Introduction to Aerospace Engineering
EAS 2011
Fall 2019, M W F, 3rd Period, 9:35 PM – 10:25 AM
WM 100

Modifications to this syllabus may be required during the semester. Any changes that are made will be reflected in a posted version of the syllabus and announced in class.

Professor
Assistant Professor Amor A. Menezes, Ph.D. (min-AY-zis)
Department of Mechanical and Aerospace Engineering
University of Florida, Gainesville, FL 32611-6250
MAE-B 212
Please contact through the Canvas website https://elearning.ufl.edu
Any emails to ufl email address must include EAS 2011 in the subject line

Office Hours
• M W F, 3:00 PM – 3:50 PM, MAE-B 212
• Or via confirmed written appointment

Graduate Student Teaching Assistant
Damon Ghetmiri
Email: s.ghetmiri@ufl.edu
Office Hours: M W 12:45 PM –1:45 PM
Location: NEB 109

Undergraduate Student Teaching Assistants
Malorie Morgan (Lead UG TA) Alexander Krestan Colin MacLeod
Email: maloriehmorgan@ufl.edu akrestan@ufl.edu c.macleod@ufl.edu
Office Hours: T 1:55 PM – 2:45 PM Th 11:45 AM – 12:35 PM F 12:45 PM –1:45 PM
Location: NEB 109 NEB 109 NEB 109

Course Description
Course Catalog: “Overview of aerospace engineering. Standard atmosphere, basic aerodynamics, airplane performance, stability and control, propulsion, and space flight.” (Credits: 3)

Course Objectives
This course introduces aircraft and spacecraft vehicles. By the end of this course, you will:
• Know the basic principles of flight in the atmosphere: the physics of flight, and steady aircraft flight and performance.
• Know the basic principles of flight in space: the two-body problem, spacecraft orbits, orbital transfers, and orbital analysis of space missions.
• Be able to effectively communicate this technical knowledge while accounting for realistic economic constraints.

Course Pre-Requisites
PHY 2048 (Physics with Calculus 1) or PHY 2060 (Enriched Physics with Calculus 1) with a minimum grade of C.
Materials and Supply Fees
None.

Professional Component (ABET)
This course contributes to the Aerospace Engineering student’s aeronautical knowledge of: aerodynamics, propulsion, flight mechanics, and stability and control. This course contributes to the Aerospace Engineering student’s astronautical knowledge of: orbital mechanics, space environment, attitude determination and control, and rocket propulsion. The content of this course is approximately 10% engineering design, 30% mathematics, and 60% engineering science.

Relation to Program Outcomes (ABET)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics</td>
<td>High</td>
</tr>
<tr>
<td>2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors</td>
<td>Low</td>
</tr>
<tr>
<td>3. An ability to communicate effectively with a range of audiences</td>
<td>Low</td>
</tr>
<tr>
<td>4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts</td>
<td>Low</td>
</tr>
<tr>
<td>5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives</td>
<td>Low</td>
</tr>
<tr>
<td>6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions</td>
<td>Low</td>
</tr>
<tr>
<td>7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies</td>
<td>Low</td>
</tr>
</tbody>
</table>

Coverage is given as high, medium, or low. An empty box indicates that this outcome is not part of the course.

Required Textbooks, Software, and Hardware
- MATLAB (MathWorks), any recent release.
- Scientific calculator (not your phone).

Alternate (Reference) Textbooks
Important Dates

- Classes Begin: Aug 20 (Tuesday)
- Holidays/Reading Days: Sep 2 (Monday), Oct 4 (Friday), Nov 11 (Monday), Nov 27 – 29 (Wednesday – Friday), Dec 5 – 6 (Thursday – Friday)
- Classes End: Dec 4 (Wednesday)
- Classes Canceled: Sep 18 (Wednesday), Sep 27 (Friday), Oct 2 (Wednesday)
- Software tutorial dates and locations stated in this syllabus will be confirmed in class
- Homework and quiz dates stated in this syllabus will be confirmed in class
- Quizzes will be held during the last 15 minutes of lecture
- Team Report 1 Due: Oct 22 (Tuesday) 5:00 PM
- Team Report 2 Due: Dec 10 (Tuesday) 5:00 PM
- Review for Midterm Exam: Oct 16 (Wednesday) 6:15 PM – 7:05 PM in WM 100
- Midterm Exam: Oct 21 (Monday) 8:20 PM – 10:10 PM
- Review for Final Exam: Dec 4 (Wednesday) 6:15 PM – 7:05 PM in WM 100
- Final Exam: Dec 9 (Monday) 3:00 PM – 5:00 PM

Attendance Policy

- The class has no attendance policy. Students are expected to attend.
- Absences are excused consistent with university policies in the undergraduate catalog (https://catalog.ufl.edu/UGRD/academic-regulations/attendance-policies/) and require appropriate documentation.
- Make-up Policy: Instructor notifications are required in all circumstances. See https://care.dso.ufl.edu/instructor-notifications. Note that, “Professors have the right to accept or reject the notification.”
- **No quiz make-ups are permitted.** If an excused absence occurs on a quiz day, then that quiz will be omitted from the student's total quiz score. Unexcused quizzes receive zero.

Class Expectations

- The student is solely responsible for their education. The professor is the guide to their understanding of the field.
- Cell phones, laptops, etc.: **under no circumstances will electronic devices be used in the classroom without the permission of the professor. Students are expected to take handwritten notes with pen/pencil and paper.**
- Respect and disruption: the professor and students will be respectful at all times. Classroom disruption of any kind will not be tolerated.
- **The principles of the honor code must be adhered to at all times.** Individual effort is required on homework assignments, quizzes, and exams. Groups will be treated as individuals for team reports. The honor pledge that you explicitly or implicitly sign is:

 On my honor, I have neither given nor received unauthorized aid in doing this homework/quiz/report/exam.

The Honor Code (https://sccr.dso.ufl.edu/process/honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. You are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the professor or TA.
Homework
The purpose of homework is to learn and understand the material. Students are responsible for performing and understanding the homework problems and solutions on their own.

Software
All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

Quizzes and Exams
All quizzes are closed-book, closed-notes, closed-electronic devices. A scientific calculator (that is not your cell phone or laptop) will be permitted. All exams are open-book, open-notes, closed-electronic devices except for a scientific calculator.

Commitment to a Safe and Inclusive Learning Environment
The Herbert Wertheim College of Engineering values broad diversity within our community and is committed to individual and group empowerment, inclusion, and the elimination of discrimination. It is expected that every person in this class will treat one another with dignity and respect regardless of gender, sexuality, disability, age, socioeconomic status, ethnicity, race, and culture.

If you feel like your performance in class is being impacted by discrimination or harassment of any kind, please contact your instructor or any of the following:

- Your academic advisor or Graduate Program Coordinator
- Robin Bielling, Director of Human Resources, 352-392-0903, rbielling@eng.ufl.edu
- Curtis Taylor, Associate Dean of Student Affairs, 352-392-2177, taylor@eng.ufl.edu
- Toshikazu Nishida, Associate Dean of Academic Affairs, 352-392-0943, nishida@eng.ufl.edu

Student Privacy
There are federal laws protecting your privacy with regards to grades earned in courses and on individual assignments. For more information, please see: https://registrar.ufl.edu/ferpa.html

Students Requiring Accommodations
Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://drc.dso.ufl.edu/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Health and Wellness
U Matter, We Care
Your well-being is important to the University of Florida. The U Matter, We Care initiative is committed to creating a culture of care on our campus by encouraging members of our community to look out for one another and to reach out for help if a member of our community is in need. If you or a friend is in distress, please contact umatter@ufl.edu so that the U Matter, We Care Team can reach out to the student in distress. A nighttime and
weekend crisis counselor is available by phone at 352-392-1575. The U Matter, We Care Team can help connect students to the many other helping resources available including, but not limited to, Victim Advocates, Housing staff, and the Counseling and Wellness Center. Please remember that asking for help is a sign of strength. In case of emergency, call 9-1-1.

Counseling and Wellness Center
https://counseling.ufl.edu/, and 352-392-1575; and the University Police Department: 352-392-1111 or 9-1-1 for emergencies.

Sexual Discrimination, Harassment, Assault, or Violence
If you or a friend has been subjected to sexual discrimination, sexual harassment, sexual assault, or violence contact the Office of Title IX Compliance (https://titleix.ufl.edu/), located at Yon Hall Room 427, 1908 Stadium Road, 352-273-1094, title-ix@ufl.edu

Sexual Assault Recovery Services (SARS)
Student Health Care Center, 352-392-1161.

University Police Department
352-392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/.

Academic Resources
E-learning Technical Support
352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml

Career Resource Center
Reitz Union, 392-1601. Career assistance and counseling. https://www.crc.ufl.edu/

Library Support
http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center
Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/

Writing Studio

Students Complaints Campus

On-line Students Complaints
http://www.distance.ufl.edu/student-complaint-process

Course Evaluation
Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at
https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals, or via https://ufl.bluera.com/ufl/. Summaries of course evaluation results are available to students at https://gatorevals.aa.ufl.edu/public-results/.

Evaluation of Grades and Grading Policy

Evaluation Mechanism on a Percent Basis

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework (9)</td>
<td>27%</td>
</tr>
<tr>
<td>Quizzes (4)</td>
<td>8%</td>
</tr>
<tr>
<td>Team Reports (2)</td>
<td>22%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>21%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>22%</td>
</tr>
</tbody>
</table>

Homework

Students will submit solutions of the homework problems only via the course website. Students who turn in homework before the due date and time will have their homework graded. Not all homework problems will be graded; instead, a selection of problems will be randomly chosen for grading after the homework due date and time. Submitted homework that is partially- or fully-missing solutions to these chosen problems will not be eligible for partial or any credit for those problems, respectively, even if other non-chosen homework problems were completed. Homework solutions will be posted on the class website after the due date.

Exams

All students are expected to take all exams. If a student is unable to take an exam for unforeseeable reasons, then the other exams will count toward the percentage of the grade that makes up the exams if an appropriate DSO instructor notification is accepted.

Final Grade

Final grades may be calculated by the following table. For example, if a student earns 86.60% (Percent Grade Earned %GE = 86.60) then their grade point will be 3.33 (B+). %GE are rounded to the hundredths decimal place. For example, if a student earns 77.995% (Percent Grade Earned %GE = 77.995) it will be rounded up to 78.00%, and their grade point will be 2.67 (B-). Shifts in the grading table are at the discretion of the professor.

Table 1. Grading Table. %GE = Percent Grade Earned.

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.00 ≤ %GE < 100.00</td>
<td>A 4.00</td>
</tr>
<tr>
<td>88.00 ≤ %GE < 92.00</td>
<td>A- 3.67</td>
</tr>
<tr>
<td>85.00 ≤ %GE < 88.00</td>
<td>B+ 3.33</td>
</tr>
<tr>
<td>81.00 ≤ %GE < 85.00</td>
<td>B 3.00</td>
</tr>
<tr>
<td>78.00 ≤ %GE < 81.00</td>
<td>B- 2.67</td>
</tr>
<tr>
<td>74.00 ≤ %GE < 78.00</td>
<td>C+ 2.33</td>
</tr>
<tr>
<td>71.00 ≤ %GE < 74.00</td>
<td>C 2.00</td>
</tr>
<tr>
<td>67.00 ≤ %GE < 71.00</td>
<td>C- 1.67</td>
</tr>
<tr>
<td>64.00 ≤ %GE < 67.00</td>
<td>D+ 1.33</td>
</tr>
<tr>
<td>61.00 ≤ %GE < 64.00</td>
<td>D 1.00</td>
</tr>
<tr>
<td>60.00 ≤ %GE < 61.00</td>
<td>D- 0.67</td>
</tr>
<tr>
<td>00.00 ≤ %GE < 60.00</td>
<td>E 0.00</td>
</tr>
</tbody>
</table>

Grade Corrections
Corrections of grades should be submitted promptly in writing within three business days of the grade posting. Include a concise statement of why you believe there has been an error. Note that the professor has the final determination in the grade assigned. If a grade change is determined it may result in a lower or higher grade.

Course Schedule, Approximately by Lecture Number

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Topic</th>
<th>Duration</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 21</td>
<td>Course Introduction, History of Flight</td>
<td></td>
<td>NHM Ch. 1</td>
</tr>
<tr>
<td>2</td>
<td>Aug 23</td>
<td>Flight Environment</td>
<td></td>
<td>NHM Ch. 2</td>
</tr>
<tr>
<td>3</td>
<td>Aug 26</td>
<td>Flight Environment, Physics of Flight</td>
<td>Aug 27, 6:15 PM</td>
<td>NHM Ch. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATLAB Tutorial (TA-led), WM 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Aug 28</td>
<td>Physics of Flight</td>
<td></td>
<td>NHM Ch. 2</td>
</tr>
<tr>
<td>5</td>
<td>Aug 30</td>
<td>Matrices Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sep 4</td>
<td>Coordinate Systems and Rotations</td>
<td></td>
<td>NHM Ch. 3</td>
</tr>
</tbody>
</table>

Approximate End of Coverage for Homework 1

Team Report 1 Posted

7 | Sep 6 | Rotations, Kinematics, Aerodynamic Forces | NHM Ch. 3 |

Homework 1 Due Sep 6 (Friday), 5:00 PM
8 | Sep 9 | Aerodynamic Forces | NHM Ch. 3 |

Approximate End of Coverage for Quiz 1

9 | Sep 11 | Aircraft Attitude | NHM Ch. 3 |
10 | Sep 13 | Aircraft Attitude and Rotations | NHM Ch. 3 |
11 | Sep 16 | Aerodynamic Moments | NHM Ch. 3 |

Quiz 1 at end of lecture on Sep 16 (Monday)

Approximate End of Coverage for Homework 2

12 | Sep 20 | Propulsion, Steady Flight Lift and Drag | NHM Ch. 4, 5 |

Homework 2 Due Sep 20 (Friday), 5:00 PM

13 | Sep 23 | Performance Optimization Intro, Gliding | NHM Ch. 5, 6 |
14 | Sep 25 | Gliding, Level Flight | NHM Ch. 6, 7 |
15 | Sep 30 | Level Flight | NHM Ch. 7 |

Homework 3 Due Sep 30 (Monday), 5:00 PM

16 | Oct 7 | Level Flight | NHM Ch. 7 |
17 | Oct 9 | Climbing and Descending Flight | NHM Ch. 8 |

Approximate End of Coverage for Quiz 2

18 | Oct 11 | Climbing and Descending Flight | NHM Ch. 8 |

Quiz 2 at end of lecture on Oct 11 (Friday)

Approximate End of Coverage for Homework 4

19 | Oct 14 | Take-off, Landing; Range and Endurance | NHM Ch. 11 |

Homework 4 Due Oct 14 (Monday), 5:00 PM

20 | Oct 16 | Turning Flight | NHM Ch. 9 |

Approximate End of Coverage for Homework 5

End of Coverage for Midterm Exam

21 | Oct 18 | History of Space Flight, Gravitation | BMW Ch. 1.1 |
22 | Oct 21 | Modern Space Flight | |

Homework 5 Due Oct 21 (Monday), 5:00 PM

Midterm Exam Oct 21 (Monday), 8:20 PM

Team Report 1 Due Oct 22 (Tuesday), 5:00 PM

23 | Oct 23 | Space Bioengineering, N-Body Problem | BMW Ch. 1.2 |
24 Oct 25 2-Body Problem, Constants of Motion BMW Ch. 1.3-1.4

Team Report 2 Posted

25 Oct 28 Constants of Motion BMW Ch. 1.4
26 Oct 30 Position and Time in Orbit

Approximate End of Coverage for Homework 6

27 Nov 1 Trajectory Equation BMW Ch. 1.5-1.6
28 Nov 4 Conic Section Orbits Intro, Circular Orbits BMW Ch. 1.5-1.6, 1.8

Approximate End of Coverage for Quiz 3

Homework 6 Due Nov 4 (Monday), 5:00 PM

29 Nov 6 Circular Orbits BMW Ch. 1.8

Quiz 3 at end of lecture on Nov 6 (Wednesday)

30 Nov 8 Circular Orbits, Elliptic Orbits BMW Ch. 1.8, 1.7
30 Nov 12, 6:15 PM STK Tutorial (TA-led), WM 100
31 Nov 13 Elliptic Orbits, Burnout BMW Ch. 1.7, 3.1
32 Nov 15 Burnout, Orbit in 3D BMW Ch. 3.1-3.2, 2.2

Approximate End of Coverage for Homework 7

33 Nov 18 Orbit in 3D, Ground Tracks BMW Ch. 2.2, 2.15

Homework 7 Due Nov 18 (Monday), 5:00 PM

34 Nov 20 Parabolic and Hyperbolic Orbits BMW Ch. 1.9-1.10
35 Nov 22 Hyperbolic Orbits, Intro to Orbit Maneuvers BMW Ch. 1.10, 3.3

Approximate End of Coverage for Quiz 4

36 Nov 25 One- and Two-Impulse Orbit Transfers BMW Ch. 3.3-3.4
37 Dec 2 Extensions of the Hohmann Transfer

Quiz 4 at end of lecture on Dec 2 (Monday)

Approximate End of Coverage for Homework 8

38 Dec 4 Interplanetary Transfers, Rocket Equation BMW Ch. 8

Approximate End of Coverage for Homework 9

Homework 8 Due Dec 4 (Wednesday), 5:00 PM

End of Coverage for Final Exam

38 Dec 4, 6:15 PM Review for Final Exam, WM 100

Homework 9 Due Dec 9 (Monday), 3:00 PM

Final Exam Dec 9 (Monday), 3:00 PM

Team Report 2 Due Dec 10 (Tuesday), 5:00 PM