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Abstract. Blood vessels often have an undulatory morphology, with excessive bending, kinking, and coil-
ing occuring in diseased vasculature. The underlying physical causes of these morphologies are generally
attributed, in combination, to changes in blood pressure, blood flow rate, and cell proliferation or apopto-
sis. However, pathological vascular morphologies often start during developmental vasculogenesis. At early
stages of vasculogenesis, angioblasts (vascular endothelial cells that have not formed a lumen) assemble
into primitive vessel-like fibers before blood flow occurs. If loose, fibrous aggregates of endothelial cells
can generate multi-cellular undulations through mechanical instabilities, driven by the cytoskeleton, new
insight into vasculature morphology may be achieved with simple in vitro models of endothelial cell fibers.
Here we study mechanical instabilities in vessel-like structures made from endothelial cells embedded in
a collagen matrix. We find that endothelial cell fibers contract radially over time, and undulate at two
dominant wavelengths: approximately 1 cm and 1 mm. Simple mechanical models suggest that the long-
wavelength undulation is Euler buckling in rigid confinement, while the short-wavelength buckle may arise
from a mismatch between fiber bending energy and matrix deformation. These results suggest a combina-
tion of fiber-like geometry, cystoskeletal contractions, and extracellular matrix elasticity may contribute
to undulatory blood vessel morphology in the absence of a lumen or blood pressure.

1 Introduction

Cells within most types of tissue sense the stiffness of
their surroundings by exerting forces on the extracellu-
lar matrix (ECM) and on one another [1–3]. Cells sense
stiffness and forces through processes of mechanotransduc-
tion, in which mechanical strains on membrane-associated
protein complexes lead to a cascade of signals within the
cell, feeding back to modulate cell mechanical behaviors.
In blood vessels, this cascade of mechanotransduction-
associated biochemical signals can occur in response to
changes in blood pressure and flow rate; endothelial cells
at the lumen-blood interface sense changes in shear stress
when blood flow rate changes, and both smooth muscle
cells and endothelial cells sense stretching when blood ves-
sels are forced to dilate under increased blood pressure [4].
In both mature and growing vessels, the normal physio-
logical response to these physical cues is a change in wall
thickness or vessel diameter [5–7]. However, pathological
conditions of blood vessels generate other types of mor-
phological change, including increased tortuosity, kinking
and coiling [8–10]. The physical origin of these morpholo-
gies may be mechanical buckling, arising from force im-
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balances associated with cell proliferation and apoptosis
or changes in ECM stiffness. Physical models of this buck-
ling show that the forces associated with blood pressure
may not play a major role [11]. These pathological mor-
phologies —bending, kinking, and coiling— are found in
mature arteries, but may start during embryonic devel-
opment [12]. Interestingly, at the earliest stages of vascu-
logenesis in embryos, before lumen formation, angioblast
aggregation into vessel-like structures are not likely to in-
volve the support of fluid pressure [13,14]. Mechanical
instabilities within primitive vessel-like structures have
not been explored. Investigation of mechanical instabili-
ties that arise in these vessel-like structures, in the absence
of a developed lumen or blood pressure, may provide new
insights into blood vessel morphology.

Here we study mechanical instabilities endothelial
cell fibers —molded cylinders of collagen-ECM perme-
ated with endothelial cells— confined in agar tubes.
These fibers are much larger and simpler than the fine,
complex, endothelial cell plexus that emerges during
development, and provide a starting point for under-
standing multi-cellular mechanics in high-aspect ratio
structures. Cell fibers are imaged with two-photon flu-
orescence microscopy, time-lapse bright-field microscopy,
time-lapse macro-imaging, and time-lapse small-angle
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Fig. 1. Time-lapse photographs of endothelial cell fibers show a radial collapse and lateral undulations over time. Photographs
are taken with back-lighting, and are inherently low contrast. Photos are shown at saturated contrast with hand-drawn outlines
to aid the reader (A). Time-lapse microscopy shows a sparsely populated cell fiber before the collapse (B) and a densely
populated cell fiber after the collapse, at t = 17 hours after seeding the cells (C, same scale as B). By digitally stretching the
micrograph in (C) by a factor of five, a short-wavelength undulation of fiber shape is seen (D). Maximum intensity projections
of stacks collected with two-photon confocal microscopy shows cells dispersed throughout the cylinder in interconnected clusters
for cells fixed and stained one hour after seeding. Twelve hours after seeding, the fiber has collapsed and appears to have lower
cell density near the center of the fiber. Green sections are imaged volumes; blue sections are hypothesized illustrations of the
cell distribution outside the field of view, based on our other observations.

light scattering (SALS). We find that the endothelial cells
contract the entire fiber over time, pulling the collagen-
cell matrix inward, away from the walls of the tubular
support. As the fiber collapses, cells accumulate at the
fiber’s outer periphery, and buckling of the linear struc-
ture occurs. Microscopy, macro-imaging, and SALS reveal
a multi-scale bucking phenomenon. At the macro-scale,
of order ∼ 1 cm, we observe a long-wavelength bend of
the fiber, and at the scale of about 1mm, a second small-
wavelength undulation occurs. Mechanical models suggest
that the long-wavelength undulation is Euler buckling in
rigid confinement. By considering the potential role of
elastic-support provided by the collagen ECM, we pre-
dict a short-wavelength buckle that agrees very well with
data collected using all imaging and scattering methods.
These results suggest that undulatory blood vessel mor-
phology can be established in the absence of a lumen or
blood pressure, given a fiber-like geometry and sufficient
levels of cytoskeletal contraction forces.

2 Results

To investigate potential mechanical instabilities in en-
dothelial cell fibers, approximately 105 human aortic
endothelial cells (HAECs) are dispersed in cell growth
medium mixed with type-I collagen, and pipetted into a
1mm diameter, 30mm length, cylindrical pore before the
collagen polymerizes. The cylindrical pore is made by cast-
ing a mixture of low-melting temperature agar and cell
growth medium around a 1mm diameter micropipette,
which is removed after the agar-media mixture solidifies.

The solidified agar-media material is brought to 37 ◦C
and neutral pH in an incubator before pipetting the cell-
collagen mixture into the cylindrical pore. The agar-media
mixture generates a large volume of solid growth media
that provides sufficient nutrients to feed the cells for sev-
eral days.

We characterize the fiber morphology and cell distribu-
tion in several ways. time-lapse macro-photography, per-
formed in an incubation chamber, shows that the fiber
collapses radially and undulates in the transverse direc-
tion over the course of about ten hours after seeding the
cells. The same process is observed under bright-field mi-
croscopy. The small field of view under the microscope
precludes observation of the long-wavelength undulation,
but reveals the development of a shorter wavelength shape
change. This short-wavelength undulation is made clear by
stretching the digital image in the radial direction (fig. 1A-
D). The cell-driven collapse of collagen matrices seeded
with cells is a well-known phenomenon, though the re-
lated mechanical instabilities of cell-generated tension in
high aspect ratio assemblies like fibers has not been ex-
plored [15].

To visualize the spatial cell distribution, two-photon
fluorescence microscopy is performed on cell fibers in
which the cells are dyed with 5-chloromethylfluorescein
diacetate (CMFDA). At early times, cells appear to be
distributed throughout the fiber in inter-connected clus-
ters and at later times, cells are evenly packed, but appear
to have a lower number density at the center of the fiber
than at the edge of the fiber, suggesting that some cells
move toward the edge of the fiber as it collapses (fig. 1E).
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2.1 Multi-scale shape undulations

To characterize fiber shape quantitatively over time,
macro-photography and microscopy time-lapse data are
investigated using Fourier mode analysis [16–18]. The fiber
surface is difficult to detect in macro-photography, imaged
at a magnification of 5.5µm/pixel, so images are band-
passed filtered to smooth out micro-scale details smaller
than about 100µm. In the filtered images, the backbone
of the fiber appears as a dark band of intensity. The back-
bone X-Y coordinates are found by fitting a Gaussian
peak to the intensity profile along the horizontal axis at
each location along the vertical axis. These coordinates
are mapped into θ-s space, where θ is the tangential angle
at location s along the contour of the fiber. A power spec-
trum of the tangent angle is computed with a discrete
cosine transform (DCT), given by S(q) = |DCT[θ(s)]|2.
A strong peak is observed in S(q) at low q, correspond-
ing to length scales of λL ∼ 10–20mm, arising from the
long-wavelength undulation directly observed in the im-
ages. Surprisingly, a second peak is observed in S(q) at
higher q’s, corresponding to shorter wavelengths on the
order of λS ∼ 1mm (fig. 2A-C). When cells are inten-
tionally killed at the end of experiments by cutting off
the CO2 supply, we observe that the fibers straighten out
again, highlighting the role of living cell activity in fiber
undulation (fig. 2D). To test the role of cytoskeletal con-
traction in generating fiber undulation, cells are treated
with Blebbistatin, a Myosin II inhibitor. In cells treated
with a moderate level (20µM) of Blebbistatin, the ampli-
tude of undulation decreases by over an order of magni-
tude (fig. 2E).

Shape fluctuations associated with the much weaker
peak at high-q are difficult to directly observe in macro-
photographs, so a similar Fourier analysis is performed on
images collected with microscopy in an environmentally
controlled incubation chamber, maintained at 37 ◦C and
5% CO2. The sample is oriented with the long axis of
the fiber laying perpendicular to the optical axis, and Z-
stacks are collected spanning the entire fiber cross-section.
Stacks are processed with a stack-focusing algorithm in
ImageJ, producing a high-contrast intensity map with
sharp boundaries at the fiber surface. The X-Y coordi-
nates of the fiber boundaries are identified in a similar
manner as with the fiber center, described above, and
Fourier shape analysis is performed. The resulting power
spectrum of fiber edge shape from microscopy exhibits
a single peak at wavelengths of λms ∼ 1mm, approxi-
mately the same as λS observed in macro-photography
(fig. 2D,E). This millimeter-scale undulation can be di-
rectly seen in the micrographs shown in fig. 1.

2.2 Radial cell distribution

We explore potential changes in cell distribution along the
radial direction as the fiber collapses and undulates using
both time-lapse microscopy and small-angle light scat-
tering (SALS). Slices from Z-stacks collected over time

Fig. 2. By fitting a Gaussian intensity profile across all 550
horizontal slices along the length of the fiber image, we deter-
mine the backbone coordinates of the fiber. A sample backbone
profile overlaid onto a contrast-saturated image of the fiber is
shown (A). The X-Y backbone coordinates are converted into
θ-s space, where θ is the local tangent angle at location s along
the length of the backbone. The power spectrum of θ reveals
two strong modes: one with a wavelength of λL ∼ 10–20 mm,
and another with a wavelength of λS ∼ 0.7–2 mm. (B,C) The
broad peaks in S(q) are fit with log-normal curves to determine
peak positions (B), where errorbars in (C) are 95% confidence
intervals of the fitted peak positions. When cells are intention-
ally killed at the end of experiments, the fiber straightens out
again (D), and cells treated with 20 µM Blebbistatin gener-
ate undulations more than an order of magnitude smaller than
undrugged cells (E). The same analysis is performed on the
surface contours of micrographs (F) revealing a strong short-
wavelength undulation, λms ∼ 1–2 mm (G).

with bright-field microscopy, as described above, are av-
eraged along the Z-direction to generate an approximate
2D map of light absorption through the fiber. This ab-
sorption map is averaged along the fiber axis, producing a
1D map of absorption across the fiber, described by Beer’s
law, I(r)/I0 = e−h(r)/k(r), where h(r) is the optical path
length over which light absorption occurs, k(r) is a spa-
tially varying decay constant, I0 is the incident light in-
tensity, and − log[I(r)/I0] is the absorbance. We find that
the absorbance is low and noisy across the fiber at early
times, when cells are distributed throughout the fiber. As
the fiber begins to collapse, the absorbance profile narrows
in width and develops a strong minimum at the center of
the fiber. This trend continues until the fiber diameter
reaches a minimum and the central dip in absorbance is
maximized relative to the edges of the fiber.

To test whether these absorption maps could be pro-
duced by cylindrical cell distributions, we compute model
absorbance maps using Beer’s law, assuming that h(r) is
the projected length across a circle while varying k(r) in
a binary manner, representing regions of high cell density
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Fig. 3. We measure light absorbance across the collapsing fiber
using bright-field microscopy. At early times, the average ab-
sorbance profile along the width of the fiber is weak, flat, and
noisy (A, black line). This absorbance profile can be modeled
by assuming a polydisperse distribution of strongly absorbing
clusters spread throughout a weakly absorbing circular cross
section (B, red line in A). After 500 minutes, the absorbance
profile exhibits two peaks near the edge of the fiber and a dip
near the fiber center (C, black line), which is consistent with
the absorbance profile across a core-shell distribution of high
density in the outer regions and low density near the center
of the fiber (D, C red line). At 1500 minutes, the absorbance
peaks have moved further inward, sharpened, and grown rel-
ative to the central dip (E). This profile is also well modeled
by a core-shell distribution (E, F red line). This method, when
applied to a homogeneously absorbing cylinder filled with dif-
fusing microspheres, produces the expected parabolic profile
arising from projecting an absorbing circular cross section onto
a single axis (G, H, black line is data, red line is fit). We extract
an approximate radius and thickness of the fiber over time by
identifying the halfway point of the strong rising edges and
dropping central dips, using the width of the rise or drop as an
experimental uncertainty (I).

and low cell density. At early times, before the fiber col-
lapses, k(r) is modelled as a polydisperse distribution of
clusters. At late times, k(r) is modelled with a step func-
tion, corresponding to a cylindrical tube. These minimal
models of cell distribution capture the experimental ab-
sorption maps very well, and this method is tested by con-
ducting experiments in which the agar pores are filled with
1µm microspheres that diffuse and spread homogenously
throughout the cylinders. The profile is parabolic, as ex-
pected from projecting a homogeneously absorbing circle
onto a single axis. These results suggest that cells sponta-
neously accumulate with higher density near the periphery
of the cell fiber than near the fiber center (fig. 3).

To explore the cell distribution within fibers with a sec-
ond approach, we perform SALS measurements on sam-
ples prepared in ∼ 5mm thick chambers with optical-
grade quartz entrance and exit windows. The SALS instru-
ment is constructed to replicate systems used in measur-
ing dense colloidal materials, with an incident beam that
is spread and collimated to a diameter of 1 cm, covering

a very large sample spot [19]. SALS is performed in time
lapse, so samples are measured in an incubation cham-
ber maintained at 37 ◦C and 5% CO2. To minimize multi-
ple scattering and light absorption, a near-infrared diode
laser is used, having a wavelength of 830 nm and an out-
put power of 12mW. Although very low laser power levels
are used, and the laser is spread over a diameter of about
1 cm, a shuttering system is synched with the digital cam-
era to minimize cell exposure to laser light throughout
∼ 1200 minute experiments.

The scattering patterns exhibit a strong horizontal
band of fringes along the equatorial direction, qr, at
qz = 0, characteristic of scattering from cylindrical ob-
jects. The initial fringe spacing corresponds perfectly to
the dimensions of the cylindrical agar tube that supports
the endothelial cell fiber. At later times, a second intensity
modulation emerges, corresponding to the smaller diame-
ter of the collapsing cell fiber. To extract the distribution
of cells along the radial direction, we model the spatial
variation of dielectric constant as a series of twenty cylin-
drical shells in cylindrical coordinates, each with individ-
ual uniform dielectric constant, εj , and with fixed edges
distributed evenly from r = 0 to r = 500µm. The sup-
porting agar tube is modeled as a step function along the
r-direction. The Fourier transform of this distribution can
be computed analytically in cylindrical coordinates, and
is given by

ε̃(q) =
N−1
∑

j=1

εjq
−1

(

r
j
J1(qrj

) − r
j+1J1(qrj+1

)
)

−∆εq−1J1 (qr
N

) ,

where J1 is the first order Bessel function, rj and rj+1

are the edges of each shell, rN is the radius of the agar
tube, and ∆ε is the dielectric contrast between liquid cell
growth media and agar. The measured intensity distribu-
tion is given by S(qr) = |ε̃(qr)|2. To achieve good fits an
incoherent background term proportional to q−2

r is added,
which may arise from scattering through the agar network
far from the cell fiber.

With this formulation of the scattering model, there
are 22 fitting parameters. To reduce the number of fitting
parameters, each εj is constrained to a skewed Gaussian
profile, which can describe a wide range of cell distribu-
tions. The skewed Gaussian curve used is

ε(r) = A

(

1 + erf

(

α
r − µ√

2σ2

))

e−
(r−µ)2

2σ2 ,

where A is an overall amplitude, µ is the peak location
of the Gaussian, σ is the width of the Gaussian, and α
modulates the degree of skewness independent of σ. This
approach reduces the total number of fitting parameters
from 22 to 5, facilitating the efficient execution of non-
linear least-squares fitting (fig. 4A-B).

The fits of ε(r) are broad at early times, with a weak
peak located near the edge of the agar tube. As time pro-
gresses, the peak in ε(r) moves inward toward the center
of the fiber, and becomes sharp. These features agree with
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Fig. 4. SALS measurements are performed on the collapsing fiber to further explore the cell distribution in time. Along the
radial direction, S(qr) exhibits rapidly oscillating fringes corresponding to the diameter of the agar tube housing the endothelial
cell fiber. Over time, a second modulation appears associated with the collapsing fiber (A, dots are experimental data). To
estimate the cell distribution, the power spectrum of a minimal model of refractive index variation is fit to the data (A, lines),
once again showing a higher cell density near the edge of the fiber than at the center, which sharpens over time (B). Along the
meridional direction, a peak occurs at qr = 0 and finite qz = qpz, which does not appear at higher qr locations (C, qr = qpl

corresponds to S(qz) centered on the peak of the first fringe along qr. Lines are Lorentzian fits, dots are data). The wavelength
associated with the peak at qpz, λz = 2π/qpz corresponds to a length scale of about 1 mm.

the progression of cell distribution inferred from absorp-
tion measurements, above, and from the qualitative ob-
servations of cell density in two-photon fluorescence mi-
croscopy.

We observe a broad peak in the SALS measurements
along the qz axis, at qr = 0 and finite qz, indicating a den-
sity modulation along the fiber axis. To extract informa-
tion associated with this peak, we fit the scattering data
along the qz direction with the sum of two Lorentzian
peaks: one peak centered at the origin, which reflects
a combination of long-wavelength scattering and direct
beam, and a second peak centered at a finite qz ≡ qpz.
We find that the peak starts at low-q at early times,
moving to higher q at later times as the fiber collapses.
Throughout the measurement, the spatial length scale
associated with this peak, λz = 2π/qpz, decreases from
about 3mm to about 1mm. This length scale is close to
the short-wavelength undulations observed in microscopy
and macro-photography, described above.

2.3 Multi-scale buckling in contracting fibers

The cell fiber undulations observed here are reminiscent
of buckling modes that arise from compressive stresses ap-
plied along the axis of elastic cylinders. In the classical
mathematical descriptions of beam buckling, a compres-
sive static stress is applied to the ends of the model beam,
which is balanced along each infinitesimal element along
the beam length [20]. When the energy of compression is
larger than the energy of bending, the beam buckles with
a characteristic shape that depends strongly on bound-
ary conditions at the beam ends and the radial boundary
along the beam length, in the case of beams in confine-
ment. There is no externally applied stress applied to the
cell fiber measured here. However, the exact same force
balance equations can be written down in which internally

generated tensile stresses, balanced across each element,
replace the externally applied compressive force. This sub-
stitution predicts the same mechanical instabilities as the
classical example. Most cell types, including endothelial
cells, persistently maintain a state of tensile stress through
cytoskeletal contractions, pulling the surrounding ECM
inward toward the cell center [1,21].

We consider whether the cell fiber undulations may be
mechanical buckling by estimating the forces necessary to
generate the characteristic wavelengths determined from
our measurements. For classical Euler buckling, the crit-
ical buckling stress is σcr = E(nπR/L)2, where E is the
Young’s modulus of the cylinder material, R is the cylin-
der radius, L is the cylinder length, and n corresponds to
wavelength of the buckle. We approximate the cell fiber
to have freely pivoting ends, so L/n = λ/2. We measure
the shear modulus of the collagen in oscillatory rheology
at 1Hz up to ∼ 10% strain, finding a shear modulus
of G′ = 42Pa. Assuming a Poisson’s ratio of 1/3, typ-
ical of semi-dilute gels, we estimate a Young’s modulus
of E ≈ 125Pa. For the long-wavelength buckling observed
with macro-photography, analyzing the case of λ ≈ 15mm
and R ≈ 250µm, we find σcr = 1.4Pa.

Single cells generate much more stress than 1.4Pa, but
cells are not close-packed in the fiber; σcr is the average
stress per cell required to generate a buckle. For cells at
a volume fraction φc, each of which generates local stress,
σc, we approximate the average stress along the fiber axis
as 〈σz〉 = σcφc/3, where the 1/3 comes from assuming
isotropic stresses. The cell volume fraction is given by
φc = VcNc/Vfiber, where Vc is the volume of a typical cell,
Nc is the number of cells, and Vfiber is the volume of the
whole fiber. For a fiber with R = 250µm and L = 30mm,
filled with Nc = 105 cells of volume Vc = 1500µm3, we
find φc = 0.025; a fiber with this many cells of volume
Vc reaches random close packing when R = 50µm, the
minimum radius typically reached in a collapsed fiber.
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Fig. 5. The long-wavelength undulations observed in macro-
photography, λL, are of the same order of magnitude as pre-
dicted from Euler buckling, though do not scale with ra-
dius as predicted (dashed line corresponds to the case where
R = 250 mm, discussed in the text). The short-wavelength
undulations observed in macro-photography (λS), microscopy
(λms) and SALS (λqz) are of the same order of magnitude pre-
dicted by Euler buckling of a beam embedded in a linear elastic
medium, and scale with radius as predicted (dashed line is a
simultaneous fit to all short-wavelength data).

For buckling to occur 〈σz〉 > σcr, suggesting the mini-
mum stress each cell must generate is 170Pa. Most ad-
herent contractile cells, including endothelial cells, gener-
ate higher levels of stress than this [22]. Thus, the long-
wavelength undulations observed here may be Euler buck-
ling, in which λEB < L arises because the buckling fiber
is confined within a rigid agar tube, exciting higher-order
bending modes (fig. 5). However, any prediction for λ
based on Euler buckling would predict λEB increases with
radius, yet we measure a decrease in radius. Other factors
contributing to this inconsistency in scaling between λEB

and R are explored below, in the Discussion section.

Short wavelength buckles can arise in beams embed-
ded in an elastic medium. Mathematically, the effects of
the embedding elastic medium are included in the force-
balance equations as a term proportional to a shear mod-
ulus. The wavelength of the buckle is given by λ =
2π(K/G′)1/4, where G′ is the shear modulus of the em-
bedding medium, and K = EI is the bending stiffness of
the beam; E is the Young’s modulus of the beam material
and I is the second moment of area [20]. For a uniform
beam, I = πR4/4, where R is the beam radius. The distri-
bution of cells and collagen throughout the fiber are not
known with microscopic detail, so the specific mechanism
through which the shear modulus of collagen contributes
to the force balance requires further study. Assuming a
contribution of collagen shearing over short length scales,
we explore the potential role of G′ in generating short-
wavelength undulations in the cell fiber, with the collagen
acting like an elastic reinforcing medium, and leaving E
as a fitting parameter. Simultaneously fitting all of the
short-wavelength data, measured in macro-photography,

microscopy, and light scattering, we find E = 53Pa. In-
terestingly, this modulus is about 1/3 the stress required
to generate the long-wavelength buckles described above,
and is about 1/3 the Young’s modulus, also found above.
The long-wavelength and short-wavelength analysis could
be made self-consistent by using E = 53Pa in the long-
wavelength bucking analysis, which would result in a mini-
mum single cell stress required for buckling of about 72Pa,
still well within the range of stress cells can generate. To-
gether, these results suggest that active stress generation
or cell bending stiffness, when mismatched with the elas-
ticity of an embedding material like collagen, may drive
short-wavelength buckling instabilities.

3 Discussion and conclusions

Here we have found that endothelial cells embedded in
a thin, cylindrical ECM fiber collectively generate large-
scale undulations resembling the sinusoidal morphology
typical of blood vessels. The cells appear to congregate
more densely at the surface of the fiber than near the
fiber center, also crudely mimicking blood vessels. Our
analyses of the mechanics underlying these undulations
suggest that cytoskeleton-generated contractions drive the
collapse and bending of the fiber, and reveal that the un-
dulations may be buckling instabilities. These back-of-the-
envelope estimates highlight the need for more thorough
theoretical modelling. Here, these models have helped to
guide our interpretation of the experimental observations,
and serve to motivate the intriguing role played by me-
chanical instabilities in determining morphology in high-
aspect ratio cellular structures. For example, it is possible
that local fluctuations in cell density contribute to the
short-wavelength undulations observed here, or that tan-
gential forces generated by oriented cell contractions act
in a manner analogous to dynein motors that drive micro-
tubule buckling [23,24].

One complication in the analyses performed here is the
potential role played by the non-uniform radial distribu-
tion of the cells across the fiber. The simplest model of this
distribution is a cylindrical shell of finite thickness, rather
than a homogeneous beam, which would modify the sec-
ond area moment, given by I = π(R4

o−R4
i )/4, where Ro is

the outer radius and Ri is the inner radius. Our estimates
of the effective shell thickness indicate that the inner ra-
dius of the shell is less than 1/2 the outer radius, reducing
I by less than a factor of 1/16 (fig. 3I).

Other major concerns are the increase in cell density
and collagen concentration during the fiber collapse; the
number density of stress-generating cells rises, any stiff-
ness contribution associated with deforming cell assem-
blies is likely to evolve, and collagen concentration rises.
Carefully designed experiments that probe these phenom-
ena are necessary to elucidate this intriguing potential
interplay between increased cell concentration and ECM
stiffening. It is instructive to observe that with beam buck-
ling in an elastic medium —where our predictions match
well with the experiments— the buckling wavelength de-
pends on the ratio of a bending elasticity and a modulus.
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If both rise by the same amount, the wavelength does not
change. We speculate that one term is associated with
cell stiffness and stresses, and the other is associated with
the modulus of the ECM. Cell stiffness and stress gen-
eration generally rises with increased ECM modulus, so
the potential transient effects that occur during fiber col-
lapse may cancel one another out [1]. Future work in which
the baseline ECM stiffness is varied while measuring the
buckling wavelength will reveal whether this potentially
self-correcting effect is built into contraction-generated en-
dothelial cell fiber morphology.

4 Materials and methods

4.1 Endothelial cell culture

Human aortic endothelial cells (HAECs) are cultured in
Endothelial Basal Media (EBM-2) supplemented with vas-
cular endothelial growth factor. The cells are grown to
80–90% confluence, then passaged and centrifuged into a
20µL pellet. This pellet of cells is thoroughly mixed with
fresh growth medium and collagen-I monomer (1.5% final
concentration), and deposited into the sample chamber.
The sample chamber is then incubated at 37 ◦C and 5%
CO2 for 30 minutes before imaging or light scattering mea-
surements to allow for the collagen to gel, and for the cells
to spread.

4.2 Sample preparation for multi-photon confocal
imaging

HAECs are dyed with 5-chloromethylfluorescein diacetate
(CMFDA) before centrifuging and being placed within the
sample chamber. Samples are incubated for a designated
amount of time, then fixed using 3.7% formaldehyde and
phosphate buffered saline (PBS) solution. After fixing, the
samples are rinsed in PBS buffer and refrigerated.

4.3 Small-angle light scattering image processing

The scattering patterns produced by the cell fibers span
a dynamic range of approximately 105 counts. To detect
intensities over this large dynamic range with a 12-bit
digital camera, three images with different exposure times
are collected at each time point. The three images are
processed with a custom bracketing algorithm written in
MATLAB. In each image, saturated pixels are identified
and discarded. An additive noise of about 10 counts is sub-
tracted, and any resulting pixels with intensity less than

or equal to zero are discarded. The thresholded images
are then rescaled by their individual exposure times. The
three images are then averaged, accounting for discarded
pixels from the thresholding process, producing a seamless
bracketed image for each time-point.

4.4 Comparison between experimental modalities

Four independent sets of experiments are presented here
which produce qualitative and quantitative agreement
with one another. All time-lapse measurements including
SALS, macro-imaging, and microscopy were performed
twice or more, producing consistent results. Two-photon
fluorescence microscopy was performed once.

This project was funded by NSF grant No. CMMI-1161967.
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