Mechanical Engineering Design 1

EML 3005, Spring 2021 6th Period, MWF, Zoom

7th Period, MWF, Zoom

Instructor: Dr. Andrés Rubiano, MAE-B 307, Email: <u>ssjandres@ufl.edu</u> Office hours: M, W, F 11:30 AM – 12:50 PM, 3:00 PM – 4:00 PM Teaching Assistant: Dana Kendall - Email: _____

Course Structure:

Before EVERY class meeting, students are to:

- <u>study</u> the one 8-12-minute lecture main video (1-hour worth of lecture content).
- watch the two or three 1-4-minute "additional examples videos" for each lecture topic.
- solve the two or three textbook-style exercises homework assignment.

Students are to attend all classes, with camera on. Attendance will be taken, and participation will be noted.

Class meeting times will be used to:

- answer specific questions about lecture videos, example videos, and homework (in that order).
- work on design specific problems (breakout rooms).
- take in-class pop-quizzes.

Course Assignments

Homework: There is one homework assignment for every day of class (2-3 textbook-style problems, similar to the video example solutions). Homework assignments will not be graded, but they are essential to properly prepare for class, quizzes, and exams.

Quizzes: Approximately 20 quizzes total; mostly 5-15-minute pop quizzes. Quiz time will appear limited and quiz problems, challenging, if homework assignments are not completed.

Project: Four-person group project posted Monday, Feb. 8th, 2021. Project updates will be requested randomly and without previous notice between the date of posting and the final submission date, Apr. 5th, 2021.

Exams: There will be 3 [cumulative] night exams. Exam Schedule: Feb. 8th, Mar. 9th, and Apr. 9th.

Grading: Quizzes (25%), Exams (60%), Project (15%).

Course Content and Schedule:

Date		Day	Content	
January	11	М	Axial Loading Review	
January	13	W	Torsion Review	
January	15	F	Pure Bending and Deflection Review	
January	18	М	Holiday	
January	20	W	Pure Bending and Deflection Combined Example	
January	22	F	Shear and First Moment About Neutral Axis Review	
January	25	М	Mohr's Circle Review	

January	27	W	Brittle Failure Theories - Fracture Criteria	
January	29	F	Ductile Failure Theories - Yield Criteria	
February	1	М	Design Factor and Uncertainty vs. Factor of Safety	
February	3	W	Tolerance Stack Ups and Tolerance Loops	
February	5	F	Castigliano's Theorem	
February	8	М	EXAM 1 - Project Assignment Posted	
February	10	W	Fracture Toughness	
February	12	F	Crack Propagation	
February	15	М	Fatigue SN Diagrams	
February	17	W	Marin Factors and Corrected Endurance Limit	
February	19	F	Fatigue Stress Concentration and Notch Sensitivity Factors	
February	22	М	Fatigue Failure Criteria	
February	24	W	Shaft Design and Iterative Process	
February	26	F	Power Screws – Torque to Force Relationship	
March	1	М	Screw Thread Stress	
March	3	W	Fastener and Member Stiffness	
March	5	F	Bolt Tension	
March	8	М	Proof Strength and Factors of Safety	
March	10	W	Spring Stress and Spring Constant	
March	12	F	Shearing Yield Strength and Presetting	
March	15	М	Springs Fatigue – Zimmerli Data	
March	17	W	Spring Design Restrictions	
March	19	F	Extension Springs	
March	22	М	EXAM 2	
March	24	W	Gear Relations and Nomenclature	
March	26	F	Gear Trains and Planetary Gears – Mechanical Advantage	
March	29	М	Spur Gear Forces and Force Components	
March	31	W	Helical Gear Forces	
April	2	F	Bevel, and Worm Gear Forces	
April	5	М	Bending Stress at the Teeth – Lewis Form Factor	
April	7	W	Pitting - Surface Compressive Stress	
April	9	F	Bearing Radial Loads	
April	12	М	Bearing Reliability	
April	14	W	Bearing Axial Loads and Equivalent Combined Loads	
April	16	F	Gear, Bearings, Shaft Systems	
April	19	М	Gear, Bearings, Shaft, Power Screws, Spring Systems	
April	21	W	EXAM 3	

Other Course Information

Textbook

Title: SHIGLEY'S MECHANICAL ENGINEERING DESIGN ISBN-13: 978-1260407648 ISBN-10: 1260407640Author: BUDYNAS Edition: 11TH Copyright: 2020 Publisher: MCGRAW-HILL

Table 1. Grading Table. % <i>GE</i> = <i>Percent Grade Earned</i> .							
Percentage Range	Grade Point						
$93.33 \leq \% \text{GE} < 100.00 \Longrightarrow \text{A}$	4.00						
$90.00 \leq \% GE < 93.33 \Longrightarrow A$ -	3.67						
$86.67 \leq \% GE < 90.00 \Longrightarrow B+$	3.33						
$83.33 \leq \% \text{GE} < 86.67 \Longrightarrow \text{B}$	3.00						
$80.00 \leq \% \text{GE} < 83.33 \Longrightarrow \text{B-}$	2.67						
$76.67 \leq \% GE < 80.00 \Longrightarrow C+$	2.33						
$73.33 \leq \% GE < 76.67 \Longrightarrow C$	2.00						
$70.00 \leq \% GE < 73.33 \Longrightarrow C$ -	1.67						
$66.67 \leq \% \text{GE} < 70.00 \Longrightarrow \text{D+}$	1.33						
$63.33 \leq \% GE \leq 66.67 \Longrightarrow D$	1.00						
$60.00 \leq \% \text{GE} < 63.33 \Longrightarrow \text{D}$	0.67						
$00.00 \leq \% \text{GE} \leq 60.00 \Longrightarrow \text{E}$	0.00						

Grading Scale: The final grade will be calculated by the following table.

Relation to Program Outcomes (ABET):

Outcome	Coverage*
1) An ability to identify, formulate, and solve complex engineering problems by applying	High
principles of engineering, science, and mathematics	
2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social,	High
environmental, and economic factors	
3) an ability to communicate effectively with a range of audiences	High
4) an ability to recognize ethical and professional responsibilities in engineering situations and	Low
make informed judgments, which must consider the impact of engineering solutions in global,	
economic, environmental, and societal contexts	
5) an ability to function effectively on a team whose members together provide leadership, create	Low
a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	
6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and	Medium
use engineering judgment to draw conclusions	
7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies	Medium

Grade Corrections:

Corrections of grades should be submitted to instructor within 5 business days of the grade posting in writing with a concise statement of why you believe there has been an error. Note that the instructor has the final determination in the grade assigned. If a grade change is determined, it may result in a lower or higher grade.

Academic honesty

All students admitted to the University of Florida have signed a statement of academic honesty committing themselves to be honest in all academic work and understanding that failure to comply with this commitment will result in disciplinary action. This statement is a reminder to uphold your obligation as a student at the University of Florida and to be honest in all work submitted and exams taken in this class and all others.

Accommodation for Students with Disabilities

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, <u>https://www.dso.ufl.edu/drc</u>) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation

Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at <u>https://evaluations.ufl.edu/evals</u>. Evaluations are typically open during the last two or three

weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at <u>https://evaluations.ufl.edu/results/</u>.

Health and Wellness

- U Matter, We Care: If you or a friend is in distress, please contact <u>umatter@ufl.edu</u> or 352 392-1575 so that a team member can reach out to the student.
- Counseling and Wellness Center: <u>http://www.counseling.ufl.edu/cwc</u>, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.
- Sexual Assault Recovery Services (SARS), Student Health Care Center, 392-1161.
- University Police Department at 392-1111 (or 9-1-1 for emergencies), or <u>http://www.police.ufl.edu/.</u>

Software Use

All faculty, staff and student of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

Student Privacy

There are federal laws protecting your privacy regarding grades earned in courses and on individual assignments. For more information, please see: http://registrar.ufl.edu/catalog0910/policies/regulationferpa.html

Commitment to a Safe and Inclusive Learning Environment

The Herbert Wertheim College of Engineering values broad diversity within our community and is committed to individual and group empowerment, inclusion, and the elimination of discrimination. It is expected that every person in this class will treat one another with dignity and respect regardless of gender, sexuality, disability, age, socioeconomic status, ethnicity, race, and culture.

If you feel like your performance in class is being impacted by discrimination or harassment of any kind, please contact your instructor or any of the following:

- Your academic advisor or Graduate Program Coordinator
- Robin Bielling, Director of Human Resources, 352-392-0903, rbielling@eng.ufl.edu
- Curtis Taylor, Associate Dean of Student Affairs, 352-392-2177, taylor@eng.ufl.edu
- Toshikazu Nishida, Associate Dean of Academic Affairs, 352-392-0943, nishida@eng.ufl.edu