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Abstract: A beam theory for laminated composite beams is derived form the shear deformable
laminated plate theory. The displacement field .z'n the beam is derived by retaining the first order
tefms in the Taylor series expansion for the plate midplane deformations in the width coordinate.
T/;e displacements in the beam are expressed in terms of three deflections, three rotations, and
one warping term. The equilibrium equations are assumed to be satisfied in an average sense over
the width of the beam. This introduces a new set of force and moment resultants for the beam.
The principle of minimum potential energy is applied to derive the equilibrium equations and nat-
ural boundary conditions. The solution procedure is indicated for the case of a cantilever beam
subjected 10 end loads. A closed form solution is derived for the problem of torsion of a specially

orthotropic laminated beam.

Introduction

Until recently advanced fiber composites were used largely in high performance air-
craft structures where weight savings were critical and cost was not an important factor. How-
ever development of new fiber and matrix materials, and advances in manufacturing pro-

cesses have made it possible to use fiber composites in a variety of commercial applications.



For example, fiber composites are used in automobi’le, boat and aerospace structures, robots
and in biomedical devices. They are used not only as laminated plates, but in various shapes
and forms. Composite beams have become very common in various applications, eg., automo-
bile suspensions and hip prosthesis. With the increasing use of composites there is a need for
simple and efficient analysis procedures for beam like structures. Unlike beams of isotropic
materials, composite beams may exhibit a strong coupling between extensional, flexural and
twisting modes of deformation. Hence the three problems cannot be treated separatély as
in the case of isotropic beams. Recently torsion of composite laminates have received some
attention, (Kurtz and Whitney, 1988) and (T5sai, Daniel and Yaniv, 1990). for the torsional
response of a composite beam can be used to experimentally determine the shear moduli of
unidirectional fiber composites.

Another important application of a general anisotropic beam theory is in analyzing
delaminations. When a symmetric beam develops a delamination, the two sublaminates on
either side of the plane of delamination will be in general anisotropic. In that case extensional
or flexural loading on the beam will introduce twisting of the sublaminates. If the delamina-
tion length is sutficiently longer than the thickness, then beam theory can be used to deter-
mine the strain energy release rate, eg., (Sankar, 1991).

In this paper a beam theory for laminated composite beams is derived from the shear
deformable laminated plate theory. The equilibrium equations are assumed to be satisfied
in an average sense over the width of the beam. This introduces a new set of force and mo-
ment resultants for the beam. The beam equilibrium equations are derived using the mini-
mum potential energy principle. The solution procedure is indicated for the case of a cantile-
ver beam subjected to end loads. The torsion problem for a specially orthotropic laminated

beam is derived in closed form and compared with some existing solutions. In addition to the



effect of shear deformation, the present solution to torsion problem includes the effect of

restrained end of the beam.

Review of Shear Deformation Theory for Laminated Plates

The Shear Deformation Theory (Whitney and Pagano, 1970) for laminated plates
is reviewed for the purpose of completion as well as to introduce some notations that will
be used in rest of the article. In the following sections boldface letters represent matrices,
a superscript T denotes transpose of a matrix, and a comma denotes differentiation with re-
spect to the.subscript variables following the comma. The displacement field in a shear de-

formable plate is:

u(x,y,z) =up(xy) + zUi(x,y) (1)
V(x’y ’Z) =V (x’y) + z‘lfy(xr})) (2)
w(x.y,z) =wp(x.y). 3)

The laminafe constitutive relation can be written as
F=CE 4)
where F is the vector of force and moment resultants, E is the vector of midplane deforma-
tions, and C is the laminate stiffness matrix:
FT=[N; N, Ny Mc My My, V, V3] | (5)

ETz[ExU €0 Yxy0 Kx Ky KyyVyz Vxz)

= [u():x Vuy (u01)’+V()»x) \lfx.x 1lfy.y (‘lfx,y+1|fy.x) (ll’y—*'w.y) (1|fx+w,x)] (6)
A B 0
C = [B D o] : (7)
0 0 K '

The A, B, and D are the extensional, coupling, and flexural stiffness matrices respectively
(Jones, 1975). Shear correction factors (Whitney and Pagano, 1970) are included in the lami-

nate shear stiffness matrix K . The strain energy per unit area of the laminate, ®;, can be



derived as

¢y =% ETCE. (8)

Derivation of a Coniposite Beam Theory
Consider a laminated composite beam shown in Figure 1. The midplane displace-
ments and rotations in equations (1-3) can be expanded in the form of a Taylor series in y.

Retaining only the first order terms iny, we obtain expressions for the midplane deformations

as
up(5.y) = U) +yF(x) )
vo(ey) =V(x) +yGlx) (10)
wo(5.y) = Wx) +y8(x) (11)
Yoy) = d(x) +yo) | (12)
Uyly) =Y +yHE). (13)

The terms U, V and W are displacements of points on the longitudinal axis of the beam (x—

axis). Similarly ¢ and ¥ are rotations along the x—axis. From the above kinematic assump-
tions the expressions for normal strain €, and shear strain v, take the form

&y =G+zH (14)

Yoz =V+yH+0 (15)

We will further assume that the normal strain €, and shear strain -y, vanish. This can be ac-

complished by setting G=0, H =(), and ¥=-0. These assumptions, along with the plate

theory assumption €,, =0, imply that beam cross sections normal to the x—axis do not undergo

any inplane deformations . Substituting the assumed displacement field in (6), the midplane

deformations take the form

where



El=[U 0 (V+F) ¢ 0 ‘(a—f)') 0 (p+ W) (17)

ET=[F 00 a 00 0 (a+8 (18)

and a prime denotes differentiation with respect to x. The constitutive relations (4) become
F = CE + yE) - | (19)

A new set of force and moment resultants for the beam are defined as follows:

_ +b/2
F(x) = [ F(x,y)dy (20)
-b/2
i +0/2
F(x) = J yF(x,y)dy - (21)
-b/2
Then the laminate constitutive relations (19) take the form
F = bCE (22)

A b3 N .
F=|—]CE-: (23)
12/ -_

In deriving (22) and (23), C is assumed to be constant. Explicit forms of the laminate constitu-
tive relations are presented in the following four expressions (24—27) as they will be used in

the next section:

Ay A By B U’

Ny |
Ny | _ pidis Aes Big Bos|)V' + F | (24)
M, By Bis Du Dis|| ¢
My Bis Bes Dis Desl a6
Ve = bidss(g + W) 23)
Rl _ (2} [4u Bu | [F. (26)
M, 12/ | Bu Du| |a
) 3
v, = (%)1&455((1 + 0') 27)



where the bar and hat accents associate the resultants in the obvious way. In equations (25)

and (27) «2 is the shear correction factor. From equations (8) and (16) the strain energy per

unit length of the beam, ®p , can be derived as

+b/2 3\ N
Dp :J o dy = | L )|eETCE + | & |ETcE |- (28)
b2 2 12

1n order to derive the equations of equilibrium for the beam, we apply the principle
of minimum potential energy. For the purpose of illustration we will consider only transverse
loading, g(x.y), in the z—direction acting on the beam surface. The total potential energy I

is the sum of strain energy in the beam, @, and the potential of the external force, . The

expressions for the energy terms are derived as shown below. Assuming L is the beam length.

. ,
o = [ ®Op dx (29)
0
L (+b/2 |
xX= —J J q(x,y) wolx,y) dy dx (30)
0 J-b/2

Substituting for wy(x.y) from equation (11) we obtain

L
x = - J [Wx) + o)) dx €2y
0
where g and § are given by
+b/2 A )
qx) = J q(x.y) dy (32)
-b/2
+b/2 . '
a= | v d (33)
-b/2

App]ying the principle of minimum potential energy, (3I1= 0), (Reddy, 1986), we obtain the

following equilibrium equations and boundary conditions:




Variable Equilibrium equations Natural boundary conditions

oU dz* =0 N, oU =0 (34)(
oV dZ"’ = 0 Ny 6V =0 (35)
oW ‘Z g =0 TV, 6w = (36)
OF : N;,—m‘ =0 Ny 6F = 0 (37)
VT dx
00 L (M) + 4 = (V= H)06 = 0 8
0+ Vx—dg‘ =0 M, 04 =0 (39)
da : difx = Vi + My M, da = 0. | (40)

Substituting for the force and moment resultants in the above differential equations of equi-
librium in terms of displacement variables from (22) and (23), one can obtain a system of
seven ordinary differential equations for the seven unknown functions. In the following sec-
tion the solution procedure is illustrated for the case Iof a cantilever beam subjected to end

loads.

Cantilever Beam Subjected to End Loads
Consider the case of a cantilevered laminated beam of rectangular cross section sub-
jected to end loads only, ie., g(x,y) = 0. The first six equilibrium equations (34-39) can be inte-

grated to yield the following expressions for the force and moment resultants:

No-c (@)



Ve=C; (43)

V. = Cox + Cy (44)
DBy = Cs (45)
M,= Cx + Cq4- (46)

The constants C; through Cg can be determined from the forces and couples applied at the
end of the beam,x=L. It méy be noted that Cs is equal to the torque T applied at the free
end. The procedure for solving equation (40) is as follows. The laminate constitutive relations

(24) and (27) can be written as

]..\]er xju jm gu ~g16 V’Ul - gm ,

Ny - 16 A6 16 — D66 + 66 ., = 47)
Vi= My -Bi —-Bgs ~Djg D'sg | ¢ Dss
V, + My, = bSTe + bD'gsa (48)
where
, 2

D55 = TZ— ICZA55 : (49)
D'ss = Dss—Dgs. D'6s = Dgs + Dss - (50)

We take advantage of the known forms of the force and moment resultants in equations

(41)-(46) to rewrite (47) as

Fi + xFy = bSe -+ bSia (51)

where '
FT = [Cy Cy Cs Cs] (52)
FI =100 C; 0] (53)




Solving for e from (51) and substituting in equation (48) we obtain
Vi + My = STSUF, + 2F) + (bD' 5~ bSTS 'S )ar - (54)

Eliminating F* from (26) we obtain

~ b3 *® Bl_[ .
M, =—Dja +—=N, (55)
X 12 na Ay b
where
£ B2 z
Dj = Dy -—4- (56)
Ayl

Differentiating (55) with respect to x and using equilibriuxh equation (37), we obtain

dM\- b3 * dZCl Bll—
*eZophio 2N . (57)
A 12 Mo T4

Substituting from (54) and (57) into the last equilibrium equation (40), and noting Ny, = 5.

we obtain a differential equation in o(x) as

d’a ‘ 12 ByiC
o 22q = | === || STSUF, + xFy) — =2 (58)
a2 (b3D11)< 1S7HFL + 2T Ay
where
2= 12Ds ). (59)
D7,
Dgs = D'¢s—STS7IS, - (60)
The solution for « can be written as
) 12 _ By
a = CycoshAx + CgsinhAx - (HTD}]) <S'{S YF, +xF2)__ ;1111 ) , (61)

The constants 7 and Cg can be determined from the boundary conditions «(0)=0, and

Ajf_‘,(L) = (g, where Cy is a known applied force at the beam end. The expression for M, is



given in (55). The constants are found to be

12 ' _ B11Ca \
Cr=|—=55— §Ts-lp, - === (62)
7 <b3/12D11> ( . P Ay >
g 1 \[12¢5 Bu . 12\ ores
Co = a Buer v ) - CasinhAL + |~ |STSIF
8 (xcosth)[(an b3 AM( 2 “)> s <b312D11> 1>t
(63)

The next step is to solve for F(x). From the first of the system of equations (26)

dF 12 By \ da
ax <b3A11>( 2+ C4) (AM> I

Integrating (64) we obtain the solution for F(x) as

12 x? B
F=|-2 o5+ Cx |- ==Ja+ Cup- (65)

Since F(0)=(0)=0, the constant C1p=0. The solutions for ' and « can be substituted into A‘

(47) to obtain expressions for U’, V7, ¢’ and @', which then can be integrated. The con- .
stants of integration C1—Cj4 which arise can be found from the boundary conditions:
U(0) = V(0) = $(0) =6(0) = 0. The algebra is quite cumbersome in the general case and will not
be presented in this paper. However the solution for the case of forsion of specially ortho-

tropic beams will be presented in the following section.

Torsion of Specially Orthotropic Laminated beams

For specially orthotropic beams, B=0, A6 = Ays=Djs =D, =0. We assume that the
cantilever beam is subjected to an end torque T. Therefore the constants CL. Ca, (3, Ca. G |
and Cy are all equal to zero, and Cs=T7 Substituting for the constants in all expressions

derived in the previous section, we obtain the following:

10



Fi=[000T|

F>=[0000]T
D'Z
sTs-lg, . =2
! Des
D = 4D6§D55
Des
D1 = Dy
12 = 28DesDss
b*D11Dgs
c 12DssT
7
32D 1 Dgs
_ DssT
4bDssDgg

Cg = = Cytanh AL

a(x) = Cy(coshAx-1) + CgsinhAx

DssT ' .
= | —2 1 (coshAx—1-tanhAL sinhAx)-
( 4bDss5Dq > ( | )

Substituting for o(x) from (74) in (47) and solving for ¢’ , we obtain

g = (b_;%") (T—ngsa)-

Integrating (75) and noting that 6(0) = 0, we obtain the solution for angle of twist in a spe-

cially orthotropic laminated beam subjected to an end torque T

A A

(66)
(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

" :
O(x) = L _( DssT ) (smh/lx —x- tanh AL (cosh Ax - 1)) : (76)

— X
Degs

4DssDgsDis

11



For the purpose of comparison with available results we will introduce a nondimen-

sional tip rotation © defined as

o = HDstL) . (77)
TL

Then from (76) and (77) the solution for the tip rotation takes the form

D 2
'(1‘7)%:) tanh AL ‘
o=1420 \ "F/ . . (78)
Dss (1 +26_6) AL
Ds;s

In the above result, the first term on the right hand side corresponds to the classical theory
solution for isotropic beams. The shear deformation effects are reflected in the second and
third terms. The third term represents the effect of the restrained end x=0, where wafping
is prevented, ie.,(0)=0. In Figure 2 © is plotted as a function of N for various values of
(Dgs/Dss). It may be seen that the restrained end effects are felt only for AL <I0. Further the
restrained end effects are less pronounced as the ratio of the shear stiffness coefficients
(Dgs/Dss) increases. The effect of transverse shear flexibility (Z/Dss) is to increase the angle
of twist significantly.

We will compare our results with two available results. If we ignore the shear defor-
mation, ie. let Dss —co in equation (78), then we obtain

©=1+ tanh AL (79)
AL

which is identical to the result for an isotropic beam (Boresi, Sidebottom, Seely and Smith,

1978). If we ignore the restrained end effects by letting A\L—+o0 in result (78), then we obtain
e=1+=2. (80)

The above results can be compared with that of (Tsai, Daniel and Yaniv, 1990) for a 0° unidi-

rectional composite beam. Let us denote their result by ©, . In their notation

12




o, (1_ tanh[j’)_l ' &

where

b G
B (2h) 1052 (82)

In the same notation, result (80) obtained in the present study can be written as

o-1ed @

In deriving (81) and (83) the shear correction factor x? is assumed to be 5/6. The two results,
© and O, ., are compared for some practical range of 1/8 in Figure 3. The agreement is quite

good. The maximum difference is about 11%, which occurs at 1/8=0.288. It is interesting to

-1
gr%ﬁz(l—ta%hﬂ) =3 = }Sir%ﬁz(l +-§§) (84)

so that (©/©]) —1 as 1/B—ce.

note that

Conclusions

A beam theory for laminated composites has been derived. The displacements in the
beam are expressed in terms of three deflections, three rotations and one warping function.
The plate equilibrium equations are assumed to be satisfied in an average sense over the
width of the beam. This introduces a new set of force and mo;nent resultants for the beam.
The solution procedure is indicated for the case of a cantilever beam subjected to end loads.

A closed form solution is derived for the problem of torsion of a specially orthotropic lami-

13



nated beam. The solution takes into account of shear deformation as well as the effect of re-
strained ends. The result for angle of twist compare well with available solutions. The energy
expressions derived in this paper can be used to formulate a laminated beam finite element

which can handle complex boundary condtions and loading cases.
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Figure 1. Laminated Corhposite Beam
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Figure 2. Nondimensional tip rotation © (Equation 78)
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Figure 3. Nondimensional tip rotation © for long beams
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