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ABSTRACT

This paper addresses the issue of active vibration control using bonded
and embedded piezoceramic actuators and sensors. Two different piezoceramic
actuator and sensor models are presented. The effect of actuator/sensor dynamics
on the optimal placement of actuators and sensors is studied. A lightly damped
cantilever beam is used to illustrate these ideas. It is shown that control
effectiveness is maximized when the transducers are located at the root of the
beam.

1 INTRODUCTION

In recent years there has been considerable interest in the use of bonded
and embedded piezoceramic actuators and sensors for active vibration control
Piezoceramic transducers effect vibration control by introducing "active electronic
damping” to the structure. Several papers [1-91, have addressed the issue of
modeling piezoceramic actuators and sensors. The optimal location of
transducers for vibration control has been studied in [1.2.8],

Previously, the optimal placement of actuators and sensors has been
studied in the context of centralized versus decentralized control. It has been
reported that tip control is effective owing to the large response at the tip of the
cantilever beam. On the other hand the simulations reported by Baz and Poh [2],
and the experimental results of Hong et al [3], suggest that actuator effectiveness
is maximized when the actuator is located near the clamped end of the beam. In
order to better understand the problem of optimal location of sensors and
actuators, the problem is addressed in the context of sensor/actuator dynamics.
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This paper presents two different actuator and sensor models. The effect
of transducer dynamics op the optimal location of actuators and sensors is

2 MODELING ISSUES

In this section, two approaches to modeling piezoceramic actuators and
Sensors are reviewed. The differences in the modeling are highlighted, as
transducer effectiveness depends upon the underlying model. In Section 2.1, two

employed by Hong et al, while sensor model B (SMB) describes the sensor as
modeled by Hanagud et a]. Similarly, in Section 2.2 the actuator mode]
developed by Hong et al (AMA) and the actuator model developed by Hanagud et
al (AMB) are presented.

2.1 Sensor Models

Model A
The sensor voltage generated by a piezoceramic sensor placed between

locations [x,_,,x.] on a uniform beam of width b, is given by

o (9017 [*W(x,)
{2l (e

where Oy is the charge coefficient, C is the capacitance of the Piezoceramic
sensor and W(x,t) is the transverse displacement of the beam. On Integration,
the sensor voltage can be €xpressed as '

=2 BW(x,t)I _W(x) o
Vs(?) (c )[ S N -x=x.~.1 ] @

vs<z)=_(&Jcﬂ(x, W (x,.0) ®
C
where C%(x,) is a constant that can be evaluated in terms of the slope- ' Fig

displacement ratiog of the beam. This approximation is subject to the
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assumptions that: (a) the sensors are short, (b) the sensors are placed near the
root of the beam, (c) the neighboring modes give slope displacement constants
of nearly the same value and (d) that each mode is equally weighted in the beam
displacement as well as the beam slope. It follows that, if Eq. (3) is used to

model the sensor voltage, then the sensor must be located near the root of the
beam.

Model B

The one-dimensional constitutive equations for the piezoceramic
material are given by :

Ou| (Cy -Hl[ey,

= @
E, -H B ||D,
The above equation may also be written as
& B Hfoy,
=4 G

D, 2 G| Es
' -1
where 4 = (BC” - H? ) » Oy is the stress, €, is the strain, Ej the electric

field and D; is the charge per unit area. G is the elastic modulus under

constant electric displacement, H the piezoelectric constant and B the dielectric
constant under constant strain,

Figure 1
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2.2 Aétuator Models
Model A

et al is shown in Figure 2. The strain in the piezoceramic layer is given by

Sugavanam, Varadan, Varadan & Sankar

For the sensor configuration shown in Figure 1, the sensor is ideally a
pure current source. In other words, for the zero impedance circuit shown, the
second terms on the right-hand side of Eq. (5) are much smaller than the first
terms on the same side of the equation. The sensor thickness is typically an
order of magnitude smaller than the elastic beam height 24, Consequently, the
strain distribution through the sensor cross section can be assumed to constant
and equal to the upper fiber strain of the beam at z = +4. Thus for the sensor,

&y = Dfoy; =—hW"(x,1)
. ©®
Dy = AHoy, =B HRW" (x,1)

where ()" denotes partial differentiation with respect to the variable x. Since the
sensor current is proportional to the rate of charge developed,

i(0)= f Dyb,dx %)

where b is the width of the sensor and the overdot denotes partial differentiation
with respect to time. The sensor is assumed to lie in the subdomain x;_j<x<x;,
z = h. It follows that the sensor output voltage is given by

v, =—R,i,(1)= bsﬂ‘thJ:]W" (x,0)dx ®
On integration .the.sensor output letége can be expressed as
v, =—k[6,-6,,] ©
where '6.‘- =W(x,t) and 6,_, = W(x;_;,t) and k, = be_vﬁ_th.

It may be noted that in contrast to SMA, the sensor voltage in SMB is

proportional to the differential of the time rate of the slope over the length of the '
sensor.,

The schematic for the piezoceramic actuator model employed by Hong

(10)
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Figure 2

where d3; is the piezoelectric constant, & the thickness of the piezoceramic layer
and vu(1) the voltage applied to the piezoceramic actuator. The corresponding
Stress is given by

d
oy =E, 3(;"0 (1)
where Ej, is the elastic modulus of the piezoceramic material. This stress
&enerates a bending moment aboyt the neutral axis which may be expressed as
' h+& )
My=[""E, d3]v"bazdz (12)
h )

It then follows that the moment generated by the piezoceramic actuator is given
by

My=E,dv b, (h + g) | ‘ (13)

It is seen that the moment generated by the piezoceramic actuator is directly
proportional to the actuator voltage. Clearly, for an actuator of constant width
ba, the bending moment will be constant over the length of the actuator, and the
bending moment diagram will be as shown in Figure 3. In B3], Hong et al use
the idea of "equi-deflection’ to relate the actuator voltage to a point load i.e. the
moment M, is replaced by a point load that produces an equivalent tip
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deflection. When this is done, the corresponding point load F is related to the
actuator voltage as

E d,b
Fa zé&(}lﬁ-é)va

(14)
2 L, 2

where L, is the length of the actuator. Thus in AMA, the actuator is modeled as
a transducer producing a point force F 4 inresponse to the actuator voltage v,.
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Model B

In [9], Hanagud et al model the piezoceramic actuator as follows. The
voltage v, generated by the actuator can be expressed as

h+8
v, = hE3dz (15)

where E3 is the electric field in the piezoceramic layer. Substituting for the
electric field E3, in terms of the constitutive equations in Eq. (4), it follows that

+68
y, = L" (~Hey, +BD,)dz @16)

Since the thickness of the piezoceramic layer is much smaller than the height of
the elastic beam, it is reasonable to assume that the strain distribution over the
actuator cross section remains constant. It is also assumed that the electric

. . . . oD
displacement D3 is constant over the actuator thickness i.e. a—3=0.
/4

Rearranging Eq. (16) , and integrating it subject to these assumptions results in
the following expression :

p,=Y(0), Hey | 17
)3 55 + 3 €Y)]

Substituting for the strain €, in the piezoceramic layer,

18
B B

The stress in the layer is given by the constitutive equations in Eq. (4).
Substituting for D3 from Eq. (18), the stress in the actuator layer is given by

2

_THv, c, _% (h+0.58)W" (x,¢) @)

=5

With this expression for the stress in the piezoceramic layer, the moment on the
cross sectional face of the beam may be written as

oy

M=EW(x)+—Sula | 0)
(h+0.55)
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where I, which is the moment of inertia of the piezoceramic actuator, is given
by

I= %bﬁ +(b,8)(h+0.58) | @

Substituting for 7, in Eq. (20) and once again, using the fact that § << A, yields
the expression for the moment generated by the piezoceramic actuator

M—EIW"(x,t)=—bZ"

(h+0.58)v,(t) 22)

The similarity between Eqgs. (22) and (13) should be noted. In both cases, the
. ) .
moment generated is proportional to b,| 4+ ;)va (r). The signs can be adjusted

by reversing the polarity of the voltage signal. In both cases, the moment
generated by the piezoceramic actuator is directly related to the stress in the
piezoceramic actuator. In the case of the cantilever beam with tip loading, the
stresses are large near the root of the beam. This suggests that actuator
effectiveness can be maximized by locating the piezoceramic actuator at the root
of the beam. )

The sensor models are however quite different. In the case of SMA, the
sensor voltage is proportional to the slope differential over the length of sensor.
However, in the case of SMB, the sensor voltage is proportional to the
differential of the time rate of the slope over the length of the sensor.
Consequently, the effectiveness of the sensor location may be different for the
two sensor models. This issue will be addressed in the following section.

3. OPTIMAL CONTROL

The optimal control of a flexible structure using piezoceramic actuators

. and sensors is considered in this section. Consider a flexible structure embedded

with piezoceramic actuators and sensors. The finite element model of the
flexible structure is given by :

M§+Ci+Kq=F+F° 23

where M, C and KX are the mass, damping and stiffness matrices. The external
forces acting on the structure are denoted by F¢ and the control forces exerted by
the piezoceramic actuators are denoted by F. '

In 191, Hanagud et al used an optimal output feedback procedure
developed in (101 1o determine the control gain matrix G. Here, structural
control is effected using a linear quadratic regulator in conjunction with a
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Kalman estimator. There are several reasons for using the LQG procedure as
opposed to the optimal output feedback procedure. First, the optimal output
feedback procedure is an iterative procedure. The procedure requires an initial
guess at the control gain matrix G. This initial control gain must be chosen
such that it stabilizes the system. Next, the iterative procedure may converge to
a local minimum depending upon the choice of the initial control gain. Further,
every iteration requires the solution of two Lyapunov equations, and this may be
time consuming and computationally intensive as the size of the finite element
model increases. Finally, [1] addressed the issue of centralized control versus
decentralized control. On the other hand, the purpose here is to address the issue
of optimal location of actuators and sensors.

In order to solve the control problem, the structural dynamic equations
are cast in state space form as follows

X=Ax+Bu+r

SeCor 24)
where xe R",yeR’,

4= [-MO‘IK —M]‘IJ \ | =
B=[_M?1KDJ | B 26)
=0k @
' ={a"¢"} @8)
and

7= {0 M']F‘T} o (29)
Further,

K, =B7'Hb,hT, . (30)
and

K, =R, HbT, | | G1)
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where Tp is the actuator location matrix and T is the sensor location matrix. In

general, M, C and K correspond to a reduced order finite element model. The
control gain is obtained by minimizing a quadratic performance index in the
states and the controls '

J= jom (x"x+u"Ru)ar 32)

The matrix Q is assumed to be positive semi-definite and the weighting matrix
R associated with the control inputs is assumed to be positive definite. The
control gain matrix G is given by

G=R"B"S 33)
where S is the solution to the steady state matrix Riccati equation
SA+ATS-SBRBTS+0 =0 , (34)
The control input is given by

w= =Gz | 69

However, in general the state vector is not available for control and it is
necessary to estimate the’ states using a Kalman filter. The Kalman filter
estimates the states by minimizing the variance of the reconstruction error

R npniT
E{[x(0)- )]0~ ()]} (36)
The states are estimated in terms of the Kalman filter gain as follows

J"c=A£+Bu+L(y——Cs5c)

G
y=Cx :
The Kalman gain L is given by
L=pClv? : (38)
where P is the solution to the steady state matrix Riccati equation
AP+PAT +w-PCTvC.P=0 (39)
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The matrices W and V correspond to the intensities of state excitation and
observation noise. These processes are assumed to uncorrelated, zero mean,
white noise processes. It is also assumed that the initial state of the system is
uncorrelated with these noise processes.

The LQG controller implements the control in terms of the estimated
control input & =—Gx%. The overall control system configuration is given by

X=Ax+Bi+r
(40)
y=Cx

i=-Gi
) ) @1
i=(A-BG-LC)i+Ly

This completes the description of the optimal control procedure for the structural

vibration control problem. The open and closed responses of the structure are
presented in the following section.

4. LOCATION OF ACTUATORS AND SENSORS

Consider an Euler-Bernoulli beam embedded with piezoceramic actuators
and sensors. For the purpose of comparison, the cantilever beam example

presented in [9] will be used here. The cantilever beam is 22.86 cm long and has

cross-sectional dimensions of 1.65 x 0.44 cm. The beam is made of aluminum
and is embedded with two piezoceramic transducers. The piezoceramic
transducers are made of lead zirconate titanate (G1195). The cross-sectional
dimensions of the transducers are 1.65 x 0.0254 ¢cm and the beam is subject to
an impulse excitational the tip. . ' :

z
Actuator F)
1
~
z
] X
A
A
Z
BeamJ . I
Sensor- _

Figure 4
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The mass and stiffness matrices for the cantilever beam shown in Fig.
4, are obtained using the finite element method. A modal damping factor of
0.004 is chosen for every mode. This is a typical value for thin, flexible
structures [111- {121 1t js assumed that the damping matrix is symmetric. The
damping matrix is constructed using the first ten eigen values and eigen vectors
and the modal damping factors. The beam is subject to the tip excitation shown
in Fig. 5. The open loop response of the structure is shown in Fig. 6 and the
transverse displacement of the tip of the cantilever beam is shown in Fig. 7.
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Three different actuator-sensor configurations are studied to understand
the efficacy of actuator/sensor placement. The configurations are illustrated in
Fig. 8. The simple LQG optimal control procedure presented in section 3 was
used to determine the control and the Kalman filter gains. The state weighting
matrix is chosen as follows:

(1 0 0 e 0
10° 10* 10* 10
0 0 1 0 .. 0 . g
e . 104 b
10 10* 10° e 10%]

The states associated with the §; and 6, are penalized heavily. This was done
because in AMB, vibration control is effected by controlling the states
W (x;.t) . .
0,(z) =T, 1e. the transverse deflection of the beam is controlled by
x

applying control moments 10 the slope of the deflection. The control weighting
matrix [R] was set to [[], the identify matrix. The intensity of the state noise
[W], is set to [5.5] based on the covariance of the tip excitation signal, and the
observation noise intensity [V], is set to {71, the identity matrix, as the
observation noise is assumed to be a zero-mean, Gaussian white noise process.
The closed loop responses and the transverse displacement of the tip of the
cantilever beam are presented in Figs. 9-14. Clearly, Case III represents the best
closed-loop response. -

CASE!

Voltags (V)

Sarisor
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o om o1 o oz
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Figure 9
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As anticipated in section 2, the efficacy of the actuator-improves when
the actuator is moved to the root end of the cantilever beam. This follows from
a comparison of the closed loop response for Cases I and II. This result can be
explained by the fact that the strains are large near the root of the beam.
Consequently, a control voltage applied to the piezoceramic layer near the root of ,
the beam, counteracts the strain at the point where the strain is largest. This is
in agreement with the experimental results reported in 3], Since, AMA and
AMB are similar, the same reasoning applied to both the actuator models.

The issue of sensor efficacy is a little different. This is because SMA
is quite different from SMB. In [3] | the sensor was located at the root of the
cantilever beam owing to the assumptions involved in going from Eq. 2) 10 Eq.
@3). In 1] jris suggested that the sensors and actuators be located at the tip of
the cantilever beam, as the response at the tip of the cantilever beam is larger.
From Fig. 15, it is seen that the response at the tip of the cantilever beam is
indeed larger. However, a closer look at SMB reveals that the sensor voltage is
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proportional to the differential of the time rate of the slope over the length of the
sensor. A plot of the differential of the time rate of the slope over the length of
the sensor (Fig. 16) for cases II and III, reveals that the sensor signal is much
larger when the sensor is located at the root of the cantilever. It then follows-
that the actuator/sensor effectiveness is maximized when the actuator/sensor is
placed at the root of the beam irrespective of the actuator/sensor model used.
Similar results were obtained using the reduced order finite element model

employed by Han‘z‘i)gaud etal in [4].
o T T T N

Ll L e peres et
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Figure 15 ) 005 01 015 _ 02 025 030X 04
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Figure 16

5. CONCLUSIONS

The optimal placement of piezoceramic actuators and sensors for
structural control is considered. - Two different approaches to modeling the
actuators and sensors have been considered. In both cases it is shown that the
effectiveness of the controller is enhanced when the actuator and sensor are placed
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near the root of the beam. This is consistent with experimental results reported
in the literature.
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