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Abstract: Certain diffraction-based techniques that measure strains in bulk samples are
limited to determination of normal strains. A numerical inverse method is developed to
determine full field stresses from the experimentally determined normal strains in isotropic
solids under plane stress conditions. The method is based on satisfying the equations of
equilibrium and the constitutive relations. The finite difference method is employed to solve the
equations and to determine the complete stress field. Furthermore, a least-squares procedure
is used to determine the unknown functions of integration in conjunction with known values
of shear stress along a reference line. The method is verified by using the normal strain fields
in various specimens obtained using both finite element analysis and exact elasticity solutions.
It is found that the proposed method predicts the shear stresses accurately in the examples
considered.

Keywords: neutron diffraction, inverse problem, finite difference method, least square
approximation

1 INTRODUCTION experiments that combine diffraction with mechanical
loading. For the case of residual strain measure-

Among the available experimental techniques for ments, dhkl
0

is the spacing from a corresponding
determining the internal strains in materials, ‘stress-free’ specimen. While both neutrons and
diffraction-based techniques rely on using atomic X-rays (from a conventional source) can be used for
planes as internal strain gauges. The distances mechanical characterization, neutrons penetrate more
between atomic planes, directly obtained from deeply and are hence uniquely suited to studying
diffraction spectra, can be used to compute strains. the bulk behaviour of large polycrystalline samples.
The lattice strain e

wy
along a general direction (w, y) In a representative neutron diffraction experiment,

can be reported from the change in the interplanar equation (1) can be used to report normal strains
spacing of crystal planes (h, k, l) oriented along (w, y) along the scattering vector, defined as the difference
as between the wave vectors of the incident and

scattered neutrons. This is shown in Fig. 1 for the
e
wy
=

dhkl(w, y)−dhkl
0

dhkl
0

(1) case of a specimen subjected to a uniaxial com-
pressive stress. Detector 1 records spectra that can
be used to determine strains parallel to the loadingwhere dhkl is the spacing of the plane subjected to
direction while detector 2 records spectra that canstress and dhkl

0
is its spacing in the unloaded con-

dition [1]. The origin of the stress can be either be used to determine strains perpendicular to the
internal, i.e. residual, or external, i.e. applied in loading direction. By measuring the strain in several

orientations (at least six), in theory, it is possible to
determine the complete strain tensor. However, in* Corresponding author: Department of Mechanical & Aerospace

practice, difficulties arise in accurately orienting largeEngineering, University of Florida, 231 MAE-A Building, PO Box
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measured normal strains. When a numerical solution
technique for inverse problems (mainly the finite
difference (FD) method or the finite element (FE)
method) is used to discretize the problem domain,
a transformed system of algebraic equations con-
taining unknown conditions is obtained. Yang and
Chen [3] developed and Shaw [4] re-examined a
linear least-squares method for solving the inverse
problem. In this paper, a least-squares method is
used to obtain the best estimation of unknown
functions. With this new numerical method,
diffraction techniques and other such methods that
merely measure the normal strains could become
more valuable.

2 OVERVIEW OF THE THEORY
Fig. 1 Schematic diagram showing the direction of

strains measured in a representative neutron The initial premise is that the experimentally deter-
diffraction experiment. Q is the scattering mined normal strains in an isotropic elastic solid
vector under plane stress conditions are known. The goal is

to determine the complete stress and strain field
in the elastic solid, by appropriately enforcing the

and changes in the diffraction sampling volume.
compatibility conditions and stress equilibrium

Hence, there is value in a general methodology that
equations.

determines the complete stress and strain tensor The known normal strain field in the computational
from limited normal strain measurements such as domain is represented by the functions
those obtained from routine neutron diffraction

e
x
=F(x, y) (2)experiments. Such a methodology is also applicable

to comparable X-ray measurements from either e
y
=G(x, y) (3)

conventional or synchrotron sources. This is of great
By integrating the normal strains, the displacementimportance in understanding material behaviour,
field can be expressed ase.g. the origin of cracks and load partitioning in

u(x, y)=F̂(x, y)+ f (y) (4)composites, from experiments that combine external
loading and diffraction. Furthermore, stresses often v(x, y)=G̃(x, y)+g(x) (5)
develop owing to a repair or joining process, e.g.

where F̂(x, y) is a function such that qF̂(x, y)/qx=welding. A quantitative assessment of these stresses
F(x, y), G̃(x, y) is a function such that qG̃(x, y)/qy=is crucial in predicting the life of the component and
G(x, y), and f (y) and g(x) are unknown functions.also in predicting the integrity of the repair or joining

The shear strain can be expressed asprocess.
Hori and Kameda [2] proposed a method, called

c
xy
=
qu
qy
+
qv
qx
=
qF̂(x, y)

qy
+ f ∞(y)+

qG̃(x, y)

qx
+g∞(x)the stress inversion method, which is applicable

only to a body in a state of plane stress or strain.
(6)It can estimate stress fields from displacements

for materials whose constitutive relations are only where a prime denotes ordinary differentiation with
partially known. While the method needs a strain respect to the variable in the argument.
distribution to compute three stress components, The normal and shear stresses can be expressed
certain diffraction-based techniques can provide by invoking the constitutive relations and are given by
only the normal strains. A general computational

s
x
=C11F(x, y)+C12G(x, y) (7)

procedure is presented for the determination of full
s
y
=C12F(x, y)+C22G(x, y) (8)strain and stress fields, knowing only the normal

strains in an isotropic solid under plane stress
t
xy
=mc

xy
=mCqF̂(x, y)

qy
+ f ∞(y)+

qG̃(x, y)

qx
+g∞(x)Dconditions. Taking advantage of the equations of

equilibrium and the constitutive relations, full field
stresses can be computed from experimentally (9)
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For the case of plane stress, variation in the value of the constants is presented by
designating them as a function of x or y respectively.
Equations (15) and (16) can be written asC11=C22=

E

1−n2
, C12=

nE

1−n2
, m=

E

2(1+n)

(10) f ∞(y)=−
1

mAC11 qF̃qx+C12
qG̃
qx
+m
qF̂
qy
+m
qG̃
qxB+C1(x)

where E and n are Young’s modulus and Poisson’s
(17)ratio respectively of the material. Substituting the

stresses into the equilibrium equations [5] will result
in the relations g∞(x)=−

1

mAC12 qF̂qy+C22
qĜ
qy
+m
qF̂
qy
+m
qG̃
qxB+C2(y)

qs
x
qx
+
qt
xy
qy
=C11

qF
qx
+C12

qG
qx (18)

+mCq2F̂(x, y)

qy2
+ f ◊(y)+

qG(x, y)

qx D=0
where C

1
(x) and C

2
(y) are function of x and y

respectively. Equation (17) can be written as(11)

f ∞(y)=P(x, y)+C1(x) (19)qt
xy
qx
+
qs
y
qy
=C12

qF
qy
+C22

qG
qy where f ∞ is a function of y only. Consider equation (19)

at a reference point x=x
0
, which gives

+mCqF(x, y)

qy
+
q2G̃(x, y)

qx2
+g◊(x)D=0

f ∞(y)=P(x0 , y)+C1(x0) (20)

(12) Subtracting equation (20) from equation (19) gives

Note that it has been assumed that there are no body C1(x)−C1(x0)=P(x0 , y)−P(x, y) (21)
forces present. From the above equations, f ◊ and g◊
can be determined as Define the left-hand side of equation (21) as

T (x)=C1(x)−C1(x0) (22)f ◊(y)=−
1

mAC11 qFqx+C12
qG
qx
+m
q2F̂
qy2
+m
qG
qxB

Then equation (21) takes the form
(13)

T (x)=P(x0 , y)−P(x, y) (23)

g◊(x)=−
1

mAC12 qFqy+C22
qG
qy
+m
qF
qy
+m
q2G̃
qx2 B Theoretically T should be a function of x only.

However, owing to inaccuracies in the measurement
it will also vary slightly with y. The least-squares error(14)
approximation method is used to obtain the best

Integrating f ◊ and g◊, f ∞(y) and g∞(x) with two estimate for T(x) as
integration constants C

1
and C

2
are obtained as

T(x)=
1

N
y
∑
N
y

i=1
[P(x0 , y

i
)−P(x, y

i
)] (24)f ∞(y)=−

1

mAC11 qF̃qx+C12
qG̃
qx
+m
qF̂
qy
+m
qG̃
qxB+C1

where N
y

is the number of point along the y axis at(15)
a certain x.

It should be noted that
g∞(x)=−

1

mAC12 qF̂qy+C22
qĜ
qy
+m
qF̂
qy
+m
qG̃
qxB+C2

T (x0)¬0 (25)
(16)

Equation (24) can also be written for a specific x=x
i

Theoretically C
1

and C
2

must be constants over the as
entire field of measurement. However, in practice, it
is found that there are slight variations depending T (x

i
)=

1

N
y
∑
N
y

i=1
[P(x0 , y

i
)−P(x

i
, y
i
)] (26)

on the accuracy of measurements as well as the
numerical scheme described in the succeeding From equations (19) and (22), it is found that
section. Hence the best values of the constants are
sought using a least-squares error procedure. The f ∞(y)=P(x, y)+T (x)+C1(x0) (27a)

JSA222 © IMechE 2007 J. Strain Analysis Vol. 42



472 T-J Yu, B V Sankar, N K Arakere, and R Vaidyanathan

A similar procedure is used to determine the function
g∞(x) which then can be written as q

qy
[F̂(i, j )]=G0 if i=0

F̂(i, j+1)−F̂(i, j )

Dy

(32)
g∞(x)=Q(x, y)+S(y)+C2(y0) (27b)

where the functions Q, S, and C
2

can be interpreted
in the same way as for f ∞ in deriving equation (27a).
Note that the constants C

1
(x

0
) and C

2
(y

0
) cannot be

q
qy

[Ĝ(i, j )]=G0 if i=0

Ĝ(i, j+1)−Ĝ(i, j )

Dy

(33)
uniquely determined. The value of shear stress at
some point should be known in order to determine
these constants.

q
qx

[F̃(i, j )]=G0 if j=0

F̃(i+1, j )−F̃(i, j )

Dx

(34)

3 NUMERICAL PROCEDURE

The analytical procedures described in the preceding
section can be readily implemented in a numerical

q
qx

[G̃(i, j )]=G0 if j=0

G̃(i+1, j )−G̃(i, j )

Dx

(35)
scheme. In order to perform the numerical different-
iations used in the formulation, backward differences

Step 4. Compute f ∞(x, y) and g∞(x, y) at each pointare employed. Backward differences are useful for
using equations (17) and (18).approximating the derivatives if data in the future may

depend on the derivatives approximated from the Step 5. Then calculate the shear stress t
xy

(x, y) at
data in the past. In order to use backward differences each point using equation (9).
in the present method, the initial value needs to
be set equal to zero. A rectangular grid (m×n) is
generated in the domain where the normal strains 4 VERIFICATION OF THE METHOD
are known at each point. The following steps are
required to implement the numerical scheme. 4.1 Comparison with FE method analysis
Step 1. Create an m×n rectangular grid in the FE analysis was used to determine the normal strains

computational domain. in various data points in a specimen. These normal
strains were used in the proposed method, and thenStep 2. Define F(x, y) and G(x, y) at each point from
the shear stresses were calculated. For verificationthe normal strain data.
of the method, these numerically calculated shear

Step 3. Determine the values F̂, F̃, Ĝ, G̃, qF̂/qy, qĜ/qy, stresses were compared with the FE solutions. FE
qF̃/qx, and qG̃/qx at each point. By introducing the analysis was performed using four-node quadrilateral
FDs Dx and Dy in space, these values are defined as elements in ABAQUSTM and 1600 elements (40×40)

and 1681 nodes were used in the model. The con-
vergence of the method was studied by refining the

F̂(i, j )=G0 if i=0

∑
m

i=1

F(i, j )+F(i−1, j )

2
Dx

(28) FD grids from 10×10 to 40×40 in the present
model.

A square aluminium plate of size 50.8 mm×
50.8 mm×5.08 mm is clamped along an edge and a
force of 2205 N is applied to one corner (Fig. 2).

Ĝ(i, j )=G0 if i=0

∑
m

i=1

G(i, j )+G(i−1, j )

2
Dx

(29)
Young’s modulus is taken as 70 GPa and Poisson’s
ratio as 0.33. Since the point load will cause a singular
stress field in the vicinity of the point of application,
the results were compared at locations away from
the load. The shear stresses along the y=25.4 mmF̃(i, j )=G0 if j=0

∑
n

j=1

F(i, j )+F(i, j−1)

2
Dy

(30)
line are plotted in Fig. 3. In order to determine the
constants C

1
(x

0
) and C

2
(y

0
), the value of shear stress

at some point should be known. In this example,
the value of shear stress at the middle point of the

G̃(i, j )=G0 if j=0

∑
n

j=1

G(i, j )+G(i, j−1)

2
Dy

(31) y=25.4 mm line was obtained from FE solution. The
FE results are compared with the present inverse
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4.2 Comparison with analytical solutions

In the next example, a problem for which analytical
solutions are available is solved. Thus the differences
in the results are only due to that in the proposed
method.

Consider the Brazilian disc specimen, which is a
circular disc with a pair of diametrically opposite
compressive loads as shown in Fig. 4. Hertz [6]
developed the solution for the stresses in this
specimen as

s
x
=−

2P

pBC(R−y)x2
r4
1

+
(R+y)x2

r4
2

−
1

DD
Fig. 2 Aluminium plate with uniform thickness

s
y
=−

2P

pBC(R−y)3
r4
1
+

(R+y)3
r4
2
−

1

DD
method for four different FD grid sizes. It may be

t
xy
=

2P

pBC(R−y)2x
r4
1

−
(R+y)2x

r4
2
Dnoted that the present method compares well with

the FE results except very close to the fixed support,
where r2

1
=(R−y)2=x2 and r2

2
=(R+y)2+x2and the 40×40 FD grid yields good results. The

average error is 14 per cent and the maximum error Step 1. Since the specimen is symmetric about the
is about 20 per cent (except for the point where the x and y axes, consider only one quarter of the
initial error occurs at the support). Table 1 displays specimen and make a grid (m×n) as shown in
the average error for different grid sizes (excluding the Fig. 5.
first two data points, which cause the initial error).

Step 2. Since the stress equations are provided, the
normal strains can be defined as

Table 1 Average error with
different grid sizes

F(x, y)=e
x
(x, y)=

1

E
s
x
(x, y)−

n

E
s
y
(x, y)

Grid size Average error (%)

10×10 34.4
G(x, y)=e

y
(x, y)=

1

E
s
y
(x, y)−

n

E
s
x
(x, y)20×20 19.3

30×30 15.3
40×40 13.8

Step 3. Perform the numerical calculation.

Fig. 3 Comparison of shear stresses for four FD grid sizes
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shear stresses along the y=0.06 m line are plotted in
Fig 6. Since this specimen is symmetric about the y
axis, it is expected that the shear stress is zero along
the axis. This zero shear stress was used to determine
the constants C

1
(x

0
) and C

2
(y

0
). The results shown

in Fig. 6 were obtained using a 150×150 FD grid.

4.3 Comparison with analytical solutions in the
local domain

In the previous example, an entire domain has been
used for the numerical method. However, it is not
always possible to obtain the normal strains in the
entire domain of the specimen including boundaries.
Typically methods such as the neutron diffraction

Fig. 4 Brazilian disc specimen method yield strains in a limited area of the specimen.
In the next example, a local area is selected as the
computational domain and the method verified. The
same Brazilian disc specimen and the same boundary
conditions are used for the method, except that the
coordinates are translated to a new position (Fig. 7).

Fig. 5 A quarter of the specimen is taken as a domain

Then the shear stress can be computed by
equation (9). Since the shear stress equation is given,
the results from this method can be compared with
the analytical solution. In the example a force of
300 MN is applied to the top (Fig. 4) and Young’s
modulus is taken as 200 GPa and Poisson’s ratio as Fig. 7 Local area is taken from the entire domain by

translating the coordinates0.3. The analytical shear stresses and the numerical

Fig. 6 Comparison of shear stresses obtained from the analytical solution and the present
inverse method
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Fig. 8 Comparison of analytical and numerical solutions using a 100×100 FD grid (FEA, finite
element analysis)

Since x∞=x+a and y∞=y+b, the stress components example, it is observed that a finer mesh can
minimize the initial error (Fig. 8).can be rewritten as

A novel computational scheme has been developed
in which the complete stress field can be determineds

x∞
=−

2P

pBG [R−(y+b)](x+a)2
r4
1 from partial data for the normal strains. The method

has been verified using two different methods. In
+

[R+(y+b)](x+a)2
r4
2

−
1

DH the first method, FE analysis was used to generate
information on normal strains, whereas the second
method took advantage of available analytical

s
y∞
=−

2P

pBG [R−(y+b)]3
r4
1

+
[R+(y+b)]3

r4
2

−
1

DH elasticity solutions. After obtaining the normal strains,
the proposed numerical method was implemented
to calculate the shear stresses. The method yields

t
x∞y∞
=

2P

pBG [R (y+b)]2(x+a)

r4
1

−
[R+(x+b)]2(x+a)

r4
2
H accurate results for the shear stress field in several

problems considered. The method will be a valuable
where r2

1
= [R− (y+b)]2+ (x+a)2 and r2

2
= [R+ tool in analysing normal strain measurements from

(y+b)]2+ (x+a)2. diffraction-based methods and other such experi-
Then using the aforementioned numerical pro- mental techniques. Future work will include thermal

cedures the shear stresses were calculated. The value residual stresses, orthotropic materials, and normal
of shear stress from analytical solution at the start strains obtained from experimental measurements.
point (x=0.05 m, y=0.06 m) was used to determine
the constants. Figure 8 shows the analytical shear
stresses and the numerical shear stresses along the ACKNOWLEDGEMENTS
same line (y=0.06 m) as in the previous example.
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5 DISCUSSION AND CONCLUSIONS University of Florida and the University of Central
Florida.

In the result of the first example (Fig. 3), a large
amount of error was observed near the support,
which is on the y axis. Setting the initial value on the
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