
Meshless Local Petrov–Galerkin Formulation for Problems
in Composite Micromechanics

Thi D. Dang∗ and Bhavani V. Sankar†

University of Florida, Gainesville, Florida 32611- 6250

DOI: 10.2514/1.23434

In this paper we present the meshless local Petrov–Galerkin formulation for the generalized plane strain problem

with specific emphasis on micromechanics of composite materials containing material discontinuities. The problem

requires the introduction of an extra discrete degree of freedom, the out-of-plane uniform normal strain. The

treatment of material discontinuity at the interface between the two phases of the composite is presented bymeans of

direct imposition of interface boundary conditions. The meshless local Petrov–Galerkin method is used in the

micromechanical model for predicting the elastic constants of the composite. To our knowledge, this is the first study

in which the meshless local Petrov–Galerkin method is formulated for the so-called meshless local Petrov–Galerkin

method based micromechanical analysis. Examples are presented to illustrate the effectiveness of the current

method, and it is validated by comparing the results with available analytical and numerical solutions. The current

method has the potential for use in micromechanics, especially for textile composites, where the meshing of the unit

cell has been quite difficult.

Nomenclature

a = width, height, and depth of unit cell
a�x� = vector of unknown parameters aj�x�
bi = body force
C = constant matrix of homogeneous composite
ci = distance from node i to its third nearest

neighboring node
di = distance from the sampling point x to the node xi
E = Young’s modulus
I = identity matrix
J�x� = weighted discrete L2 norm
k = parameter in the Gaussian weight function (k� 1)
Ls = part of local boundary over which no boundary

conditions are specified
N = total number of nodes
n = number of points in the neighborhood of x for

which w�x � xi�> 0
ni = unit outward normal to the boundary
PT�x� = vector of the complete monomial basis of order

m�m� 3�
ri = radius of the domain of influence of the weight

function (ri � 4ci)
r0 = radius of the local domain
rs = part of the local boundary located on the global

boundary
�ti = prescribed traction on the boundary � t
u, v, w = u1, u2, u3
ûb = fictitious displacement on the interface
ui = displacement field (trial function)
ûi = fictitious nodal value

�ui = prescribed displacement on the boundary �u
~ui = actual displacement on the interface
uh�x� = moving least-squares approximation
V = volume of unit cell
Vf = fiber volume fraction
vi = test function
w�x � xi� = weight function
x1, x2, x3 = Cartesian coordinates
� = penalty parameter (�� 108)
�ij = Kronecker delta
"� = strain matrix computed from the test function
"0 = constant macroscopic direct strain in the

z direction
"M = macroscopic level strain matrix
� = Poisson’s ratio
�ij = Cauchy stress tensor
�M = macroscopic level strain matrix
��x� = shape function
�b, �r = subsets of � w.r.t. nodes on the interface and

within the material
� = global domain
�s = local domain
@� = boundary of the local domain �s

I. Introduction

T HE generalized plane strain formulation is widely used in many
important problems, especially in themicromechanical analysis

of composite materials to predict their stiffness and strength
properties [1–4]. The presentation of the problem in the form of
variational principles of the finite element method (FEM) has been
documented systematically by Pagano and Soni [5] and Li and Lim
[6]. Li and Lim [6] formulated the variational principles of the finite
element method for the generalized plane strain problem by the
introduction of an extra discrete degree of freedom in the third
direction representing the out-of-plane direct strain. Although
previously existing analyses are based on the FE methods, the
analysis presented in this paper is based on the meshless local
Petrov–Galerkin (MLPG) method by allowing an extra degree of
freedom in the longitudinal direction representing the out-of-plane
direct strain.

The finite element method has been successfully applied to many
problems in mechanics of composite materials. It is a robust and
thoroughly developed technique, but it is not without shortcomings.
The reliance of the method on a mesh leads to complications for
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certain classes of problems. For example, in the development of
advanced composite materials, especially textile composites, one of
the major technical barriers in modeling textile composites such as
braided andwoven composites is the finite element mesh generation.
Actually, for composite materials with complex yarn architectures,
the meshing of individual yarns in the unit cell is quite simple.
However, the meshing of the interfacial region between matrix
phases and individual yarns is much more difficult as shown by Kim
and Swan [7]. The region is multiply connected, mesh in different
phasesmay not be compatible, and it is difficult to get a suitablemesh
on which opposite faces of the unit cell have identical nodes so that
periodic boundary conditions can be implemented using multipoint
constraints. The available finite element based methods are
satisfactory for stiffness prediction because stiffness properties are
based on volume averaging of stresses and strains in the
representative volume element (RVE) of the composite, and the
approximation involved in the FEmeshing does not affect the results
significantly. However, modeling the damage, especially pro-
gressive damage, requires an accurate description of the stressfield in
different phases and requires a very fine mesh [8,9]. The FEM based
micromechanical models have been successfully employed in
predicting thermoelastic constants of fiber reinforced composites
materials; their use for strength prediction under multiaxial loading
conditions is not practical as reported by Sankar et al. [9–11].

We expect that the tediousness and inaccuracies involved in mesh
generation and hence inaccuracies in the results can be avoided using
the newmeshless techniques such as theMLPGmethod. TheMLPG
approach proposed by Atluri [12,13] is one of several meshless
schemes. The main advantage of this method compared to other
meshless methods is that no backgroundmesh is used to evaluate the
various integrals appearing in the local weak formulation of the
problem. Therefore, this method is a truly meshless approach in
terms of both interpolation of variables and integration of energy.
The meshless methods have been demonstrated to be efficient in
solving different problems [14–17]. In this paper the MLPG method
is applied to micromechanics of composites. One of the major
drawbacks in applying meshless methods to inhomogeneous
material systems is the treatment of material discontinuity occuring
at the fiber-matrix interface. The high-order continuity of themoving
least-squares approximations (MLS), which is at leastC1, allows for
continuity of displacements and stresses throughout the subdomain.
However, the high-order continuity imposes a difficulty when
considering the discontinuities of the derivatives at the interface of
the inhomogeneous bodies, because the shape functions from the
MLS approximations do not have the delta function properties. For
the analysis of linear elastostatic problems bymeshless methods, say
the element free Galerkin method (EFG), Cordes and Moran [18]
used the method of Lagrange multipliers; Krongauz and Belytschko
[19] employed a special jump function at the line or the surface of
discontinuity with parameters governing the strength of the
discontinuity; and Cai and Zhu [20] used the direct imposition of
essential boundary and interface conditions. Whereas Cordes and
Moran studied a two-dimensional elastostatic problem, Krongauz
and Belytschko as well as Cai and Zhu analyzed a one-dimensional
elastostatic problem, all based on the EFG method. Recently Batra
et al. [21] also used theMLPGmethod to analyze heat conduction in
which the continuity of the normal component of the heat flux at the
interface between two materials is satisfied either by the method of
Langrange multipliers or by using a jump function.

Based on the previous work of Atluri [12,13], we propose a
technique for the treatment of material discontinuity at the interface
between the two phases of the composite by the MLPG method in
whichwe use a penalty formulation to enforce the essential boundary
conditions and find the actual displacements at the nodes on the
material interface to impose the displacements directly. Also, in the
current paper, theMLPGmethod basedmicromechanical model of a
unidirectional fiber composite is performed by analyzing the unit cell
or representative volume element of the composite. In this paper, an
extra discrete degree of freedom representing the out-of-plane direct
strain is included. More general forms, which include more discrete
and/or continuum degrees of freedom following the same procedures

are developed by Dang and Sankar [22]. Furthermore, only
orthotropic materials with one of the material principal axes
perpendicular to the plane under consideration are considered in this
paper.

One of the major factors influencing the success of a methodology
is the cost vs accuracy tradeoff. Comparison of computational cost
between a meshless method and an FE solution with the same
number of unknowns in low-order finite elements was carried out by
Belytschko et al. [23], and Atluri [24]. It has been seen that the FE
results are in general less expensive. However, comparing the costs
based on a given level of accuracy or if high-order finite elements are
compared, then the results can be quite different. The effort of
researchers in improving the meshless methods in this aspect is still
ongoing. The latest effort devoted to improving the effectiveness of
the MLPGmethod can be found in Atluri and Shen [24,25] in which
the authors introduceMLPG5using theHeaviside function as the test
function in each domain; thus the domain integral on each domain is
altogether avoided in computing the stiffness matrix. It involves only
boundary integrals over each circle (domain), which will greatly
improve the effectiveness of the MLPG5 method and will make the
solution stable, fast, and accurate. It is reported that the MLPG5
provides a simple and efficient alternative to the finite element and
boundary element methods. The motivation of this paper is to
provide a framework in which theMLPG formulation can be applied
tomicromechanical analysis of the composites. It ismore general and
thus it can be very useful in predicting the stiffness and strength
properties of textile composites.

The paper is organized as follows. Section II gives a brief
description of the MLS approximation, weak form, and
discretization along with the generalized plane strain problem. The
treatment of material discontinuity is also presented. Section III
describes the MLPG-based micromechanical model for two-phase
composites. The computation and discussion of results are given in
Sec. IV. Conclusions are summarized in Sec. V.

II. Formulation of the Problem

A. MLS Approximation Scheme

In the following we provide a brief description of the MLS
approximation and also the MLPG formulation for the sake of
completion and also to introduce the various notations and
definitions (see [24] for the details).

In the MLPG method, the shape functions �i�x� of the unknown
trial function are found by the MLS approximation [26]. First, we
consider a subdomain�x called the domain of definition of theMLS
approximation for the trial function at point xwhich is located in the
problem domain �. The unknown trial approximation uh�x� of the
function u�x� is defined by

uh�x� �
Xm
j�1

pj�x�aj�x� � pT�x�a�x� (1)

wherepT�x� � �p1�x�; p2�x�; . . . ; pm�x�� is a vector of the complete
monomial basis of orderm. Examples of pT�x� in the 2-D problems
are

p T � �1; x1; x2� for linear basis; m� 3 (2)

p T � �1; x1; x2; x21; x1x2; x22� for quadratic basis; m� 6 (3)

Them unknown parameters aj�x� can be determined by minimizing
the weighted discrete L2 norm, defined as

J�x� �
Xn
i�1

w�x � xi��pT�xi�a�x� � ûi�2 (4)

where n is the number of points in the neighborhood of x for which
the weight functions w�x � xi�> 0, and ûi refers to the nodal
parameter of the function uh at the point xi. We choose the weight
function to have the Gaussian distribution as
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w�x � xi� �
(

exp���di=ci�2k ��exp���ri=ci�2k �
1�exp���ri=ci�2k �

0 � di � ri
0 di � ri

)
(5)

where di � kx � xik is the distance from the sampling point x to the
node xi, and ri is the radius of the domain of influence of the weight
function w�x� xi�. Finding the extremum of J�x� in Eq. (4) with
respect to a�x� leads to the following system of linear equation for
the determination of a�x�:

A �x�a�x� � B�x�û (6)

where

A �x� �
Xn
i�1

w�x � xi�p�xi�pT�xi� (7)

B �x� � �w�x � x1�p�x1�; w�x � x2�p�x2�; . . . ; w�x � xn�p�xn��
(8)

Solving a�x� from Eq. (6) and substituting it into Eq. (1), the MLS
approximation can be defined as

uh�x� �
Xn
i�1

�i�x�ui (9)

where the shape function is �i�x� defined by

�i�x� �
Xm
j�1

pj�x��A�1�x�B�x��ji (10)

�i�x� is usually called the shape function of the MLS approximation
corresponding to node i. Note that �i�xj� does not satisfy the
Kronecker delta criterion �i�xj� ≠ �ij. Therefore, they are not
interpolants, and the name “approximation” is used, that is, uh�xi� ≠
ûi (see Fig. 1 for a simple one-dimensional case for the distinction
between ui and ûi). For the matrix A to be invertible, the number of
points n must at least equal m (n � m). In this paper, we choose
m� 3 and k� 1 in Eq. (9), and take

ri � 4ci (11)

where ci is the distance from node i to its third nearest neighboring
node.

B. MLPG Formulation and Discretization

Consider a 2-D elasticity problem in the domain� bounded by �.
The equilibrium equations are

�ij;j 	 bi � 0 in � (12)

where �ij is the Cauchy stress tensor and bi is the body force.
The boundary conditions are as follows:

�ijnj � �ti on �t (13)

uj � �ui on �u (14)

where �ti is defined as the prescribed traction on a surface, �ui is the
prescribed displacement field, and nj is the unit outward normal to
the boundary �. �u and �t are complementary subsets of �. A
generalized local weak form of Eqs. (12–14) over a local subdomain
�s can be written as follows:

Z
�s

��ij;j 	 bi�vi d� �
Z
�u

��ui � �ui�vi d�� 0 (15)

where �u is the part of the boundary of @�s of �s, over which
essential boundary conditions are specified. In general @�s � �s [
Ls with �s being the part of the local boundary located on the global
boundary and Ls being the other part of the local boundary over
which no boundary conditions are specified, that is, �s � @�s \ �
with �s � @�s � Ls. In Eq. (15), � is a penalty parameter (�

Young’s modulus/length), which is used to impose the essential
boundary conditions. In this paper we choose a value of �� 108.
Also, the test functions vi are chosen such that they vanish onLs, and
this can be accomplished by using theweight functionwi in theMLS
approximation as also the test function vi, but the radius ri of the
support of the weight function is replaced by the radius r0 of the local
domain �s.

Using integration by parts and the divergence theorem in Eq. (15),
after some algebraic operations, finally yields the expression in the
matrix form as

Z
�s

"v� d�	 a
Z
�su

vu d� �
Z
�su

vt d��
Z
�st

v�t d�

	 a
Z
�su

v �u d�	
Z
�s

vb d� (16)

In Eq. (16) � is the stress vector derived from the trial functions. That
is,

� �

8<
:
�11
�22
�12

9=
;; "v �

"�1�11 "�1�22 ��1�12

"�2�11 "�2�22 ��2�12

� �
(17)

where the superscript jdenotes the ith test function. Functions v,u, t,
and b are defined as follows:

v � v11 v12
v21 v22

� �
; u�

�
u1
u2

�
; t�

�
t1
t2

�
; b�

�
b1
b2

�
(18)

The two sets of test functions v in Eq. (18) should be linearly
independent. The simplest choice for v as proposed by Atluri [12] is
vij � v�ij or v� vI.

As long as the union of all local subdomains covers the global
domain, Eqs. (12–14) will be satisfied in the global domain� and on
its boundary �, respectively. Substituting the MLS approximation
Eq. (9) into Eq. (16), and summing over all nodes leads to the
following discretized system of linear equations:

Xn
j�1

Z
�s

"v�x;xi�DBjûj d�	 a
Xn
j�1

Z
�su

v�x;xi�S�jûj d�

�
Xn
j�1

Z
�su

v�x;xi�NDSBjûj d��
Z
�st

v�x; xi��t d�

	 a
Z
�su

v�x;xi�S �u d�	
Z
�s

v�x;xi�b d� (19)

where v�x; xi� is the value at x of the test function corresponding to
node i, and

x

Boundary node 

x1 x2 xi

u
ˆiu iu

( )hu x

Fig. 1 The distinction between ui and ûi.

914 DANG AND SANKAR



N � n1 0 n2
0 n2 n1

� �
Bj �

�j;1 0

0 �j;2
�j;2 �j;1

2
4

3
5

D�
�E

1 � ��2

1 �� 0

�� 1 0

0 0 �1 � ���=2

2
4

3
5

(20)

�E�
�
E for plane stress;
E

�1��2� for plane strain; ���
�
� for plane stress
�
�1��� for plane strain

(21)

and

S� S1 0

0 S2

� �
; Si �

�
1 if ui is prescribed
0 if ui is not prescribed on �u

(22)

Equation (19) can be simplified into the following system of linear
algebraic equations in ûj:

XN
j�1

Kijûj � fj i� 1; 2; . . . ; N (23a)

Kû� f (23b)

where û is the generalized fictitious displacement vector. The so-
called stiffness matrix K and the load vector f are defined by

Kij �
Z
�s

"v�x;xi�DBj d�	 a
Z
�su

v�x; xi�S�j d�

�
Z
�su

v�x;xi�NDBjS d� (24)

fi �
Z
�st

v�x;xi��t d�	 �
Z
�su

v�x; xi�S �u d�	
Z
�s

v�x;xi�b d�

(25)

As can be seen from Eq. (24) the system “stiffness matrix” is banded
but unsymmetric.

C. Generalized Plane Strain Problem

Consider a unidirectional fiber reinforced composite. Introduce
the coordinate system as follows. The x3 axis is aligned with the
direction of fibers (assuming fibers are all straight and laid parallel to
each other), and the x1 and x2 axes all lie in a cross section of the
material perpendicular to the fibers. The material is homogeneous in
the x3 direction. When investigating material properties, it is
reasonable to assume that composite is subjected to a uniform
deformation in the x3 direction, that is, all the strains are not functions
of x3. The uniformity of the deformation and the material
homogeneity in the x3 direction enables one to simplify the problem
of the microscopic deformation of the material from a general three-
dimensional problem in the x1–x2–x3 space to a special two-
dimensional one in the x1–x2 plane, a generalized strain problem as
shown byAdams and Crane [2], in which all the strains are functions
of x1 and x2 only. It implies that the stresses are not functions of x3
from the constitutive relations for linearly elastic and homogeneous
materials. Then the displacements can be written as

u� u�x1; x2� v� v�x1; x2� w� w�x1; x2� 	 x3"0 (26)

where "0 is the constant macroscopic direct strain in the z direction.

"0 � "33 (27)

Expressions for the strains can now be simplified according to
Eq. (26)

"11 �
@u

@x1
; �12 �

@u

@x2
	 @v

@x1
"22 �

@v

@x2

�13 �
@w

@x1
	 @v

@x3
"33 �

@w

@x3
; �23 �

@w

@x2
	 @y

@x3

(28)

where " represents normal strain and � represents engineering shear
strain. The constitutive equations in terms of stress-strain relations
are given as8>><
>>:
�11
�22
�33
�12

9>>=
>>;�

E

�1	 ���1� 2��

1� � � � 0

� 1� � � 0

� � 1� � 0

0 0 0 1�2�
2

2
664

3
775
8>><
>>:
"11
"22
"33
"12

9>>=
>>;

(29)

The relations can be expressed in a reduced form as8>><
>>:
�11

�22

�12

9>>=
>>;�

E

�1	 ���1 � 2��

1 � � � 0

� 1 � � 0

0 0 �1 � 2��=2

2
64

3
75f"g

	

E�
�1	���1�2��

E�
�1	���1�2��

0

2
664

3
775"0 (30)

or

f�g � �D�f"g 	 fF�g"0 (31)

and

�33 �
(

E�

�1	 ���1 � 2��
E�

�1	 ���1 � 2�� 0
)
f"g

	 E�1 � ��
�1	 ���1 � 2�� "

0 (32)

or

�33 � fF�gTf"g 	
E�1 � ��

�1	 ���1 � 2�� "
0 (33)

where the matrix D is defined as shown in Eq. (20) for the
conventional plane strain problem and

F � �
E�

�1	���1�2��
E�

�1	���1�2��
0

2
4

3
5 (34)

Reactions t at �u can be expressed as

t � �N���� � �N��D�f"g 	 �N��F��"0 (35)

where the matrix N is defined in Eq. (20).
Because "33 is constant and prescribed, we can choose the

components "�33 � 0 in the strain matrix in Eq. (17) which comes
from the test function. Therefore stress �33 will not contribute to
Eq. (16), when Eqs. (31) and (35) are substituted into the first and
third terms, respectively, of the right-hand side of Eq. (16). After
some algebraic operations, finally two terms are added to the load
vector in Eq. (25) as shown below, while the stiffness matrix K in
Eq. (24) remains unchanged.

fi �
Z
�st

v�x;xi��t d�	 �
Z
�su

v�x;xi�S �u d�	
Z
�s

v�x;xi�b d�

�
Z
�s

"��x;xi�F�"0 d�	
Z
�su

v�x;xi�NSF�"0 d� (36)
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D. Treatment of Material Discontinuity

In general, the MLS approximation in Eq. (9) does not pass
through the nodal data, which are approximate values at nodes. This
leads to some difficulties in imposing essential boundary conditions
and treating material discontinuity. As mentioned above, a penalty
method is used to enforce the essential boundary conditions in this
paper. Treatment of material discontinuity is described later.

The current method involves considering the composite as two
separate homogeneous bodies and then applying interface conditions
to reconnect the bodies. For example, let us consider a two-phase
problem as shown in Fig. 2. The composite is separated into two
homogeneous parts. In each part, we have the weak form of the
problem as described above; the continuity of tractions at interface is
weakly satisfied at the variational level.We will determine the actual
displacements at the interface, and after that, conditions of continuity
of displacements at the interface can also be directly enforced as in
the FE method.

In thismethod common nodes are used at the interface that belongs
to both materials. In Fig. 2 nodes (10–12) are defined at the interface
of materials 1 and 2. We use the following example to illustrate the
proposed method.

For material 1: Assume that neighbors of point 10 include 7, 8, 10,
and 11; neighbors of point 11 include 7, 8, 9, 10, 11, and 12;
neighbors of 12 include 8, 9, 11, and 12.

Consider the following MLS approximation:

~u�x� �
Xn
i�1

�i�x�ûi (37)

such that at points xj we have the actual displacements as

~u j �
Xn
i�1

�i�xj�ûi (38)

For nodes at the interface, we have

~u 10 � �7�x10�û7 	 �8�x10�û8 	 �10�x10�û10 	 �11�x10�û11
~u11 � �7�x11�û7 	 �8�x11�û8 	 �10�x11�û10 	 �11�x11�û11
	 �12�x11�û12
~u12 � �8�x12�û8 	 �9�x12�ûg 	 �11�x12�û11 	 �12�x12�û12

(39)

In matrix form:

8><
>:

~u10

~u11

~u12

9>=
>;

�
�7�x10� �8�x10� 0 �10�x10� �11�x10� 0

�7�x11� �8�x11� �9�x11� �10�x11� �11�x11� �12�x11�
0 �8�x12� �9�x12� 0 �11�x12� �12�x12�

2
64

3
75

�

8>>>>>>>>>>><
>>>>>>>>>>>:

û7

û8

û9

û10

û11

û12

9>>>>>>>>>>>=
>>>>>>>>>>>;

(40)

The variables can be partitioned into two subsets as follows:

f ~ubg � ��r� ��b�
� �

f fûrgfûbg
g � �’b�fûg (41)

where b� 10, 11, and 12 denotes the nodes on the interface, and
r� 7, 8, and 9 denotes the nodes which do not lie on the interface.

Expanding the matrix �’b� to explicitly show the x and y
directions, we have

’ b

�


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�1�xbi� 0 �2�xbi� 0 
 
 
 �N�xbi� 0

0 �1�xbi� 0 �2�xbi� 
 
 
 0 �N�xbi�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


2
664

3
775

(42)

where xbi, bi � b1, b2; . . . ; bnb are the coordinates of nodes at
interface.
�’b� is a 2nb � 2N matrix, ��r� is a 2nb � 2nr matrix, and ��b� is a

2nb � 2nb matrix; �ûr� is a 2nr � 1 vector, and �ûb� is a 2nb � 1
vector; all are known matrices.

Furthermore nb is the number of nodes on interface, nr is the
number of nodes which do not lie on the interface, and nb 	 nr � N
is the total number of nodes in body.

According to Eq. (41), we can compute the fictitious
displacements at interface as

fûbg � ��b��1����r�fûrg 	 fûbg� (43)

We can rewrite (23b) as

�Kr� �Kb�
� �� fûrg

fûbg

�
� ffg (44)

where �Kb� is a known 2N � 2nb matrix, and �Kr� is a known matrix
of size 2N � 2nr.

Substituting Eq. (43) into Eq. (44) and after some algebraic
operations we obtain

�K�fug � ffg (45)

�K� � ��Kr� � �Kb���b��1��r� ��Kb���b��1�
� �

fug �
�
fûrg
fûbg

�
(46)

~ub is the actual displacement vector at interface.
We use the same procedure for material 2. Therefore, the method

presented here is the same as in the FE method. It means that we can
use common nodes at the interface, and the conditions of continuity
of the interface displacements can also be directly enforced. Note that
�’b� is a very sparse matrix, and one should choose as many points as
possible on the interface.

In fact, we can use this technique to enforce the essential boundary
conditions, instead of using the penalty method. However we use the
technique only to treat thematerial discontinuity and not for essential
boundary conditions to avoid the computational burden of dealing
with large size matrices and also to avoid reshaping the global
stiffness matrix many times.

III. MLPG-Based Micromechanical Model
for Fiber Composites

We demonstrate the MLPG-based micromechanical model to
predict the effective stiffness properties for a fiber composite.

The micromechanical analysis of the unidirectional fiber
composite is performed by analyzing the unit cell of the composite
using the MLPG method. We assume that uniform macrostresses
exist through the composite. It is assumed that the fibers are circular
in cross section packed in a square array. Thus the unit cell or the
representative volume element is a square. The unit cell is shown in

Fig. 2 Illustration of inhomogeneous body.
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Fig. 3. The unit cell analysis assumes that the composite is under a
uniform state of strain at the macroscopic scale. However the actual
stresses in thefiber and thematrixwithin the unit cellwill have spatial
variation. These stresses are called microstresses. The macrostresses
are average stresses required to create a given state of
macrodeformations, and they can be computed from the
microstresses obtained from the MLPG method as

�Mij �
1

V

Z
A

�ij dV (47)

where V is volume of the unit cell. The macrostresses and
macrostrains are related by the elastic constants of the homogeneous
composite �C�:8>>>>>>><
>>>>>>>:

�M11
�M22
�M33
�M23
�M31
�M12

9>>>>>>>=
>>>>>>>;
�

c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
c44 c45 c46

Symm: c55 c56
c66

2
6666664

3
7777775

8>>>>>>><
>>>>>>>:

"M11
"M22
"M33
�M23
�M31
�M12

9>>>>>>>=
>>>>>>>;

or

f�Mg � �C�f"Mg
(48)

In the micromechanical analysis, the unit cell is subjected to six
linearly independent macroscopic deformations. In each deforma-
tion case one of the sixmacrostrains is assumed to be nonzero and the
rest of the macrostrains are set equal to zero. The six cases are as
follows: case 1: "M11 � 1; case 2: "M22 � 1; case 3: "M33 � 1; case 4:

�M12 � 1; case 5: �M23 � 1; case 6: �M31 � 1. The periodic boundary
conditions for these six cases are shown in Table 1. Details of
deriving the periodic boundary conditions can be found in [3].

In this paper, we use the micromechanical model to predict the
stiffness properties of composites for cases 1–3 only. For case 3,
"M33 � 1, the problem is solved as a generalized plane strain problem.

IV. Results and Discussions

In this section, we give two examples alongwith some discussions
for the current method. The first example is a two-phase problem in
the plane stress state for investigating the material discontinuity; the
second is the analysis of the unit cell for predicting the stiffness
properties of a fiber composite containing the cases of the
generalized/or conventional plane strain, and the material
discontinuity at interface is also investigated.

A. Two-Phase Verification Problem

The MLPG method results are compared to the FEM numerical
solution (ABAQUSTM) for the two-phase problem (see Fig. 4). The
material properties used for this study are Ef � 70, �f � 0:2;
Em � 3:5, �m � 0:35 and the fiber volume fraction Vf � 0:503; the
boundary is represented as a unit square a� 1 and the radius of fiber
R� 0:8. TheMLPG scheme with 183 nodes is used and the uniform
load P� 1 is applied at its right side as shown in Fig. 4. A state of
plane stress normal to the x1–x2 plane is assumed.

Figures 5–7 show the comparison of radial and horizontal
displacements between the current method and the FE method at the
fiber-matrix interface, and along lines y� 0 and x� 1. We realize

X2

X2
L

L

L/2

L/2

X1

X3

X3

X1

1σ

13τ

23τ

2σ

3σ

1σ

2σ

13τ
23τ

3σ

Fig. 3 Unit cell coordinate system.

Table 1 Periodic boundary conditions for the MLPG method

Case Constraints between left and right faces Constraints between top and bottom faces Out-of-plane strains

"11 � 1 u1�L; x2� � u1�0; x2� � L ui�x1; L� � ui�x1; 0� � 0 "33 � 0, �31 � 0, �23 � 0
u2�L; x2� � u2�0; x2� � 0 i� 1, 2

"22 � 1 ui�L; x2� � ui�0; x2� � 0 u1�x1; L� � u1�x1; 0� � 0 "33 � 0, �31 � 0, �23 � 0
i� 1, 2 u2�x1; L� � u2�x1; 0� � L

"33 � 1 ui�L; x2� � ui�0; x2� � 0 ui�x1; L� � ui�x1; 0� � 0 "33 � 0, �31 � 0, �23 � 0
i� 1, 2 i� 1, 2

�12 � 1 u1�L; x2� � u1�0; x2� � 0 ui�x1; L� � ui�x1; 0� � 0 "33 � 0, �31 � 0, �23 � 0
u2�L; x2� � u2�0; x2� � L i� 1, 2

�23 � 1 u3�L; x2� � u3�0; x2� � 0 u3�x1; L� � u3�x1; 0� � L "33 � 0, �31 � 0
�31 � 1 u3�L; x2� � u3�0; x2� � L u3�x1; L� � u3�x1; 0� � 0 "33 � 0, �23 � 0
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that the current method’s solutions are very close to those of the
FEM, which are computed using the ABAQUSTM software.

Figures 8–10 show the distribution of interfacial stresses at
interface; we can see that the radial and the tangential stresses in the
twomaterials are identical at the interface. The hoop stress in the two
materials along the interface is not identical as expected.

The comparison of interfacial stresses with that from the FEM is
shown in Figs. 11 and 12. They show that the radial stresses and the

Fig. 4 Depiction of the two-phase problem and corresponding nodes (183 nodes) for the MLPG method.
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tangential stress for the two materials obtained by the MLPG
micromechanics are in good agreement with the FEM results and
achieve a significantly higher degree of agreement of the radial and
the tangential stresses in the two materials at the interface with a
smaller number of degrees of freedom compared to the FEM. The
accuracy of stress computation obtained from the current method
may be a good aspect inmodeling the damage, especially progressive
damage, which requires an accurate description of the stress field in
different phases.

B. Micromechanics of Unidirectional Fiber Composite

The unidirectional fiber composite was assumed to have circular
fibers packed in a square array. The fiber and matrix materials were
assumed isotropic, and their properties for this study are
Ef � 70 GPa, �f � 0:2; Ef � 3:5 GPa, �m � 0:35. Because of
symmetry, only one-quarter of the unit cell is modeled, and the fiber
volume fraction Vf � 0:503; the boundary is represented as a square
with a side dimension of 1 (a� 1), and the radius of fiber R� 0:8.
The MLPG method with 183 nodes is used. The displacements
applied on the boundaries corresponding to cases 1, 2, and 3 are
shown in Table 1. The composite is assumed to be in a state of plane
strain normal to the x1–x2 plane. Figure 13 represents the tension
tests in the x1 and x2 directions ("

M
22 � 1 and "M22 � 1) by imposing a

specified uniform displacement �u� 1 on the unit cell.
The microstresses are computed by the MLPG method, and then

the average stresses are computed using Eq. (47), and finally the
stiffness properties Cij can be also computed by Eq. (48). From the
stiffness coefficients C elastic constants are computed and they are
presented in Table 2. The subscripts of the elastic constants have
been changed to conform to the convention use in the literature of
composite mechanics in Table 2.

The elastic constants computed using the current method are very
close to those obtained by the Halpin–Tsai equations [27]. The
maximum error is 2.45% for E2 and E3, 1.16% for �21 and �31, and
1.82% for �12 and �13. The minimum error obtained is 0.14% for E1.
Note that the Halpin–Tsai formulas are not available for �23 and �32.

Figure 14 shows the distribution of interfacial stresses for the case
"11 � 1, and Fig. 15 shows the distribution of interfacial stresses for
the case "33 � 1. Both the figures show that the radial and tangential
stresses are continuous at the material interface, but there is a jump at
the interface for hoop stresses as expected. Note that the x1, x2, and x3
directions shown in these figures are the same as in Fig. 3. Because of
symmetry (see Fig. 13), the distribution of stresses for the case
"22 � 1 is the same as the case "11 � 1.

V. Conclusions

From the above results and discussionswe can reach the following
conclusions:

1) The technique of direct imposition of interface boundary
conditions is used for the first time for the treatment of the material
discontinuity at the interface in the MLPG method. The current
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Fig. 10 Tangential (shear) stresses in the two materials at the interface
by MLPG-based micromechanics.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Angle (in degree)

R
ad

ia
l s

tr
es

s

Mat 1: Current method

Mat 2: Current method

Mat 1: FEM

Mat 2: FEM

Fig. 11 Comparison of radial stresses at the interface.

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 20 40 60 80 100

Angle (in degree)

T
an

g
en

ti
al

 s
tr

es
s

Mat 1: Current method

Mat 2: Current method

Mat 1: FEM

Mat 2: FEM

Fig. 12 Comparison of tangential stresses at the interface.

u =

Fiber

Matrix
Rigid

R

a

a

Fiber

Matrix

Rigid

a

R

a

u =

Fig. 13 Tension tests in the x1 and x2 directions ("
M
11 � 1 and "M22 � 1).

DANG AND SANKAR 919



method shows good agreementwith the FEMsolution and achieves a
significantly higher degree of agreement between the radial and
tangential stresses in the two materials at the interface with a smaller
number of degrees of freedom compared to the FEM.

2) The MLPG method is additionally formulated for the
generalized plane strain problems. The elastic constants obtained by
the MLPG-based micromechanical model match very well with
available results.

3) The current method is a truly meshless method, wherein no
elements or background cells are involved, either in the interpolation
or in the integration.

The current method shows promise in the application to the
micromechanics of textile composites where the complexities and
inaccuracies involved in the FE mesh can be avoided.
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