EML 6155 - Convection Heat Transfer – Spring 2024

Instructor:
Dr. Saeed Moghaddam
Department of Mechanical and Aerospace Engineering
Office: MAE-A 310
Phone: 352-392-0889: E-mail: saeedmog@ufl.edu

Class Hours & Place:
Tue, Periods 5-6 (11:45 AM to 1:40 PM), LAR 0330
Thu, Period 6 (12:50 PM to 1:40 PM), LAR 0330

Office Hours (Hybrid):
Tue-Thur: 2 PM to 3 PM
Zoom: 416 606 4665 & Office: NEB 237
Note: These are the proposed office hours and can be changed upon request.

Supervised Teacher:
Daniel Greene, dgreene1@ufl.edu
Wed-Fri: 3 PM to 4 PM
Zoom: TBA
Note: These are the proposed office hours and can be changed upon request.

Course Website:
https://ufl.instructure.com/courses/503282

Books:
3- Convective Heat Transfer by Burmeister, 2nd Ed., John Wiley & Sons, 1993

Course Objective: to provide a fundamental treatment of fluid flows controlled by viscous or turbulent stress gradients and the subsequent heat transfer between fluids and solid surfaces. Analytical solutions to the momentum and energy conservation equations for both laminar and turbulent flows will be considered. Students will be expected to derive appropriate transport equations, apply transport equations to convective transport problems, and evaluate appropriate transport properties such as friction factors, Nusselt numbers, Sherwood numbers, and Stanton numbers. The fundamental conservation principles covered in this course provide a solid foundation for the engineering practitioner engaged in single phase convective thermal transport; a solid foundation is also provided for further studies in multiphase convective transport.

Course Outline:
1. Introduction
2. Fundamental principles
 a. Mass conservation
 b. Force balances (Momentum equations)
 c. Energy equations
 d. A simple case: Couette flow
 e. Scale analysis
3. Laminar boundary layer flow
 a. The fundamental problem in convection heat transfer
 b. The concept of boundary layer
 c. Velocity and thermal boundary layer thicknesses
4. Laminar momentum and heat transfer in ducts
 a. Entry region
 b. Fully developed flow
 c. Flow and heat transfer in circular and non-circular cross-section ducts
 d. Nusselt number at different wall thermal conditions
5. Laminar momentum and heat transfer in external boundary layers
 a. Potential flow solutions to velocity field
 b. Self similar boundary layers
 c. Similarity transformations
 d. Flow over a flat plate solutions
 e. Displacement thickness, momentum thickness
 f. Integral momentum equation and approximate solutions
 g. Thermal boundary layer similarity transformation and solution
 h. Integral energy equation and approximate solutions
6. Natural convection boundary layers
 a. Boundary layer equations
 b. Boussinesq approximation
 c. Nusslet number (laminar flow)
7. Turbulence fundamentals
 a. Transition to turbulent
 b. Reynolds decomposition
 c. Averaging properties
 d. Turbulent (Reynolds) stress and turbulent (eddy) thermal diffusivity
 e. Prandtl mixing length model
 f. Turbulent Prandtl number
8. Turbulent fluid flow
 a. Law of the wall
 b. Universal velocity profile for external flow
 c. Friction coefficient
 d. Internal flow
9. Turbulent thermal transport
 a. External flow
 b. Law of the wall
 c. Internal flow

Grading:
1. Grading Basis:
 Homework 15%
 Mid-term Exam I 25%
 Mid-term Exam II 25%
 Final Exam 35%
 Total 100%

2. Homework: Homework assignments weekly to biweekly.
 Show all work, mark all answers, and be neat.
 Online submission

3. Exams:
 Mid-term Exam I February 13th, 11:45 AM to 1:40 PM
 Location: LAR 0330
 Mid-term Exam II March 19th, 11:45 AM to 1:40 PM
 Location: LAR 0330
 Final Exam May 3rd, 12:30 PM to 2:30 PM
 Location: LAR 0330
 No make-up exams will be given unless there is a valid reason consistent with
 the University policy.

4. Grading scale:

90-100	A
87-89.99	A-
83-86.99	B+
80-82.99	B
77 - 79.99	B-
73 - 76.99	C+
70 - 72.99	C
67 - 69.99	C-
63 - 66.99	D+

Holidays:
UF Recognized Holidays (no class):
March 11th-15th (Spring Break)

Class Policies:
1. SOME collaboration is allowable on homework, but each student is responsible
 for performing the bulk of his or her own homework assignment.
2. NO collaboration is allowed on exams.

Academic Honesty:
All students admitted to the University of Florida have signed a statement of academic honesty
committing them to be honest in all academic work and understanding that failure to comply with
this commitment will result in disciplinary action.
This statement is a reminder to uphold your obligation as a student at the University of Florida and to be honest in all work submitted and exams taken in this class and all others.