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Fig. 2 Intersection patterns in the plane x;
of the subsystem displacements

immobile and possesses only first-order virtual mobility; it is
a first-order compound infinitesimal mechanism with three
virtual degrees-of-freedom and no kinematic ones.

(2) The two cones touch along a generator, thus deter-

- mining the displacement ratio and the corresponding direction
of compatible displacements of the two subsystems. This out-
come is inconclusive in that it only identifies a second-order
virtual displacement, but leaves the question on kinematic mo-
bility unresolved. At this stage it is only clear that the con-
straints are compatible to at least the second order and a higher-
order analysis is required for evaluating the system mobility.

(3) The cones intersect along two generators, thereby de-
termining two directions (displacement ratios) along which the
displacements of the two singular subsystems are compatible.
With these displacements possible, the system is kinematically
mobile, it is a finite mechanism with one kinematic degree-of-
freedom in each to the two distinct deformation modes char-
acterized by the two displacement ratios.

All three of the described situations are observed in the
course of varying the length L4 in the example system. As
discussed above, the problem size is reduced by switching to
a plane intersecting one of the cones over an ellipse. A suitable
plane is given by x4 = 1; introducing this into (9) and (10) and

.setting the resulting forms to zero yields )

' ql=3x§/2—2xz+3/2—x6+(1/2;-1/L4)x§=0, (11)

= 3/2- % +3/2- 26+ (1= 1/3.Tx3=0.  (12)

The length Lg= 3.7 has been chosen such that the graph of
Eq. (12), defining the displacement domain for the second
subsystem, is a relatively small ellipse (Fig. 2). This enables

the curve given by (11) to. be shifted relative to the ellipse by

changing L,. At L4 = 2 the curve is a parabola not intersecting
the ellipse, which produces outcome (1). With an increasing
Ly, (11) becomes an ellipse that first touches (12) (outcome 2);
intersects it (3); again touches it (2) and, finally, disengages
once again (1). :

Note in conclusion that unprestressable compound infini- -

tesimal mechanisms, along with the only class of unprestress-
able systems with
mechanisms—would require perfect geometric precision for
their implementation. A slight deviation from the nominal bar
lengths, while not precluding the possibility of assembling these
systems, would restore them to one of the two generic types—
geometrically invariant (with an ill-conditioned stiffness ma-
trix) or variant (with a very small domain of finite displace-
ments). ‘ -
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Conclusions
(1) Prestressability, i.e., the existence of stable virtual self-

stress, as a statical criterion of immobility in underconstrained
systems, is only sufficient. All even-order infinitesimal mech-
anisms and some compound infinitesimal mechanisms are un-
prestressable, yet kinematically immobile.

(2) The class of unprestressable systems with first-order
infinitesimal mobility is confined to compound infinitesimal
mechanisms. Remarkably, these include some topologically
inadequate underconstrained systems (i.e., ones, with the num-
ber of constraints smaller than the total number of degrees-
of-freedom, C < N). :

(3) Capitalizing on a geometric interpretation of indefinite
quadratic forms as convex conical surfaces, analysis of com-
pound mechanisms reduces to finding the common intersection
of several cones with one (hyper)plane in the space of virtual

displacements.
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A Beam Theory for Laminated
Composites and Application to
Torsion Problems :

| Bha{rahi V. Sankar

A theory for laminated composite beams is derived from the
shear deformable laminated plate theory. The displacement
field in the beam is derived by retaining the first-order terms
in the Taylor series expansion for the plate midplane defor-
mations in the width coordinate. The displacements in the beam

‘are expressed in terms of three deflections, three rotations,

and one warping term. The equilibrium equations are assumed

" to be satisfied in an average sense over the width of the beam.

This introduces a new set of force and moment resultants for
the beam. The principle of minimum potential energy is applied
to derive the equilibrium equations and boundary conditions.
A closed-form solution is derived for the problem of torsion

of a specially orthotropic laminated beam.

Derivation of a Composite Beam Theory
Consider a laminated composite beam shown in Fig. 1. The
midplane displacements u, g, Wo, and rotations ¥, and ¥, can

be expanded in the form of a Taylor series in y. Retaining only
the first-ordef terms in y, we obtain
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Fig. 1 Laminated composite beam

ug(x,y) =U(x) +yF(x) 6))
Vp(x%y)=V(x) +yG(x) - v @
wo(x,y) = W(x)+y8(x) ' ®3)
Y (X%,¥) =6 (x) +yor(X) @
Py (%,y) =¥ (x) +yH(X). (5)

The terms U, V, and W are displacements of points on the
longitudinal axis of the beam (x-axis). Similarly, ¢ and ¥ are

_rotations along the x-axis. From the above kinematic assump-

tions the expressions for normal strain e,, and shear strain v,,
take the form

ey=G+2H "~ (6
Yye=Y¥ +yH+0. )

We will further assume that the normal strain ¢, and shear
strain vy, vanish. This can be accomplished by setting G = 0,
H = 0,and ¥ = —4. These assumptions, along with the plate

theory assumption e, = 0, imply that beam cross-sections

normal to the x-axis do not undergo andy in-plane deforma-
tions. From the assumed displacement the midplane defor-
mations E can be expressed as

E=E+yE. ®)
where

E’= [t0,xV0,y (ugx+ UOx)\[’x,x’sLy, y(\bx.y + ‘»by,x)(‘l’y +Ww, y) (s + W,XE]Q)

ET=[U' 0 (V' +F) ¢ 0 (@a—8") 0 6+ W) (10)
ET=[F" 004’ 000 (a+6")] an

and a prime denotes differentiation with respect to x. From
(8) the constitutive relations F = CE become

F=CE+yE) 12)

where F is the vector of force and moment resultants and C
is the laminate stiffness given by (Whitney, 1987)

F= [Ne Ny Nx)’ M, My MX}’ V}’ Vi 13)
A B O
c=|B D 0. | (14)
0o 0o X| - - --~

A new set of force and moment resultants for the beam are
defined as follows:
’ +b/2

F(x,y)dy
-b/2

’f(x)=S (15)

. +b72 .
F(x) =S myF(x,y)dy- (16)

Then the laminate constitutive relations (12) take the form -
. ' ¥=bCE an
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. [P -
F={=]CE.
< 1 2> CE (18)
In deriv'igg (17) and (1A8'), C is assumed to be constant along
y. Explicit forms of the laminate constitutive relations are

presented in the following four expressions (19)-(22) as they
will be used in the next section: :

(N) .. [ 4uAsBy B U’
N; A A ’
Nay | _p| s 66 B16 Bes 14 —i,-F 19)
_A_:fx BllBlﬁpllDlé ] e
% By Bes D16 Des a-—o’
V= biAss (6+ W) 20)
Ny b\ [ AuBu | (F
(L , e
M, 12 By D (a )
N
Ve= (;) K°Ass(a+8") (22)

where the bar and hat accents associate the resultants in the
obvious way. In Egs. (20) and (22) «* is the shear correction

factor. The strain energy per unit area of the laminate, &,

can be derived as
1
&, =3 E’CE. (23)

From Egs. (8) and (23) the strain energy per unit length of the
beam, $p, can be derived as

+b/2 1 . ba
dp= S &, dy= (—) (bETCE + (—) E Tciz> .28
—b72 2 12 )

) The principle of minimum potential energy (Reddy, 1984)
is applied to derive the equations of equilibrium and the bound-
ary conditions. For the purpose of illustration we will consider .

‘only transvers loading, g (x,»), in the z-direction acting on the

beam surface. The equilibrium equations and boundary con-
ditions are: ’

Variable Equilibrium Equations - Boundary Conditions
' dN. =
sU: —2=0 NSU = 25
o SU=0 (25)
dN, =
8V 7:1 =0 NydV=0 (26)
dv, =
SW: i g= Vow =
I +g=0 Bdw=0 (27
F: Ny-Txo0 RbF=0 (28)
dx
g ) o .
56: E(Vx—Mxy)+q=O (Vi=My)80=0 (29)
=AM, -
S¢: V,— X = MO =
¢ S 0 Kep=0 (30)
sa: My W Mpa=0. (31
. A dx x xy =V. ( )
In (27) and (29), ¢ and § are given by
+5/2
G=  a@nay 32

-b/2
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Fig. 2 Nondimensional tip rotation @ (Eq. (36))

+b/2

| '21=S yq(x,y)dy. (33)
-b22

" The solution to the problem of a cantilever beam sujected to

end loads is derived in Sankar (1991).

Torsion of Specially Orthotropic Laminated Beams

For specially orthotropic beams, B = 0, Aig = Ax = Dis
= Dsg =0. We assume that an end torque T is the only external
force acting on the beam. The solution for the angle of twist
is (Sankar, 1991) -

T DT
B(x)=—x— | ——+
=) Des <4D55D66D66>
% sinh)\x_x_tanhM
x )

{coshAx— 1)) (34)

where Dss = (b%/12)*Ass, Dss = (Dss—Deg) and Dgs = (Des +
Dsls‘?(;r the purpose of comparison \kith available results we will
introduce a nondimensional tip rotation © defined as
0= 4bDgsf (L)
TL
Then from (34) and (35) the solution for the tip rotation takes

the form
(l D66>~
D \
D 55/ tanhA\L

O=1+—-
D55 (1+9§§ .
D55

In the above result, the first term on the right-hand side cor-
responds to the classical theory solution for isotropic beams.
The shear deformation effects are reflected in the second and

@35)

(36)

third terms. The third term represents the effect of the re--

strained end x = 0, where warping is prevented, i.e., a(0) =
0. In Fig. 2, © is plotted as a function of AL for various values
of (Dgs/Dss). It may be seen that the restrained end effects are
felt only for AL < 10. Further, the restrained end effects are
less pronounced as the ratio of the shear stiffness coefficients
(Des/Dss) increases. The effect of transverse shear flexibility
(1/Dss) is to increase the angle of twist significantly.

We will compare our results with two available results. If
we ignore the shear deformation, i.e., let Dss — o in Eq. (36),
we will obtain

‘tanhAL

= 37
61+M (37
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Fig. 3 . Nondimensional tip rotation © for long beams

which is identical to the result for an isotropic beam (Boresi,
Sidebottom, Seely, and Smith, 1978). If we ignore the re-
strained end effects by letting AL — oo in result (36), then we
obtain

Des
Ds;s

The above results can be compared with that of (Tsai, Daniel,
and Yaniv, 1990) for a 0 deg unidirectional composite beam.
Let us denote their result by ©;. In their notation

=1+ (38)

0,= (1_@@) —1 (39)
B -
where
_(2) [1o8u
B= <2h> 10 o 40)

In the same notation, result (38) obtained in the present study
can be written as ‘

e=1+ [—;35
In deriving (39) and (41) the shear correction factor K is as-
sumed to be 5/6. The two results, © and O, are compared for
some practical range of 1/ in Fig. 3. ‘The agreement is quite
good. The maximum difference is about 11 percent which
occurs at 1/8 = 0.288. It is interesting to note that

-1
.2 _tanhB 2l 3
i (1 8 > 3= (HBZ)

so that (8/0,) — 1 as 1/8 — oo.

QY

(42)
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Fjortoft’s Theorem for a Parallel Flow

With a Free Surface

Johﬁ P. McHugh23 ,

1 Introduction

The stability of inviscid parallel flows has been intensively
studied in the past. The theory is reviewed by Drazin and
Howard (1966), Drazin and Reid (1981), and Craik (1985).
Several comprehensive and important theorems which have
been proven for flows between rigid boundaries are Rayleigh’s
theorem, Fjortoft’s theorem, and Howard’s semicircle theo-
rem. Rayleigh’s theorem and Howard’s theorem have been
extended to include a free surface by Yih (1972). Yih (1972)
also found a variety of results concerning the neutral modes.
The equivalent to Fjortoft’s theorem for a parallel flow with
a free surface is presented in-this Note.

2 Basic Equations

The flow is considered to be inviscid and incompfessible.
All variables are assumed to be the sum of a primary flow and
a disturbance quantity, and the primary flow is a parallel flow,

U(»). The equation governing stability is Rayleigh’s equation,
N UII
n_ 2 _ - O, 1
¢ —ofp—T ¢ 6

where ¢ is the stream function, « is the wave number, c is the
wave speed, and the prime denotes differentiation.
The free-surface boundary condition is
. U’ 1
? (U—C+F2(U—c)2
which holds on the mean free surface. Equations (1) and (2)
have been made nondimensional using the depth of the layer,
d, as the length scale, and the velocity range, AU, i.e., the
difference between the maximum and minimum values of U,
as the velocity scale. The Froude number is F = AU/\/g_a'.
Equation (2) appears in Yih (1972) (Eq. (11) in Yih’s paper)
in dimensional form.
The boundary condition on the flat rigid bottom is

¢=0. _ ®

3 Derivation of the Theorem

The coordinate system is chosen to be moving with the ve-

locity of the primary flow at the free surface. In this way, the
value of U is zero at the free surface. The difference between
this case and a primary velocity profile with a nonzero value
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at the free surface is merely a Galilean transformation by the
amount Uy, where Uyis the primary velocity at the free surface.

Multiply (1) by the conjugate of ¢, denoted by ¢*, and
integrate over the domain, integrating the first term in (1) by
parts, to obtain

Foarx * U” * * 7
[osareatfosars [T gyogie;, @
where again-the subscript” f refers to the valie on the free
surface. The term on the right-hand side of (4) contains ¢/,
which is evaluated using the free-surface boundary condition.
Equation (4) then becomes '
U’ ¢o* U 1\
Jl+g U—c dy= <" c +cmz>¢f¢f, (%)
where J; is the sum of the first two terms in (4). Note that U
does not appear in the right-hand side of (5), since Ur= 0.
The imaginary part of (5) is
e UTlgl? U 1 2 s
i\ 77+ 2., 4 =C; 3 a1 3 3 ] I-,
C’S U+ () V™ NG Pla+adp)'¥

, (6
where ¢, and ¢; are the real and imaginary parts of ¢, respec-
tively. For unstable flows, ¢; cannot be zero, and the remaining
terms in (6) must balance.

The real part of (5) is
S U'1¢12(U=-c,)
Nty =
(U—c)"+ (c)

U 1 ci-ct 2
= += lgfl*, (7
<cf +ct F? et +ch? ¢ M
The integral on the left-hand side of (7) may be split into two

integrals. One of the new integrals is the negative of the left-
hand side of Eq. (6), and may be replaced by the right-hand

_ side of (6). After some cancellation and rearranging, (7) reduces

to
uu”1gl? 1 g2
J+S—*- - e
U (@ YT TR

The right-hand side of (8) without the negative sign is assigned
the value J;, and it can be seen from (8) that J, is positive
definite. Equation (8) becomes

. UU"1gl? '
Jl+Jz+S (U—c+ () dy=0. ©®

The important conclusion from (9) may now be explained
as follows. Since the sum of J; and J; is positive definite, then
the integral must be negative definite. Since the integrand other
than U” U is positive definite, then the product U” U must be
negative somewhere in the domain of flow for instability. Note
that this conclusion is necessary for instability, but not suf-
ficient. A velocity profile may obey (9) and still be stable.

The coordinate system could be chosen so that the value of
U at the free surface, Uy, is not zero. The conclusion would
then be that U” (U~ U;) must be negative somewhere in the
domain of flow. Consider monotonic velocity profiles, for
which the quantity U— Uyis either negative or positive through-
out. The above result implies that U” and U~— U, must have

" opposite sign for instability.

This version of Fjortoft’s theorem with monotonic profiles
distinguishes between flows which are driven by a shear force,
such as wind on the free surface, and flows driven by a pressure
gradient or body force.?* The shear driven flows may be un-
stable while the others cannot. This result implies that the

®

*Noted by a referee.
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