

Course Syllabus

EML3005 - Mechanical Engineering Design 1

Instructor

Dr. Katerina E. Aifantis

Office hours: Monday, Wednesday, Friday, 10.00-11.00

Zoom Room: <https://ufl.zoom.us/j/4855871400>

Email: kaifantis@ufl.edu

Textbook: Not required to purchase, but will be using content from Shigley's mechanical engineering design, 10th edition

Prerequisites: COP 2271, EML2322L and EGM 3520 with minimum grade of C.

Teaching Assistants

Gustavo Tersoni

Office hours: TBA and on appointment

Location: <https://ufl.zoom.us/j/4855871400>

Email: ganaiatersoni@ufl.edu

Course Objective and Goals

This course deals with the design of mechanical components that are found in mechanical systems, e.g. shafts, fasteners, bearings, springs, gears, brakes, clutches, couplings. From catalog: design process, kinetics gear, gear trains, and standard mechanical components.

For academic Policies and student help resources please see

<https://go.ufl.edu/syllabuspolicies>

Evaluation

4 Exams @ 20% each	80%
Homework	20%

Exam times in the afternoon 6-8pm on day of exam, room TBA.

Important Dates:

Sept 22	Exam 1
Oct 20	Exam 2
Nov 17	Exam 3
Dec 3	Exam 4

Grading scale

95-100	A
90-94.9	A-
87-89.9	B+
83-86.9	B
80-82.9	B-
77-79.9	C+
73-76.9	C
70-72.9	C-
67-69.9	D+
63-66.9	D
60-62.9	D-
<60	E

Tentative content

(The instructor may change this schedule to accommodate class needs.)

1. 1/12 Material properties; Stress, Mohr's circle. Section 2.1, 3.4-3.7
2. 1/14 Stress for bending and Torsion; Stress concentration. Section 3.10-3.13
3. 1/16 Deflection, strain energy
4. 1/21 Martin Luther King Jr Holiday
5. 1/23 Failure of ductile material from statics loading. Section 5.1-5.7
6. 1/25 Fatigue and fatigue-life method. Section 6.1-6.6
7. 1/27 Fatigue and fatigue-life method. Section 6.1-6.6
8. 2/2 Fatigue and fluctuating stresses. Section 6.11-6.15
9. 2/4 Fatigue and fluctuating stresses. Section 6.11-6.15
10. 2/9 Fatigue and fluctuating stresses. Section 6.11-6.15
11. 2/11 Review

2/13 Exam 1

- 11.2/16 Shaft Materials, layout and design for stress. Section 7.1-7.4
- 12.2/18 Shaft design for stress, deflection. Section 7.4-7.6
- 13.2/20 Threads; Power screw; Fastener stiffness. Section 8.1-8.4
- 14.2/23 Member stiffness; Bolt strength and tensile. Section 8.5-8.8
- 15.2/25 Loading Joint. Section 8.9-8.12
- 16.2/27 Welding and stresses in welded joints. Section 9.1-9.4
- 17.3/2 Fastener stiffness; Member stiffness (chap. 8)
- 18.3/4 Tension joints; statically loaded tension joint (chap. 8)
- 19.3/6 Fatigue loading of tension joints (chap. 8)
- 20.3/9 Review

3/11 Exam 2

- 21.3/13 Welding symbols; stress in welded joints in torsion and bending (chap. 9)
22. Spring Break 16-20 March
- 23.3/23 Strength of welded joints and static loading (chap. 9)
- 24.3/25 Fatigue loading and bonding (chap. 9)
- 25.3/27 Fatigue loading and bonding (chap. 9)
- 26.3/30 Stresses in spring; curvature effect; deflection (chap. 10)
- 27.4/1 Compression springs; stability. (chap. 10)
- 28.4/3 Critical frequency; fatigue loading (chap. 10)
- 29.4/6 Review Exam 3

4/8 Exam 3

- 30.4/10 Types of gears; fundamentals (chap. 13)
- 31.4/13 Contact ratio; forming of gear teeth. (chap. 13)
- 32.4/15 Worm gears; tooth system; gear trains. (chap. 13)
- 33.4/17 Force analysis (chap. 13)

34.4/20 Lewis bending equation; AGMA equations (chap. 14)

4/22

Exam 4