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Abstract

The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered.
The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the
thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel
obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young�s
modulus is represented by a polynomial in the thickness coordinate, but the Poisson�s ratio is kept constant. The
two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series
and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the
impact problem we used a simple dynamic model based on quasi-static behavior of the panel—the sandwich beam
was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring
to represent the local indentation effects. Results indicate that the contact stiffness of the beam with graded core
increases causing the contact stresses and other stress components in the vicinity of contact to increase. However,
the values of maximum strains corresponding to the maximum impact load are reduced considerably due to grading
of the core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that
the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded
cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.
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0. Introduction

Weight savings offered by sandwich constructions for structures that require high bending stiffness and
buckling loads are significant. However, sandwich constructions have not been fully exploited in structural
applications due to damage tolerance concerns. Debonding at or near the core/face sheet interface is a ma-
jor problem in sandwich construction. The stiffness discontinuity at the face sheet/core interface results in a
large increase in interfacial shear stresses. While the core material itself may withstand very high shear stres-
ses, the bond (or adhesive layer) at the interface is usually weaker. It has been observed that stronger inter-
face causes tearing of the core below the interface (Avery and Sankar, 2000). Although sandwich structures
offer advantages over other types of structures, it is important to develop new types of materials in order to
obtain the absolute minimum weight for given conditions such as structural geometry and loadings. These
new sandwiches should be compared with other sandwich construction as well as with alternative structures
in order to select the best configuration. One of the new alternatives is a sandwich structure with function-
ally graded core. In this paper, we explore the possibility of reducing the interfacial shear stresses and also
the maximum strains in the core by grading the core properties in the thickness direction. This will be
accomplished by minimizing the jump in the stiffness across the interface.

Functionally graded materials (FGMs) possess properties that vary gradually with location within the
material such a way as to optimize some function of the overall FGM. FGMs differ from composites wherein
the volume fraction of the inclusion is uniform throughout the composite. The closest analogies of FGMs are
laminated composites, but they possess distinct interfaces across which properties change abruptly.

Nature provides many examples of functionally graded materials. They can be found in bones, plant
stems (e.g., bamboo; Amada and Untao, 2001; Amada et al., 1997) and soils. Manufacturing methods in-
clude: high-speed centrifugal casting method (Fukui et al., 1997; Fukui, 1991); ultraviolet radiations
(Lambros et al., 1999); electrophoretic deposition (Sarkar et al., 1997); dispersing microballoons (with lin-
ear graded volume fraction) in epoxy (El-Hadek and Tippur, 2003); high temperature infiltration (Suresh,
2001); chemical vapor deposition, powder metallurgy, plasma sprays, and self-propagating combustion syn-
thesis (Koizumi, 1997).

Although fabrication technology of FGMs is in its infancy, they have great potential in many applica-
tions ranging from dental implants (Watari et al., 1997) to thermal coatings and thermal protection systems
(Koizumi, 1997). Suresh and Mortensen (1998) provide an excellent introduction to properties, processing
and characterization of FGMs.

As the use of FGMs increases in aerospace, automotive and biomedical applications, new methodologies
have to be developed to characterize them, and to design and analyze structural components made with
these materials. The methods should be such that they can be incorporated into available methods with
minimal modifications, if any. One problem is that of response of structures made of FGMs to thermo-
mechanical loads. Although FGMs are highly heterogeneous, it will be useful to idealize them as continua
with properties that change smoothly with respect to spatial coordinates. This will enable closed-form solu-
tions for some fundamental solid mechanics problems, and will aid the development of finite element mod-
els for structures made of FGMs.

Aboudi et al. (1994a,b, 1999) developed a higher order micro-mechanical theory for FGMs (HOTFGM)
that explicitly couples local and global effects. They used higher-order representation of the temperature
and displacement fields in order to capture the local effects created by the thermo-mechanical field gradi-
ents, the microstructure of the composite and the finite dimensions in the functionally graded directions.
Later the theory was extended to free-edge problems by Aboudi and Pindera (1995) and to inelastic mate-
rials (Aboudi et al., 1995). Pindera and Dunn (1995) evaluated the higher order theory by performing a
detailed finite element analysis of the FGM. They found that the HOTFGM results agreed well with the
FE results. Marrey and Sankar (1993) studied the effects of stress gradients in textile composites consisting
of unit cells large compared to the thickness of the composite. Their method resulted in direct computation
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of plate stiffness coefficients from the micro-mechanical models rather than from the homogeneous elastic
constants of the composite and plate thickness.

When using analytical methods to solve problems involving FGMs, a functional form for the variation
of thermo-elastic constants has to be assumed. For example, Aboudi et al. (1994a,b, 1999) assumed a simple
polynomial approximation for the elastic constants. Another useful approximation is the exponential var-
iation, where the elastic constants vary according to formulas of the type cij ¼ c0

ij ekz. Many researchers have
found this functional form of property variation to be convenient in solving elasticity problems. For exam-
ple, Delale and Erdogan (1983) derived the crack-tip stress fields for an inhomogeneous cracked body with
constant Poisson ratio and a shear modulus variation given by l = l0 e(ax+by).

Abid Mian and Spencer (1998) present an exact solution for three-dimensional elasticity equations for
isotropic linearly elastic, inhomogeneous materials generalized from solutions for stretching and bending
of symmetrically inhomogeneous plates. It is shown that the exact three-dimensional solutions are gener-
ated by two-dimensional solutions of the thin-plate equations for a homogeneous plate. Reddy and Cheng
(2001) and Reddy (2000) use an asymptotic method to determine three-dimensional thermo-mechanical
deformations of FG rectangular plates. Rooney and Ferrari (1999) developed solutions for tension, bend-
ing and flexure of an isotropic prismatic bar with elastic moduli varying across the cross-section. Vel and
Batra (2002, 2003, 2004) present an exact solution for simply supported functionally graded rectangular
thick or thin plates. The material has a power-law through-the-thickness variation of the volume fractions
of the constituents and they employ a power series method to solve the equations. Woo and Meguid (2000)
provide an analytical solution for the coupled large deflection of plates and shallow shells made of FGMs
under transverse mechanical load and temperature field. The material properties of the shell are assumed to
vary continuously through the thickness of the shell, according to a power law of volume fraction of the
constituents. The equations obtained using von Karman theory for large transverse deflection, are solved
by Fourier series method.

One of the important problems in sandwich structures is damage due to low velocity impact. The inter-
facial shear stresses due to the contact forces can be large enough to cause debonding of the face sheet from
the core. One way of reducing the shear stresses is to use functionally graded core so that the abrupt change
in stiffness between the face sheet and the core can be eliminated or minimized. The stresses that arise due to
low-velocity impact can be easily understood by analyzing the static contact between the impactor and the
structure (Sun and Sankar, 1985).

In a series of papers Sankar and his coworkers (Sankar and Tzeng, 2002; Sankar, 2001; Venkataraman
and Sankar, 2001; Apetre et al., 2002) reported analytical methods for the thermo-mechanical and contact
analysis of FG beams and also sandwich beams with FG cores. In these studies the thermo-mechanical
properties of the FGM were assumed to vary through the thickness in an exponential fashion, e.g.,
E(z) = E0 ekz. The material was assumed to be isotropic and the Poisson�s ratio was assumed to be constant.
The exponential variation of elastic stiffness coefficients allows exact elasticity solution via Fourier trans-
form methods. Later, Apetre et al. (2003) and Zhu and Sankar (2004) used Galerkin method to analyze
cores with polynomial variation of mechanical properties. In the present paper, we address the low-speed
impact problem of a sandwich structure with FG core. It is demonstrated that maximum strains in the core
for a given impact energy can be reduced significantly. Thus, there is a potential for using FGM cores in
sandwich structures to minimize impact damage.
1. Solution via Fourier–Galerkin method for polynomial variation of core properties

Zhu and Sankar (2004) derived an analytical model for a FG beam with Young�s modulus expressed as a
polynomial in thickness coordinate using a combined Fourier series–Galerkin method. In the present work,
the model is applied to a sandwich beam with FG core.
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Fig. 1. Sandwich beam with functionally graded core divided into four elements.
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The dimensions of the sandwich beam are shown in Fig. 1. The length of the beam is L, the core thick-
ness is h and the face sheet thicknesses are hf. The beam is divided into four parts or elements: the top face
sheet, top half of the core, bottom half of the core and the bottom face sheet.

Each element has its own coordinate systems. The coordinate systems for each element are chosen at the
interface, because it will be convenient to enforce displacement compatibility and continuity of tractions
between elements at the interface nodes. The face sheets are assumed to be homogeneous and isotropic.
The core is orthotropic at every point. The elasticity equations are formulated separately for each element,
and compatibility of displacements and continuity of tractions are enforced at each interface (node) to ob-
tain the displacement and stress field in the sandwich beam (Fig. 2). This procedure is analogous to assem-
bling element stiffness matrices to obtain global stiffness matrix in finite element analysis.

Let us assume that the top face sheet is subjected to normal tractions such that,
rzzðx; 0Þ ¼ pa sinðnxÞ; ð1Þ

where
n ¼ np
L
; n ¼ 1; 3; 5; . . . ; ð2Þ
and pa is known. Since n is assumed to be odd, the loading is symmetric about the center of the beam. The
loading given by Eq. (1) is of practical significance because any arbitrary loading can be expressed as a Fou-
rier series involving terms of the same type.
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Fig. 2. Traction forces and displacements at the interfaces of each element in the FGM sandwich beam.
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In this paper, we will provide a brief description of the procedures in order to obtain the stiffness matrix
of top half of the core. The derivation of stiffness matrices of other elements follows the same procedures.

The differential equations of equilibrium for the top half of the core are
orxx

ox
þ osxz

oz
¼ 0;

osxz

ox
þ orzz

oz
¼ 0. ð3Þ
If the core material is orthotropic at every point and the principal material directions coincide with the x-
and z-axes, the constitutive relations are
rxx

rxx

sxz

8><
>:

9>=
>; ¼

c11 c13 0

c13 c33 0

0 0 c55
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75

exx

exx

cxz
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>:

9>=
>; ð4Þ
or
frg ¼ ½cðzÞ�feg.

The variation of Young�s modulus E in the thickness direction is given by a polynomial in z, e.g.,
EðzÞ ¼ E0 a1

z
h

� �4

þ a2

z
h

� �3

þ a3

z
h

� �2

þ a4

z
h

� �
þ 1

� �
; ð5Þ
where E0 is the Young�s modulus at z = 0 and a1, a2, a3 and a4 are material constants. We assumed that
thickness in y direction is large and plain strain assumption can be used. The elasticity matrix [C] is related
to the material constants by
C ¼ EðzÞ
ð1þ mÞð1� 2mÞ

1� m m 0

m 1� m 0

0 0
1� 2m

2

0
BB@

1
CCA. ð6Þ
We assume the solution for displacements as
uðx; zÞ ¼ UðzÞ cos nx; wðx; zÞ ¼ W ðzÞ sin nx. ð7Þ
Substituting Eq. (7) into (4), we obtain,
rxx

rzz

sxz

0
B@

1
CA ¼

c11 c13 0

c13 c33 0

0 0 G

0
B@

1
CA

�nU sin nx

W 0 sin nx

U 0 þ nW cos nx

0
B@

1
CA. ð8Þ
A prime ( 0) after a variable denotes differentiation with respect to z. Boundary conditions of the beam at
x = 0 and x = L are w(0, z) = w(L,z) = 0, and rxx(0, z) = rxx(L,z) = 0, which corresponds to simple sup-
port conditions in the context of beam theory. Eq. (8) can be written as
rxx

rzz

� �
¼

Sx

Sz

� �
sin nx; sxz ¼ T z cos nx; ð9Þ
where
Sx

Sz

� �
¼

c11 c13

c13 c33

� � �nU

W 0

� �
; T z ¼ GðU 0 þ nW Þ. ð10Þ
Substituting for rxx, rzz, sxz from Eq. (8) into equilibrium equation (3), we obtain a set of ordinary dif-
ferential equations in U(z) and W(z),
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nSx þ T 0z ¼ 0; S0z � T zn ¼ 0. ð11Þ

In order to solve Eq. (11) we employ the Galerkin method. We assume solutions in the form of polyno-

mials in z as follows:
UðzÞ ¼ c1/1ðzÞ þ c2/2ðzÞ þ c3/3ðzÞ þ c4/4ðzÞ þ c5/5ðzÞ;
W ðzÞ ¼ b1/1ðzÞ þ b2/2ðzÞ þ b3/3ðzÞ þ b4/4ðzÞ þ b5/5ðzÞ;

ð12Þ
where /�s are basis functions, and b�s and c�s are coefficients to be determined. For simplicity we choose 1, z,
z2, z3, z4 as basis functions. That is,
/1ðzÞ ¼ 1; /2ðzÞ ¼ z; /3ðzÞ ¼ z2; /4ðzÞ ¼ z3; /5ðzÞ ¼ z4. ð13Þ

Substituting the approximate solution in the governing differential equations, we obtain the residuals.

The residuals are minimized by equating their weighted averages to zero,
Z h

0

nSx þ T 0z
� �

/iðzÞdz ¼ 0; i ¼ 1; 5;Z h

0

S0z � T zn
� �

/iðzÞdz ¼ 0; i ¼ 1; 5.

ð14Þ
Using integration by parts we can rewrite Eq. (14) as
Z h

0

/inSx dzþ T zðhÞ/iðhÞ � T zð0Þ/ið0Þ �
Z h

0

T z/
0
i dz ¼ 0;Z h

0

Sz/
0
i dzþ

Z h

0

T zn/i dz� SzðhÞ/iðhÞ � Szð0Þ/ið0Þð Þ ¼ 0; i ¼ 1; 5.

ð15Þ
Substituting for Sx(z), Sz(z) and Tz(z) from Eq. (10) into (15) and using the approximate solution for
U(z) and W(z) in (12) we obtain
Kð1Þij Kð2Þij

Kð3Þij Kð4Þij

 !
b

c

� �
¼ f ð1Þi

f ð2Þi

 !
ð16Þ
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½K�
b

c

� �
¼ f ð1Þi

f ð2Þi

 !
;
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Kð1Þij ¼ n
Z h

0
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0
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Z h

0
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Z h

0

G/0i/
0
j dz� n2

Z h

0

c11/i/j dz;

Kð3Þij ¼ �n2

Z h

0

G/i/j dz�
Z h

0

c33/
0
i/
0
j dz Kð4Þij ¼ n

Z h

0

c13/
0
i/j dz� n

Z h

0

G/i/
0
j dz; i ¼ 1; 5;

f ð1Þi ¼ /ið0ÞT zð0Þ � /iðhÞT zðhÞ; f ð2Þi ¼ /ið0ÞSzð0Þ � /iðhÞSzðhÞ;
b

c

� �T

¼ b1 b2 b3 b4 b5 c1 c2 c3 c4 c5ð Þ.

ð17Þ
Let U2, W2, U3 and W3 be the displacements at top and bottom surface of top half of the element (top
half of the core). Evaluating the expressions for U(z) and W(z) at the top and bottom surfaces and equating
them to the surface displacements results in the expression:
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U 2

W 2

U 3

W 3

0
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1
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This can be compactly expressed as
U 2

W 2

U 3

W 3

0
BBB@

1
CCCA ¼ ½A�

b1

� � �
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c5

0
BBB@

1
CCCA. ð19Þ
The tractions T2, P2, T3 and P3 acting on the surface can be related to the functions fi as follows:
f ð1Þ1

f ð1Þ2

f ð1Þ3

f ð1Þ4

f ð1Þ5

f ð2Þ1

f ð2Þ2

f ð2Þ3

f ð2Þ4
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0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

¼

�/1ðhÞ 0 /1ð0Þ 0

�/2ðhÞ 0 /2ð0Þ 0

�/3ðhÞ 0 /3ð0Þ 0

�/4ðhÞ 0 /4ð0Þ 0

�/5ðhÞ 0 /5ð0Þ 0

0 �/1ðhÞ 0 /1ð0Þ
0 �/2ðhÞ 0 /2ð0Þ
0 �/3ðhÞ 0 /3ð0Þ
0 �/4ðhÞ 0 /4ð0Þ
0 �/5ðhÞ 0 /5ð0Þ

2
6666666666666666664

3
7777777777777777775

T 2

S2

T 3

S3

0
BBB@

1
CCCA ð20Þ
or
f ð1Þ1

� � �
� � �
f ð2Þ5

0
BBBB@

1
CCCCA ¼ ½B�

T 2

S2

T 3

S3

0
BBB@

1
CCCA. ð21Þ
From (16), (19) and (21) we obtain:
U 2

W 2

U 3

W 3

0
BBB@

1
CCCA ¼ ½A�½K��1½B�

T 1

S1

T 2

S2

0
BBB@

1
CCCA ¼ ½K��

T 1

S1

T 2

S2

0
BBB@

1
CCCA.
Finally, the stiffness matrix of the top half of the FGM core [S(2)] that relates the surface tractions to the
surface displacements is obtained as
T 1

S1

T 2

S2

0
BBB@

1
CCCA ¼ ½K���1

U 2

W 2

U 3

W 3

0
BBB@

1
CCCA ¼ ½Sð2Þ�

U 2

W 2

U 3

W 3

0
BBB@

1
CCCA. ð22Þ
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In order to satisfy equilibrium, the contributions of the different tractions at each interface should sum to
zero. Enforcing the balance and the compatibility of force and displacements at the interfaces enables us to
assemble the stiffness matrices of the four elements to obtain a global stiffness matrix S:
½S� U 1 W 1 U 2 W 2 U 3 W 3 U 4 W 4 U 5 W 5½ �T ¼ 0 pa 0 0 0 0 0 0 0 0½ �T.

ð23Þ

The displacements U1, W1, . . . , W5, are obtained by solving Eq. (23). The displacement field along with

the constitutive relations is used to obtain the stress field in each element.
2. Contact problem

Contact problems for finite thickness layers can be solved using numerical methods. Sankar and Sun
(1983) used two types of numerical methods, point matching technique and assumed stress distribution
method. The point matching method is essentially a numerical technique to solve the integral equations
of the contact problem. However, this method fails when the contact area is too small because of numerical
difficulties. In the assumed contact stress distribution method, the contact stresses are assumed to be of
Hertzian form, i.e., similar to that of contact of a half-plane. The contact stresses take the shape of a
semi-ellipse. A contact length is assumed and the contact stresses are expressed in terms of only one un-
known, the peak contact stress. Requiring that the deflections beneath the contact region match the inden-
tor profile one can solve for the peak contact stress.

The dimensions of the sandwich beam used in the present study are shown in Fig. 3. The length of the
beam is L, the core thickness is 2h and the face sheet thickness is hf. The contact length 2c, was considered
as known and the response quantities (stresses, deflection) were calculated for a given contact length. Inden-
tation, a is defined as the difference in the vertical displacements of the indenter and the corresponding
point on the bottom side of the beam.

The stress distribution under the indenter (Fig. 4) is assumed to be of the semi-elliptical form:
pðxÞ ¼ pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c2

r
; ð24Þ
where pmax is maximum value of the stress at center (unknown).
We assume a similar stress distribution with some arbitrary pmax, say pM, and compute the vertical dis-

placements of the points in the contact zone using the method described in the previous section. Writing
p(x) in the form of a Fourier sine series we obtain
pðxÞ ¼
X1

n¼1;3;...

pn sin
npx
L
; ð25Þ
Fig. 3. Dimensions of the sandwich panel and the contact length 2c.
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where
pn ¼
2pM

n
sin

np
2

� �
J 1

npc
L

� �
; ð26Þ
and J1 is the Bessel function of first order. Using the method developed in the previous section one can find
the vertical displacements of the points in the contact zone. From geometrical considerations, for contact
lengths smaller in comparison with the radius of indenter, we use the following approximate relation:
dðxÞ ¼ wðxÞ � wðx0Þ ¼
x2

2R0ðxÞ ; ð27Þ
where w(x0) is vertical displacement at the middle point (see Fig. 5). In (27) R 0 is the radius of curvature at
x. It is found that R 0 is almost constant (usually, more then 70% of R 0 distribution lies within one standard
deviation of the mean value). Then the average radius of curvature of the deformed top face sheet can be
derived as
w (x0)

w(x)

x

R'(x)

δ(x) 

Fig. 5. Illustration of relation between w deflection and radius of curvature of the deformed surface.
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R ¼ 1

c

Z c

0

R0ðxÞdx. ð28Þ
Generally R is different from the radius of the intender R0. But, the displacements vary linearly with the
load and hence the peak stress pmax required producing a radius R0 is given by
pmax ¼ pM

R
R0

. ð29Þ
Once pmax is known, vertical displacements and the indentation can be calculated. Plots for several exam-
ples are presented and discussed in Section 4.
3. Impact problem

After we solve the static contact problem we apply the methods to the problem of low-velocity impact of
functionally graded sandwich panels. Solving the static contact problem first and combining the solution
with the dynamic response of the sandwich panel obtained via simple spring-mass models (quasi-static
assumption) accomplish this. The use of static load-deflection behavior of the sandwich beam in the impact
analysis needs some justification. In general the wave propagation effects, especially through the thickness
of the core, should be considered in impact response of sandwich panels. This will be crucial when spalling
type damage occurs in the panels. However, a study by Sankar (1992) showed that for very large impactor
mass compared to that of the target plate and for very low impact velocities compared to the wave velocity
in the target medium, quasi-static assumptions yield sufficiently accurate results for impact force history
and ensuing stresses in the impacted plate.

The sandwich beam is modeled as a combination of two springs (Shivakumar et al., 1985), a linear spring
to account for the global deflection and a nonlinear spring to represent the local indentation effects as de-
picted in Fig. 6.
F

ki –– nonlinear 

ks   linear

Fig. 6. Low-velocity impact model.
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Using the numerical results from the contact problem we determined spring constants ki and ks and the
exponent n such that
F ¼ kia
n; ð30Þ

F ¼ kswb; ð31Þ
where F is the total load, a is the core indentation, wb is the vertical displacement of the core at the at bot-
tom face sheet interface.

The displacement of the impactor is calculated as the sum of indentation depth (core compression) and
the global deflection of the sandwich beam:
w ¼ aþ wb ¼
F
ks
þ F

ki

� �1=n

. ð32Þ
The work done by the impactor during the impact event can be expressed as
W ¼
Z w

0

F dw ¼ Fw�
Z F

0

wdF ¼ Fw�
Z F

0

F
ks
þ F

ki

� �1=n
 !

dF ¼ F 2

2ks
þ 1

nþ 1

F 1þ1=n

2k1=n
i

. ð33Þ
Considering that the impactor kinetic energy is equal to the work done or the strain energy stored in the
springs, the maximum contact force can be calculated from
F 2
max

2ks
þ F 1þ1=n

max

ðnþ 1Þk1=n
i

¼ 1

2
mv2

0; ð34Þ
where m and v0 are, respectively, the mass and impact velocity of the impactor.
We used the results of the static contact problem to determine the constants that described the stiffness

and compression of FG sandwich beam. Using these material properties and the quasi-static model we
solved for maximum contact force in the case of low-velocity impact of FG sandwich beam. Using this
maximum value, we determined and compared the maximum normal and shear strains in the core. Results
for several examples are presented in the next section.
4. Results and discussions

A sandwich beam, with length L = 0.2 m, core thickness h = 20 · 10�3 m and facesheet thickness
hf = 0.3 · 10�3 m is considered to investigate the effects of varying core properties through the thickness.
The face-sheet Young�s modulus was chosen as 50 GPa.

Although this method can be applied to a general form of E as in Eq. (5), in the present paper, for core
Young�s modulus, we consider two cases (Fig. 7): linear symmetric about midplane and linear asymmetric.
The variation of E with respect to z for the two cases is given below and in Fig. 6:
Esym ¼ Esym
0

Esym
h � Esym

0

Esym
0

jzj
h
þ 1

� �
if z 2 ½�h; h�; ð35Þ

Easym ¼ Easym
0

Easym
h � Easym

0

2Easym
0

z
h
þ Easym

0 þ Easym
h

2Easym
0

� �
if z 2 ½�h; h�; ð36Þ
where 2h is the core thickness; Esym
0 is the Young�s modulus at the midplane for symmetric case; Easym

0 is the
Young�s modulus at the bottom surface for asymmetric case. Esym

h is the sandwich core Young�s modulus at
face sheet interfaces for symmetric case; Easym

h is the sandwich core Young�s modulus at top face sheet inter-
face for asymmetric case. Three different variations such that Eh = E0 · (1,5,10) are considered. Eh is the



Fig. 7. Through the thickness variations of core modulus considered for the functionally graded sandwich beam. (H.C.: homogeneous
core; S.C.: symmetric core; A.C.: asymmetric core.)
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core modulus at face sheet interfaces for symmetric case and is the sandwich core modulus at top face sheet
interfaces for asymmetric case.

Poisson�s ratios are m = 0.35 for the core and mf = 0.25 for the face-sheet material. The intender is a cyl-
inder with a radius of 10 · 10�3 m. The width of the cylinder and the width of the sandwich panel in y-direc-
tion are assumed to be unity. The cylinder is made of steel and its mass is m = 15.7 kg. The impact velocity
of the impactor is v0 = 6 m/s and the kinetic energy is K = 282.2 J.

Fig. 8 depicts the contact load-indentation (beam thickness compression) relations for various beams. It
may be noted that the contact stiffness is higher when the core density is also higher near the face sheet. For
an indentation of 0.2 mm the contact force increases by a factor of about 8 when the core modulus at the
Fig. 8. Variation of contact force with indentation depth in functionally graded beams. (H.C.: homogeneous core; S.C.: symmetric
core; A.C.: asymmetric core.)



Fig. 9. Relation between contact force and the vertical displacement at bottom midpoint in functionally graded sandwich beams.
(H.C.: homogeneous core; S.C.: symmetric core; A.C.: asymmetric core.)
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interface increases by a factor of 10. Of course, there is a shielding effect due to the stiff face sheet and that is
why the increase in contact force is not in the same order as the core stiffness. The load-indentation rela-
tions are needed in solving the problem of low-velocity impact of a rigid impactor and the sandwich beam.

The central deflection of the beam as a function of applied force is plotted in Fig. 9. The relations are
approximately linear. The FG core affects the stiffness of the beam as the high-density core near the face
sheet contributes significantly to the flexural stiffness of the beam. Also, it can be noted that the asymmetric
beam is stiffer than the symmetric one because near the top face sheet (where the contact occurs) the
Young�s modulus for the asymmetric case is larger than that for symmetric case. Using these results we
determined the contact stiffness that describe the relation between the contact force and indentation (31)
and the global stiffness that relates the contact force to the vertical displacement (32). These constants
are needed for the quasi-static model. The total loads and maximum vertical displacements for various con-
tact lengths are presented in Fig. 9 in order to present the trend. Although the range of deflection in Fig. 9
are much larger (�40 mm) for small deflection theory, the impactor mass and velocity in the example im-
pact problems are such that the maximum deflection (�8 mm) does not exceed the limits for linear elastic
approach.

In order to determine if the core can withstand the contact loads due to impact we need to compute not
only the maximum stresses in the core but also need to compare them with corresponding strength values.
Since the strength of a FG core is expected to vary with location and also we do not have sufficient data on
strength, it was decided to calculate the maximum strains. We assume that the maximum strain theory will
hold well at all densities and thus strains can be used to determine the efficacy of FG cores compared to
uniform cores. The variation of maximum normal strain exx and maximum shear strain cxz in the core
for a given contact force are plotted in the Figs. 10 and 11, respectively. Using the maximum contact force
values for a given impact energy (282 J) in various panels we determined the maximum strains for that im-
pact event. These results are summarized in Table 1.

From Table 1 one can notice that maximum normal strain corresponding to the maximum impact load
decreases by approximately 40% as the Young�s modulus of material at the top of the core increases by a
factor of 10 for symmetric case, and by approximately 35% for the asymmetric cases. Also the maximum



Fig. 10. Contact force vs. maximum normal strain for beams with FGM core and homogeneous core. (H.C.: homogeneous core; S.C.:
symmetric core; A.S.: asymmetric core.)

Fig. 11. Contact force vs. maximum shear strain for beams with FGM core and homogeneous core. (H.C.: homogeneous core; S.C.:
symmetric core; A.C.: asymmetric core.)
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shear strain corresponding to the maximum impact load decreases by approximately 60% as the Young�s
modulus of the asymmetric material at top of the core is increased by a factor of 10. For the symmetric
core case the reduction is with approximately 30% when Young�s modulus of the symmetric material at
top of the core is increased by a factor of 10. An interesting conclusion is that the maximum strain corre-
sponding to the maximum impact load for asymmetric core is smaller than maximum strain for symmetric
core. The reason for this is that the asymmetric core is stiffer in a larger region in the vicinity of contact
compared to the symmetric core.

From Fig. 9, one can notice that the FG core affects the stiffness of the beam as the high-density core
near the face sheet contributes significantly to the flexural stiffness of the beam. Hence, to maintain the



Table 1
Maximum normal and shear strains for a given impact energy of 282 J

Core type Eh/E0 Fmax (N) ex cxz

Maximum % Change Maximum % Change

Uniform 1 5.45 · 104 0.0300 – 0.0978 –
FG, symmetric 5 7.03 · 104 0.0257 14.3 0.0830 15.1
FG, symmetric 10 7.89 · 104 0.0194 35.3 0.0700 28.4
FG, asymmetric 5 7.39 · 104 0.0195 35.0 0.0500 48.9
FG, asymmetric 10 8.31 · 104 0.0176 41.3 0.0368 62.3

FG denotes functionally graded core.
The % change in strain in FG cores is with respect to the maximum strain in uniform core.
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same flexural stiffness for different core materials, the core thickness is varied as described below. The flex-
ural stiffness is defined as
Table
Core t

Core t

Unifor
Symm
Symm
Asymm
Asymm

H.C.: h
Dij ¼
Z h

2þhf

� h
2þhfð Þ

Cijz2 dz; ð37Þ
where Cij are stiffness coefficients of the constituents, face sheets and the core, h is the core thickness and hf

is the face sheets thickness. The core thicknesses of the FG cores were chosen such that the flexural stiffness
of the sandwich beam will be equal to that of the beam with homogeneous core. That is
DFG
11 ¼ Dhom

11 . ð38Þ

The results for core thickness obtained using this method are presented in Table 2. All the thicknesses for
FGM obtained in this way are smaller than that for homogeneous core.

The load-deflection behavior of the sandwich beams having the same flexural stiffness is presented in
Fig. 12 and in Table 2. The results indicate that the beam stiffness is not the same for all beams since
we have not considered shear deformation effects in Eq. (38).

Since the beam stiffness include both flexural and shear stiffness, an approximate method was used to
obtain the thicknesses of FGM cores such that these beams exhibit the same stiffness as the homogenous
core beam: the thicknesses of FGM were chosen such that the slopes of load-deflection curves to be the
same as the slope of load-deflection curve for the homogeneous core. The results are presented in Table
2. One can notice that the values for the core thicknesses in the case of same global stiffness are slightly
larger than those for the case of same flexural stiffness.

The impact analysis was repeated for the two sets of beams: having the same flexural stiffness and having
the same total stiffness, and the results for maximum normal and shear strains in the core for all cases, for a
given impact energy are presented in Figs. 13 and 14. From those plots some important results can be
2
hicknesses for different materials with same flexural stiffness D11 and same global stiffness

ype Eh/E0 For constant D11 For constant global stiffness

Core thickness, h (mm) Global stiffness, ks

(MN/m)
Core thickness, h (mm) Global stiffness, ks

(MN/m)

m 1 20 5.5 20 5.65
etric 5 12.58 4.4 14.44 5.65
etric 10 10.08 3.67 12.88 5.65

etric 5 13.82 5.5 13.82 5.65
etric 10 11.28 4.78 12.32 5.65

omogeneous core; S.C.: symmetric core, A.S.: asymmetric core.



Fig. 12. Variation of contact force with global deflection at bottom midpoint in functionally graded beams with different core
thickness but the same flexural stiffness D11. (H.C.: homogeneous core; S.C.: symmetric core; A.S.: symmetric core.)

Fig. 13. Comparison of maximum normal strains for different core materials. Eh/E0 = 1 represents the homogeneous core.
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inferred. For both symmetric and asymmetric material as the ratio Eh/E0 increases the material become stif-
fer and the maximum strains decrease. Also the maximum strains corresponding to the maximum impact
load for asymmetric core are smaller than maximum strains for symmetric core as the asymmetric core
material is stiffer in the region of contact. For the same material (symmetric or asymmetric, with same ratio
Eh/E0) as the core thickness decreases, the total stiffness also decreases and the maximum shear strain cor-
responding to the maximum impact load increases. Overall the ‘‘most graded’’ (with the largest ratio Eh/E0)
asymmetric core gives the smaller maximum strains. As a final conclusion, the results indicate that function-
ally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich
composites.



Fig. 14. Comparison of maximum shear strains for different core materials. Eh/E0 = 1 represents the homogeneous core.
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