for
displacements and the beam theory deflections.

The above superposition procedure is, in fact, a local-global ‘technique
wherein the elasticity solution and the beam theory deflections describe the
local and global behavior respectively. Numerical examples show that the
lower limit of the //A ratio is about 8 for this technique to be valid. There will
be an upper limit also. If the beam is very thin, then in reality the beam
behavior will dominate the local indentation behavior, but the superposition
method will artificially introduce significant half-plane displacements. The

TABLE 1
Comparison of Deflections v, and Displacements v,

X (EJIPRY, (B /PRy (0~ 0p)/s

00 20-833 19958 © 0042
01 19667 18-889 0-040
02 16-500 15-904 0-036
03 11-833 11-439 0-033
04 61667 59737 0-031

0-5 0-0 - 00 0-0
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error is in the calculation of displacements in the system shown in Fig. 1(c)
using beam theory. For thin beams the tractions, ¢,,, on the bottom surface of
the beam in Fig. 1(c) will still be concentrated around x=0. A better
approximation can be obtained by solving the problem of surface loads on
the upper half-plane, and repeating the superposition procedure until the
traction concentration is sufficiently reduced to make use of beam theory for
computing displacements. On the other hand, for very thin beams, beam
theory itself will be good, and there will be no need for superposing elasticity
solutions. In this paper we assume that the beam is sufficiently thick so that
the superposition principle is applicable.

3 SMOOTH INDENTATION BY A RIGID CYLINDER

In this section we shall apply the approximate Green’s function for solving
the problem of contact between a rigid smooth cylinder and a simply
supported orthotropic beam (see Fig. 2). The //A ratio is assumed to be equal
to 10'so that the approximate method described in the previous section will
be applicable. The indenter is assumed to have a radius of curvature R, and
its profile is approximated by y = — x?/2R. The problem is defined as follows.
For a given contact length, 2¢, find the contact stresses, p(x) = —g,,, beneath

yy?
the indenter, the total contact force, P, and the amount of indentation, «,

defined by
o= (0, 0) — v(0, A) 9

The integral equation for p(x) is -

Jcﬂaﬂxadé=A—%ﬁﬂR) x> (10)

-C

where g(x,¢) is the Green’s function for surface displacements in the
orthotropic beam, which can be written as

g(x, &) = gu(x, &) + g,(x, €) (11)
gulx, &) = —k, log|x — | + const. (12)
go(x, &) = (1= 2&)(I + 2x)(0-51* — x* — &2 — Ix + 1&)24]E,]  x<¢

g6 O = ([ + 28I — 2x)(0-SI2 — x* — B2+ [x — IE)2AIE, ] x2¢

In eqn (10) A is the indenter displacement, which is also equal to (0, 0), and
can be written as

(13)

A=Jcmaaaad¢ e

=-c
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Fig. 2. Central indentation of a simply supported orthotropic beam.

From eqns (10) and (13) we obtain

J_ Cp(é)[g(O, )—gxldE=x*2R  |x>c (15)

It may be noted that the constant term in eqn (12) will not appear in eqn (15).

The numerical procedure for solving the integral eqn (15) is explained
below. Since the pressure distribution is symmetric about the beam center;.
we will only consider the region x > 0. The pressure distribution, p(x), can be
assumed to be of the form

px)= Z pillyx) (16)

where _
Ix)=1 (j—1)¢/Ny< x < je/N,
II;(x)=0 (— De/Ny> x> je/N,

and N, is an integer. The coefficients, pj, are determined by choosing a

number, N, of collocation points where eqn (15) is satisfied. This procedure
results in a set of linear equations:

(17)

Na

ZAl.jpj=xi2/2R i=1,...,N, (18)

j=1

Aij=J ch(f)[g(O,C)—g(xi,é)]dff - (19

-




102 B. V. Sankar

In the numerical examples N, was equal to 35, N, was equal to 40, and the
IMSL least-squares subroutine LLSQF was used on a VAX-11/780
computer to solve the system of eqns (18).

The total contact force, P, is given by

P =(2¢/Ny) Epj (20)

The amount of indentation is defined as the difference between the
displacement of the indenter and the displacement, v(0, 2) (see eqn (9)). The
latter can be assumed to be equal to the beam theory deflection, v,(0). Thus

o = 1(0, 0) — ,(0) 21)

Such a definition of indentation has been found to be useful in low-velocity
impact force calculations. From eqns (11), (14) and (21) we obtain

a= | roa0.00 @

It may be noted that the Green’s function, g, (x, £) (see eqn (12)), contains an
indeterminate constant term. In order to eliminate the constant we can
subtract the function g,(//2, £) from g, (0, &) in eqn (22), since we know that
v(l/2,0) is equal to zero. Thus we get the result

Na

a=zp,- J T80, 8) ~ 012, O de (23

ji=1
In evaluating the integrals in eqns (19) and (23), an expression for normal
displacements on the boundary of the half-plane due to a uniform load, say
Po Over —t<x<-+t, is needed. For the case of plane stress the relative
displacements can be expressed as'® '

0,(x,0) — 0,(0,0) = —k, pot[(1 — %) log|1 — X| + (1 + %) log |1 + x[] (24)

where x = x/t.

4 NUMERICAL RESULTS

In the numerical examples three orthotropic materials were used. Their
elastic constants are listed in Table 2. The length of the beam is taken as
100 mm and //A=10. The width of the beam is assumed to be unity. Two
indenters, R =3-125mm and R =25mm, were used. The indenter with the
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TABLE 2
Elastic Constants of Orthotropic Materials
Material E, E,JE, G1./E, Via
(GPa)
T e Graphite/epoxy 200 00250 0-0125 025
o ff Glass/epoxy 50 0-3333 0-166 7 025
e S i it Boron/epoxy 200 01 : 0-0333 03

smaller radius is typical of the loading noses used in three- -point and four-
point bending tests of composite specimens. The larger indenter represents
the prOJectlles used in low-velocity impact testing of composite structures.

4.1 Contact stresses

For R=3125mm the calculations were performed up to ¢/R=0-5. The
contact stress distribution was the same as the Hertzxan solution for an
orthotroplc half-plane given by

p(x) = (2P/rc) /1~ (x/c)? (25)

This is because the indenter radius is so small compared to the average
radius of curvature of the deflected beam that the contact behavior is
essentially that of the orthotropic half-plane.

The contact stresses for R =25 mm are plotted in Figs 3-5. Similar results
have been obtained previously in Ref. 4. It may be seen that for small c/h

A S e e 1 25
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e e, e .8} -1
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Fig. 3. Contact stresses in a graphite/epoxy beam.
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Fig. 4. Contact stresses in a glass/epoxy beam.

values the contact stress distribution in all three beams is essentially
Hertzian. The severity of deviation from the half-plane solution for large c/A
ratios depends on the degree of orthotropy defined by E,/E;. In graphite/
epoxy beams (Fig. 3) the deviation from the Hertzian solution is less than
that in glass/epoxy (Fig. 4). It should be noted that in glass/epoxy beams
(Fig. 4) the contact stresses in the center of the contact region become zero
for ¢/h = 3-5, which indicates the impending separation of the beam from the
indenter. In the case of boron/epoxy (Fig. 5) the non-dimensional contact
stresses for a given c¢/h are intermediate between those of the other two
materials. It is evident that E; controls the beam behavior and E, controls
the local deformations. For smaller E,/E; values local indentation
dominates bending and the deviation from the Hertzian solution is small,
whereas for larger E,/E, the effects are opposite.
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0 2 4 .6 8 1.0

NORMALIZED DISTANCE, x/c
Fig. 5. Contact stresses in a boron/epoxy beam.
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Fig. 6. Contact force-contact length relation in a graphite/epoxy beam.

4.2 Contact force—contact length relations

We shall consider the graphlte/epoxy beam as an example to study the
relation between the contact force and the contact length. For R=3-125mm
the P—c relations were the same as those for an orthotropic half-plane given
by

P=kc* (26)

where k =1/(2k, R). But for the case of the larger indenter, R = 25 mm, the
P— relatlons were significantly different. Referring to Fig. 6, for ¢ =10mm
(¢/h=1) the contact force, P, is much less than the corresponding half-plane
contact force. It may be noted that for ¢/4 =1 the contact stress distribution
was almost Hertzian (Fig. 3). Now the bending of the beam has a significant
effect because the radius of curvature of the beam is comparable to the
indenter radius. If we consider the problem as that of two curved bodies in
contact, 10 then we obtain

P=k(1—R/R,)c? 27
where R, is the average beam radius at the center given by - |
R, =4E I/P] (28)
Eliminating R, from eqns (27) and (28), the P—c relation becorﬁes
P=k.*/(1+ Bk.c?) ’ (29)

where f=RI/A4E;l. From Fig. 6 one can see that eqn (29) is a good
approximation for the load—contact length relation in an orthotropic beam.
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4.3 Contact law

The contact law describes the relation between the contact force and the
amount of indentation. The load—indentation relation in the graphite/epoxy
beam for R =25 mm (filled circles) is compared with the half-plane solution
in Fig. 7. In the case of half-plane the displacements cannot be determined
uniquely. This difficulty was overcome by defining the indentation as

+

OO0, — g 2014 (30)

-

o, =0,(0,0) — v,(//2,0) = j

where the contact pressure, p(x), is given in eqn (25). Numerical integration
was used to evaluate the integral in eqn (30). It was found that the load—
indentation relation for the half-plane may be approximated by a power law
of the type

P, =k, G

In order to get a closed-form expression for the contact law the integral in
eqn (30) should be evaluated exactly. v

For the present example the exponent » in eqn (31) was equal to 1-153 for
all three materials. The contact coefficients, k,; were 2798, 8188 and 8987 (N-
mm units) for graphite, glass and boron/epoxy beams respectively. The
coefficient k, and the exponent n should be functions of beam dimensions,
material elastic constants and the indenter radius, R. The contact force-
indentation relation for graphite/epoxy is plotted in Fig. 7. It may be seen
that the contact law of the beam is not much different from that of the half-

10° - T T T T 1T T 1]
[ Graphite/Epoxy Beam ]
I £ =100 mm, h = 10 mm 1
T x=0,R=25mm :
z | i
o Equation (35)
m
Q .
% Half-pl
- alf-plane
Q1o g P 3
= ]
Q N .
<
[ - .
4
b -
© = eNumerical Solution
10° 1 I ! [ N
10° 10'

INDENTATION, o {mm)

Fig. 7. Contact force-indentation relation in a graphite/epoxy beam.
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plane. A more accurate expression for contact law may be obtained as
explained below.

Let us assume that the contact length is small (¢/h< 1), and that the
Hertzian solution is a good approximation for contact stress distribution.
Since the displacements are proportional to the load, the indentation, oy, 1N
the beam may be related to the half-plane indentation, 0, as

o /o, = P, /P, ¢ = const. ‘ (32)

where P, and P, are'the contact load in the beam and half-plane respectively.
The load—contact length relatlons obtained previously, are

P, =k.c? (33)
P, = k(1 + Bk.c?) (34)

The load-indentation relation for a beam is obtained by eliminating P,, «
and ¢ from eqns (31)+34). The result is

Pyl —BP) ™ =k (35)

From Fig. 7 it may be seen that eqn (35) is a better approximation for the
contact law for an orthotropic beam.

It may be noted that the indentation starts decreasmg as the contact force
is increased (see end portion of beam indentation curve in Fig. 7). A similar
behavior was also observed in the case of indentation of isotropic beams.*!
According to our definition, indentation is the difference between the center
displacements at the top and bottom surfaces of the beam. As the beam
radius of curvature approaches the indenter radius there is a wrapping effect
which distributes the load over a larger area, thus reducing the amount of
indentation. The reader is referred to Ref. 11 for further discussion on this
non-unique type of load-indentation relation.

For the smaller indenter, R = 3-125 mm, the beam bending effects were not
significant, and the contact behavior was similar to that of the half-plane.

h

4.4 Shear deformation

The effect of shear deformation was considered by including the additional
deflections due to shear deformation in the Green’s function for the beam,
8y(x, £). If we denote the deflection due to shear deformation as g,(x, &), then

8x, &) =w(l = 28)(I +2x)/4lG ,h  x<¢
8%, &) = w(l — 2x)(I + 2&)/41G . h x=>¢
where x is the shear correction factor.

A graphite/epoxy beam was considered in the numerical examples on
account of its small G, ,/E; ratio. x was taken as 5/6. The shear deformations
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Fig. 8. Effect of shear deformation on contact length.
had no significant effect on the non-dimensional contact stresses,'? but they
had considerable effect on the contact length and indentation as shown in
Figs 8 and 9. In general, inclusion of shear deformations increases the
contact area for a given contact force but reduces the amount of indentation.
In other words, shear deformations add to the beam bending effects.
Furthermore, the effect is more pronounced in the case of the larger indenter.

4.5 Effect of beam dimensions

- Another important aspect of beam indentation problems is the effect of
Befiie et . beam dimensions relative to the indenter radius. Unfortunately all available

5
10 = T T T Illll] T T T llllII T T T7TT1TH
. ) E Graphite/Epoxy Beam ) 3
filine R -4 =100 mm, h = 10 mm 4
, g i
o
.10 E E
. . P E =
PR iz i IR - Lades o Q - -
o0 b m
AP - (o} - -
u- -
3)
: - . =3 1035' =
S e e = = =
z - ]
S . o - ]
o u — -
1()2 o111t Lo1oreanal o1 1111
102 10’ 10° 10

INDENTATION, o (mm)

Fig. 9. Effect of shear deformation on indentation.
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Fig. 10. Effect of //h ratio on contact length.

studies are numerical in nature, and the role of beam dimensions on the
contact behavior cannot be brought out very clearly. In this regard a closed-
form solution for the integral equation (10) in terms of various beam
parameters will be helpful, and this is the subject of a forthcoming paper.!?
However, the present method was used to study the contact behavior of a
graphite/epoxy beam with //A=20 (/=100mm and h=5mm). The non-
dimensional contact stresses did not differ significantly from those for
I/h =10, but the P-c and P-a relations for I/ = 20 plotted in Figs 10 and 11
respectively deviate from the results for the thicker beam. Obviously the
reduction in thickness adds to the beam bending effects, but it is less
dominant when the indenter is sharp.

5

10 T T TTTIIT] T T T TT1777] T T 17 E:
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z [ .
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1 1111l 1 1 11 |I|l| § I N 1 ]
1g" 1¢° 10"

INDENTATION, o (mm)

ig. 11. Effect of //A ratio on indentation.
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5 CONCLUSIONS

A quasi-exact solution for displacements on the surface of a slender
orthotropic beam (//2>8) can be obtained as the superposition of
displacements in an orthotropic half-plane and beam theory deflections.
This simplifies the solution procedure for contact problems. Although for
small contact lengths the contact stress distribution is elliptical, the relation
between contact force and contact length is affected significantly by the
curvature of the deflected beam. The deviation from half-plane contact
stresses for higher ¢/h values depends on the degree of orthotropy defined by
E,/E,. A better formula for the load—contact length relation can be obtained
by considering the problem as that of contact between two curved bodies.
The curvature effect on the contact law is not very significant, but again the

contact law can be modified by including the curvature of the deformed

beam.

Shear deformations have no significant effect on the non-dimensional
contact stresses for a given ¢/h ratio, but for a given contact force the contact
length increases and indentation slightly reduces because of shear
deformations. The effect of higher length-to-thickness ratio of the beam is
similar.

Although the numerical results give a qualitative picture of contact
behavior, a closed-form solution for the contact problem will be valuable in
understanding the effects of various beam parameters on the contact stress
distribution. Once the contact area and contact stresses therein are obtained,
elasticity analysis' can be used to find the detailed stress field in the
orthotropic beam.
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