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Abstract

Previously developed micromechanical methods for stiffness and strength prediction are adapted for analysis of multi-layer plain
weave textile composites. Utilizing the direct micromechanics method (DMM) via finite element modeling, three methods are presented:
(a) direct simulation of a multi-layer plain weave textile composite; (b) micromechanical analysis of a single layer of interest from the
force and moment resultants acting on that layer; and (c) application of the previously developed quadratic stress-gradient failure theory
to the layer of interest. In comparison to direct modeling, the other two techniques show only 5% difference over a number of random
test cases. Several practical design examples of strength prediction are included to illustrate the importance and accuracy of method

implementation.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Textile composites present several advantages towards
the design of effective lightweight structures. The undula-
tion of the woven or braided structure provides inherent
out of plane reinforcement. Textile structures also provide
inherent reinforcement in multiple directions. Both of these
properties can be quite useful, especially in impact energy
absorption applications. However, the increased micro-
structural complexity, as compared to traditional unidirec-
tional composites, also presents the challenge of increased
complexity of characterization and analysis.

An effective approach to failure prediction of textile
composites must incorporate several key points: it should
be based upon the unique characteristics of textile compos-
ites and reflect the consequent mechanical implications; it
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should be robust in its accommodation of various loading
cases and in its ease of use; and it should be applicable to a
layup of any number of layers.

The micro level scale of a textile composite is physically
larger and geometrically more complex than a unidirec-
tional composite. Thus many common assumptions and
traditional analysis techniques break down [1]. The stress
state and material properties are non-uniform, i.e., there
is no single-layer stress analogous to the classical lami-
nate theory. Though negligible across the typical several
micron-sized dimension of a unidirectional RVE, even a
mild stress gradient could represent a large stress difference
at different points across the face of a typical millimeter-
sized textile composite RVE. The importance and details
of such considerations are presented in a parent study [1]
by the authors of the current work. A follow-on study [2]
then presented the development of quadratic failure criteria
for effective prediction of failure of textile composites, with
inclusion of the consideration of micro level stress gradi-
ents. As will be presented, the current study represents an
extension of both of these previous works to realistic textile
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composite structural components by including analysis
methods for multiple layers.

A more detailed survey of current research in the area of
failure modeling of textile composites is offered in the par-
ent study [1] to the current paper. A brief sampling of these
works is presented.

Designs of current textile composite structures are often
based upon well-known phenomenological failure crite-
rion, predominantly the maximum stress criterion, maxi-
mum strain criterion, and quadratic interaction criterion,
such as the Tsai-Hill and Tsai-Wu failure theories [3].

Initial and progressive failure of a plain weave compos-
ite using finite element analysis has provided insight into
the failure modes under axial loading conditions [4,5].
Accurate stress distributions for plain weave composites
in flexure have been investigated, and effective stiffness
properties for multi-layer specimens have been predicted
[6].

The binary model [7,8] utilizes 1-D line elements to rep-
resent fiber tow embedded within the bulk matrix. This
allows for quick and efficient analysis of any textile weave.
Some micro-level stress field detail is lost while still main-
taining accurate macro-level representation.

The Mosaic model analytical method [9,10] represent a
textile composite RVE as an assemblage of homogenized
blocks for which classical laminated plate theory can be
used to determine the global stiffness matrix. The method
can readily be applied to in-plane stiffness characterization
of multiple layer specimens, but effectiveness under bend-
ing conditions may be limited.

Effective prediction of compressive strength of braided
textile composites using a detailed FEM micromechanical
model and experimental verification has been performed
[11,12]. Buckling analysis has been performed, and the
effects of tow waviness and micro-architecture on the com-
pressive strength are shown.

Previous work by the authors [1,2] extended a method,
known as the direct micromechanics method [13] (DMM),
to develop failure envelopes and a quadratic stress gradient
failure theory for a plain-weave textile composite. This was
developed for a single RVE and thus represents single-layer
analyses.

When multiple layers are present, the layer material
properties will remain the same, but the stiffness and
strength of the overall composite laminate will change.
To develop a fully general failure theory, results from sin-
gle-layer analyses [1,2] must be adapted to accommodate a
textile composite of an arbitrary number of layers. This
allows material characterization simulations of a single
RVE to be applicable to a lay-up of an arbitrary number
of layers, eliminating the need for further material
characterization.

In this regard, three analysis techniques are proposed:
(a) multilayer direct micro-mechanics (MDMM), direct
simulation of the multi-layer composite; (b) adapted direct
micro-mechanics (ADMM), estimation of macro deforma-
tions in the layer of interest and application of single layer

DMM [1]; and (c) quadratic stress gradient failure theory
(QSFT), implementation of a phenomenological quadratic
stress-gradient failure theory [2] to the layer of interest
(without the requirement of determining a new set of fail-
ure coefficients as developed for a single layer).

Sections 2 and 3 of the current paper introduce an over-
view of the methods developed previously to determine
stiffness and strength of a single-layer plain weave textile
composite, as well as the development of a quadratic stress
gradient failure theory based upon these results. The fol-
lowing Sections (4 through 5.4) then extend the procedures
to accommodate multi-layer analysis, and various methods
are employed as described in the preceding paragraph.

The entire body of work is then applied to several prac-
tical examples of strength prediction (Section 5.5) to illus-
trate their implementation. The results are compared to
conventional methods utilizing common failure theories
not specifically developed for textile composites. Design
of a two-layer textile plate under uniform pressure is con-
sidered for several geometries and width-to-thickness
ratios. Also shown is a test case of a pressure vessel in
which stress-gradients are less prevalent.

2. Direct micromechanics method

Micromechanical analysis has been performed to deter-
mine the stiffness, strength, and failure envelopes of a plain
weave textile composite. Details of this analysis are avail-
able in a previous study [1], but methods therein are
presented here in an abbreviated fashion. This previous
study of a single-layer textile composite prepares the
groundwork and fundamentals that are built upon in the
current work. In the previous study, stress gradient effects
are investigated, and it is assumed that the stress state is
not uniform across the RVE. This represents an extension
of the micromechanical models used to predict the strength
of textile composites [13—15]. The stress state is defined in
terms of the well-known laminate theory force and moment
resultants, [N] and [M], in which the latter term captures
the presence of a stress distribution or gradient that is typ-
ically neglected. Furthermore, structural stiffness coeffi-
cients analogous to the [A4], [B], [P] matrices are defined.

The textile architecture under investigation is a plain
weave, and this RVE is shown in Fig. 1, with dimensions
as listed in Table 1. Constituent properties are shown in
Tables 2 and 3 (note that fiber tows have the properties
of a carbon epoxy composite at the micro level). This archi-
tecture was chosen from a literature source [16] that pro-
vided a complete and detailed description of the needed
geometrical parameters. Given parameters are representa-
tive of micro-architectures as experimentally observed via
SEM or standard microscope.

In the direct micromechanics method (DMM), the RVE
is subjected to macroscopic force and moment resultants,
from which the complete micro level stress field can be
determined. By applying known independent unit strain
and curvature cases, one can completely determine the
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Fig. 1. RVE geometry of a plain weave textile composite [16].

constitutive [A4], [B], [P] matrices. In this approach, these
structural stiffness coefficients are computed directly from
the micromechanical models, rather than from the lamina-
tion theories.

Strength can then be determined by evaluating the
microstress field found via the DMM for a prescribed
macro force and moment resultant (an input as might be
determined from structural analysis, either analytical or
finite element method). Strength is predicted by comparing
the computed microstresses in each element against failure
criteria for the constituent material. Failure is checked on
an element-by-element basis, and the failure criterion of
each element can be selected appropriately based upon
whether it is a yarn or matrix element. For the isotropic
matrix elements, the maximum principal stress criterion
has been chosen to evaluate element failure. For fiber
tow elements, the Tsai-Wu failure criterion is used. Ele-
ment failure represents a failure initiation point beyond
which property loss and ultimate failure will occur. This
is analogous to a first-ply failure point of classical laminate
theory.

Table 1
Dimensions of the representative volume element (RVE) of the plain
woven composite (see Fig. 1)

3. A quadratic stress-gradient failure criterion in terms of
force and moment resultants

To provide a method that may be utilized to determine
effective strength prediction without the need for case-by-
case DMM analysis, a quadratic stress-gradient failure
criterion has been defined [2] for single-layer textile com-
posites. Secondarily, this also serves to provide a concise
numerical description of the varied failure spaces that a
textile composite may exhibit. Given the quadratic interac-
tive nature of the stress state in determination of failure, an
expression of the below form has been developed to predict
failure:

C,FiF;+DiF; =1 (1)

where F; represent general normalized load terms (N.N,
N M M,M,,), and C; or D; represent 27 failure coefli-
cients such that Eq. (1) defines failure when its left hand
side exceeds 1. Note again that inclusion of moment resul-
tant terms represents the critical inclusion of the consider-
ation of stress gradients that may exist across the
characteristically large geometry of a textile RVE. Due to
the large disparity in the magnitude of a typical force resul-
tant as compared to a typical moment resultant, each load
term F; must be normalized, or Eq. (1) will be numerically
ill conditioned. All force resultants are normalized with
respect to the critical tensile force resultant N, (6.40 X
10° N/m) while moment resultants are normalized with
respect to the critical moment resultant M, (1.82X
107*N). Note that this normalization is reflected in the
magnitude of the failure coefficients shown later in Tables
4 and 5.

Failure coefficients C;; and D; can be solved given a suf-
ficient amount of known failure points. These failure points
can be determined by the DMM or by physical tests.

Table 4
Normalized failure coefficients C;; in the quadratic stress gradient failure
theory

Dimension a, b c p t w n=1 2 3 4 5 6

Length (mm) 1.68 0.254 0.84 0.066 0.70 m=1 1.02 —0.81 2.45 0.15 0.15 —0.09
2 1.02 2.45 0.15 0.15 —0.09
3 9.29 0.15 0.15 —1.28
4 1.00 —0.65 0.29

Table 2 5 1.00 0.29

Fiber tow and matrix material properties [17] 6 3.05

Material E (GPa) E,(GPa) G (GPa) vp» Coefficient C,,, is in mth row and nth column.

AS/3501 graphite/epoxy 138 9.0 6.9 0.30

(65% fiber volume)

3501 Matrix 3.5 3.5 1.3 0.35 Table 5
Normalized failure coefficients D; in the quadratic stress gradient failure
theory

Table 3 Dy —0.011

Fiber tow and matrix strength properties (MPa) [17] D, —0.011

: ) =) &) =) Dy 0.000

Material Sy Sy St St SLt D, 0.000

3501/Graphite tow 1448 1172 48.3 60 62.1 Ds 0.000

3501 Matrix 70 70 70 70 - D 0.000
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Coeflicients C; and D; can be solved by evaluating Eq. (1)
with a single load of F; and setting all other loads to zero.
For example, in order to obtain Cj; and D; a tensile and
compressive load of F; = N, are applied, all others are
set to zero, which may be substituted into Eq. (1) to gener-
ate two equations:

CyNi + DN =1 (2)
CyN2c +DiNyc =1 (3)

where Nt and N,c, respectively, are the tensile and com-
pressive strengths in the x direction, as have been deter-
mined from DMM analysis. Thus, these two independent
equations can be simultaneously solved to yield C;; and
D,.

Remaining coefficients C; can be solved by evaluating
Eq. (1) under the loading condition given by F;=F; as
determined by the DMM results. All other loads are set
to zero. Along with knowledge of previously determined
coefficients Cj; and D; this allows for the solution of all
remaining coefficients. For example, C;4 can be determined
by applying the maximum possible F; = F,;. The failure
coefficient is then solved directly from Eq. (1).

The above procedure is similar to that used in deriving
Tsai—Wu failure coefficients for unidirectional composites
[3], with the additional inclusion of moment resultant terms
and their associated failure coefficients, which accommo-
date the stress gradients in the analysis. The results of the
above procedures are shown in Tables 4 and 5.

Coefficients D3 through Dg are equal to zero since posi-
tive and negative strengths are the same for any shear,
moment, or twist loads for the particular woven composite
considered in the example.

The same methods shown in this section can easily be
applied to any textile architecture of interest. The 27-term
quadratic failure equation has been found to be robust to
adapt to the various forms of failure spaces that may be
exhibited by a particular architecture [2]. It has been shown
[2] that this method can be used to accurately predict fail-
ure for the plain weave textile composite under consider-
ation. In load cases in which one, two, or three force or
moment resultants are present, accuracy is shown to be
good within a few percent. As load cases become more
complicated, the overall agreement in these diverse failure
spaces is seen to be quite suitable, but there will be “cor-
ners’’ or portions of the 6D failure space that will be missed
with the essentially 6D ellipse space of the quadratic failure
theory. Such cases exhibit an average error of 9.3% [2]. Pre-
dictions tend to be conservative in areas of disagreement.

4. Stiffness prediction of multi-layer textile composites

In general, a textile composite laminate may consist of
any number of stacked layers. The results of the previous
sections describe the fundamental groundwork for stiffness
and strength prediction of a single RVE, which represent

single-layer analyses. Such procedures must be modified
to incorporate accommodation of multiple layers.

To provide a verifiable basis for multi-layer character-
ization, a direct simulation of the behavior of a two-layer
composite has been performed. The single RVE is replaced
with two stacked RVE’s, which simulate the two-layer tex-
tile composite. Using the DMM procedures, unit strain and
curvature cases have again been carried out to directly
determine the constitutive matrices. Then macro level force
and moment resultants can be computed, and the constitu-
tive matrices are determined. A single layer of the plain
weave textile under consideration will exhibit the following
constitutive matrices

414 052 0
[A)= 1052 414 0 | x10° (Pam) [B]~0
0 0 018
(4)
7.70 253 0
D)= 1253 770 0 | x107° (Pam?®)
0 0 135

For a two-layer textile, the constitutive matrices, as deter-
mined from a two-layer model utilizing the DMM (proce-
durally referred to in this paper as MDMM or multilayer
direct micromechanics), are seen to be

828 1.04 0
[A]=|1.04 828 0 | x10°(Pam) [B]~0
0 0 036
(5)
1488 224 0
D= | 224 1488 0 | x107° (Pam?)

0 0 8.51

Bending stiffness follows a relationship analogous to the
parallel axis theorem, which governs the increased moment
of inertia of an area of material that is moved away from
the bending axis. These expressions for the overall stiffness
of a two-layer textile can be represented as

APE =243 (6)
D =2(D5 + A3d%) (7)

where the superscripts DL and SL represent “double layer”
or “‘single layer” properties, and d represents the distance
from the center of a layer to the bending axis. Similar re-
sults have been shown in [6] for textile composites under
flexure. From this expression, the double layer stiffness
matrices (Eq. (5)) can effectively be calculated with knowl-
edge only of the single layer stiffness properties (Eq. (4)).
This can be extrapolated to a material of an arbitrary num-
ber of layers (N), once the DMM has been used to charac-
terize a layer (n) or one RVE. Egs. (8) and (9) may be used
to evaluate the stiffness matrices and no further analysis is
needed
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Note that if a coupling matrix [B] were present, this would
need to be accounted for in the below expression of Eq.
(10). Due to symmetry, this expression will evaluate to zero
for the plain-weave architecture

M=

By => (B} +A}d,) (10)

1

n

5. Strength prediction of multi-layer textile composites

Once stiffness has been determined by the methods of
the previous section, further analysis is needed to deter-
mine strength of a multi-layer textile composite. The
following three sub-sections describe the various modeling
approaches used to analyze laminated plain weave compos-
ite structures and comparison of various methodologies in
modeling the strength of textile composites. For clarity,
the various approaches are summarized in Table 6.

5.1. Direct FE simulation of multi-layer textile composites
(MDMM)

The same methods described previously for single layer
strength prediction can be used for direct simulation of a
two layer RVE. This direct simulation paints an accurate
picture of the load capacity of a multilayer textile, at the
expense of model preparation and computational time.
As the methods for the MDMM approach are essentially
the same as the DMM described previously and in [1], with
a two-layer RVE in place of the single RVE, the details are
not repeated. The two sections to follow this describe two
methods based upon these results (ADMM and QFT),
which can be used to predict strength of a textile composite
laminates of an arbitrary number of layers without having
to employ direct FEM simulation.

Table 7 indicates the maximum allowable level of any
force or moment resultant when it is the only load present.
Single-layer strength and double-layer strength are com-
pared. When applicable, a (+) or (—) indicates tensile or

Table 7
Strength values for single-layer and two-layer textile composite as
determined by MDMM

Strength (single layer) Strength (two layer)

N, 6.40x 10° Pam (+) 1.29 x 10* Pam (+)
5.86x 10° Pam (—) 1.18 x 10* Pam (—)
N, 6.40 x 10* Pam (+) 1.29 x 10* Pam (+)
5.86x 10° Pam (—) 1.18 x 10* Pam (—)
Ny, 2.11x10° Pam 4.18 x 10* Pam
M, 1.85x 107* Pa m? 1.91 x 1073 Pa m?
M, 1.85x 107 Pam’ 1.91 x 107 Pam®
M,, 1.06 x 107* Pa m? 1.08 x 10~* Pa m?

The (+) and (—) signs, respectively, denote the tensile and compressive
strengths.

compressive strength, respectively. In essence, the in-plane
strength properties do not change. The critical force resul-
tant doubles as a result of the doubling of material present,
but otherwise the load capacity is unchanged. The strength
under bending will change significantly for the two-layer
textile composite. As a direct consequence of increased
bending stiffness, the critical applied moment is seen to
increase approximately tenfold. Note that the relationship
will depend on the thickness of each layer, and thus is an
observation specific to this RVE micro geometry. The
MDMM serves as a check upon which a more generalized
approach may be developed, which can predict for an arbi-
trary number of layers under arbitrary load conditions with
mixed load types.

5.2. Extension of the single layer DM M results to predict
strength for multi-layer textile composites or adapted direct
micromechanics method (ADMM )

In this method, the mid-plane strains and curvatures of
the single layer of interest are calculated from the laminate
strains and curvature. Then the direct micromechanics is
applied to that layer in order to predict its strength. Thus
the strength prediction involves extending the results of sin-
gle layer FEM analysis directly from the DMM. Thus only
one material characterization is needed (of a single layer) to
predict strength for any number of layers.

The single-layer DMM was discussed in a Section 5.1. In
the case of a single layer under bending, the sole “‘stress
source” stems purely from the resulting curvature. Now
in the case of two layers under bending, this stress source

Table 6

Summary of the various methods employed in multi-layer strength analysis

Method Acronym Summary

Direct micromechanics method (single layer) DMM Basic method used to characterize strength and stiffness of an RVE

Multi layer direct micromechanics method MDMM Direct simulation of two or more stacked RVEs used to characterize multiple layers

Adapted direct micromechanics method for ADMM Calculate the force and moment resultants carried by the layer of interest in a multilayer
multi-layer analysis textile composite laminate and apply DMM

Quadratic stress-gradient failure theory QSFT Calculate the force and moment resultants carried by the layer of interest, and then use

QSFT [2]
Calculate the macro stresses in each layer and use classical failure theories such as Tsai—

Classical lamination theory

Wu or maximum stress theory
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of curvature is still present, while normal strains that result
from the layer offset from the axis of bending represent an
additional stress source that must be accounted for. Thus,
superposition of these effects must be applied to find the
total stress field for a multi-layer textile under bending.
As detailed in classical laminate theory [17], the magni-
tude of the normal strain in offset layers will be directly
proportional to the curvature (x) that is present and the
distance from the layer midplane to the bending axis (d)

The sign of the distance d (positive or negative) depends on
the position of the layer with respect to the mid-plane.

With this adjusted assessment of the strain and curva-
ture in each layer, the DMM can be used to evaluate the
failure envelope for any force and moment resultants. As
detailed earlier, failure from the total stress field in each
layer is then checked on an element-by-element basis to
determine overall failure of the composite. Results and
comparisons via this method will be shown after Section
5.3.

5.3. Implementation of the quadratic stress gradient failure
theory (QSFT) to predict strength for multi-layer textile
composites

The previously developed 27-term quadratic failure
theory for textile composites [2], as determined from the
single-layer DMM, can be implemented to predict failure
for a multi-layer specimen. Once the original failure coeffi-
cients have been determined, no further FEM or experi-
mental analysis will be needed. Implementation of this
procedure is accomplished by calculating the force and
moment resultants carried by the layer of interest and then
applying the single layer quadratic failure theory (QSFT).
First, the mid-plane multi-layer strains and curvatures are
calculated from the applied macro-level force and moment
resultant, along with the constitutive matrix representing
the multi-layer (double-layer, DL, in the present example)
material properties

-1

{ o) - {[A] B |'{ M) } 1)
[x] ] [DlpL L[M]

The multi-layer midplane strain must now be modified to

represent the actual strain state in each layer

Note that in plate analysis, mid-plane curvature and layer-
level curvature will always be the same.

The layer-level force and moment resultant are then
calculated using this modified deformation from Eq. (12),
along with the single layer (SL) constitutive matrix

(e~ [ o () w

The adjusted force and moment resultants capture what is
seen in each layer offset from the bending axis. These are
then directly input to the quadratic failure theory of Eq.
(1) with coefficients as per Tables 4 and 5 (as developed
from one layer or RVE). Failure analyses are performed
independently in each layer. This is to say that, the single
layer force and moment resultants for each layer must be
independently calculated input to the quadratic stress-gra-
dient failure theory (computations which can still be auto-
mated). Note that in the above-described procedure, a pure
moment resultant applied to a multi-layer composite will
correspond to both force and moment resultants in each
layer.

5.4. Comparison of the results of multi-layer failure analysis
methods

Several cases are now presented which illustrate the rel-
ative effectiveness of the multi-layer analysis methods
shown in the preceding sections of this chapter. Direct
FEM simulation provides the most accurate prediction of
the stress field and failure envelope of the multi-layer textile
composite. Thus it is taken as the reference strength against
which other methods are compared. The two techniques
for predicting failure of a multi-layer composite without
additional material characterization tests can be compared
to this in order to estimate their accuracy.

Comparison of predicted failure points (the maximum
allowable force and moment resultants under combined
loading) proves to be the best and most germane method
of comparing the multiple prediction methods. To this
end, failure has been predicted for a variety of load cases
based on the data from the direct simulation of the
MDMM. The results of the ADMM and the QSFT are
then compared to this. Both methods are shown to com-
pare well to the MDMM results, though use of the QSFT
is computationally faster and more practical once failure
coefficients have been determined. Tables 8 and 9 show a
comparison of the various methods to calculate failure
for a multi-layer textile. Load cases are shown in terms
of a load ratio («) defined as

F; F;

or o =—

= o (fF=0) (15)

ol
Note that moment resultant load ratios are normalized by
F, rather than F;. By maintaining the same load ratios, all
predicted failure loads would maintain a single ratio with
respect to the benchmark MDMM failure points. Thus
one ratio can characterize the congruence of these solu-
tions. Error in a particular theory is defined as the devia-
tion from the MDMM result. A negative difference
indicates a conservative failure prediction, and a positive
difference implies a non-conservative prediction.

For combined force and moment resultants, failure
occurs in the tensile layer, in which the applied moment
generates additional tensile forces that accelerate failure.
The critical force resultant in this case is approximately
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Table 8
Example load cases to determine the accuracy of multi-layer analysis
methods

Load MDMM ADMM QSFT

ratios Calculated Calculated % Calculated %
(@) allowables allowables Difference allowables Difference
Case 1

1 1.35E+04 131E+04 -3.0 1.30E+04 -3.7
0 0 0 0

0 0 0 0

Case 2

1 191E+04 201E+04 +52 2.02E+04 +5.8
1 1.91E+04 2.01E+04 2.02E + 04

0 0 0 0

Case 3

0 0 0 0

0 0 0 0

1 423E+03 4.14E+03 -2.1 418E+03 -1.2
Case 4

1 373E+03 3.52E+03 -5.6 342E+03 -8.3
1 3.73E+03 3.52E+03 3.42E + 03

1 3.73E+03 3.52E+03 3.42E + 03

Accuracy is indicated by to the deviation from MDMM results. In these
examples only in-plane loads are applied and there are no moment
resultants, thus rows in each case show the load ratio (Eq. (15)) corre-
sponding to N N,Ny,.

Table 9
Further example load cases (including moment resultants) to determine
the accuracy of multi-layer analysis methods

Load MDMM ADMM QSFT

ratios Calculated Calculated % Calculated %

(@) allowables allowables Difference allowables Difference
Case 1

0

0

0

1 1.68E — 03 1.60E — 03 —4.8 1.54E - 03 8.3
0

0

Case 2

0

0

0

1 2.59E-03 2.67E—-03 -+3.1 272E—-03 +5.0
1 2.59E — 03 2.67E — 03 2.72E — 03

0

Case 3

1 6.14E+ 03 5.64e3 —8.1 5.50E+03 —-104
0

0

1 8.06E — 04 7.42E — 04 7.22E — 04

0

0

Accuracy is indicated by the deviation from MDMM results. Rows
correspond to load ratios (Eq. (15)) for NyN,N M M, M,,.

halved. In the compressive layer, the applied moment off-
sets applied tensile force resultants. The critical force resul-
tant is roughly doubled here, however, the tensile layer is
the limiting case for ultimate failure.

For the load cases shown in Tables 8 and 9, the ADMM
and the QSFT show an average of 5.2% and 5.5% devia-
tion, respectively, with respect to multilayer direct micro
mechanics. Most often, this error is conservative in com-
parison to the MDMM simulation.

5.5. Practical examples to illustrate strength prediction of a
two-layer textile composite plate

In order to show the application of the preceding failure
prediction approaches to practical examples, design of a
two-layer plain weave-textile plate is considered. Also
shown is an example of a closed-end thin-walled pressure
vessel. Classical analysis procedures are employed to deter-
mine the loads within the plate (force and moment resul-
tants) that are then input to the various failure analysis
techniques.

As shown in Fig. 2, a uniform pressure is applied to a
simply supported plate. Three different plate sizes, as
shown in Table 10, are considered to explore the different
mechanical regimes of varying width-to-thickness ratios
and to consider a square versus rectangular geometry. Plate
theory [18] is employed to determine the force and moment
resultants at each point in the plate, which are then checked
for failure.

Once moments and curvatures (per unit pressure) have
been determined from plate theory, failure in the plate is
analyzed via the multi-layer analysis techniques of the pre-
vious sections. From this the maximum allowable pressure
can be determined, and results for each method are com-
pared. The most reliable method is direct simulation
through the MDMM. This again provides a basis of com-
parison for the remaining methods.

The second method represents a conventional approach,
which employs failure analysis methods not developed for

AERS
A

v v v v

a

¢

Fig. 2. Schematic of the simply supported two-layer textile plate under
uniform pressure.

Table 10

Geometry of the simply supported textile plate under uniform pressure
a b t

Case 1 0.102m 0.102m 0.508 mm

Case 2 0.0102m 0.0102 m 0.508 mm

Case 3 0.102 m 0.051 m 0.508 mm
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textile composites, and for which stress gradients are not
considered. Classical analysis techniques are used to find
strains and stresses, which are compared to a conventional
failure theory. The third method is application of the qua-
dratic stress-gradient failure theory. The fourth method is
the aforementioned ADMM. For each case, the plate is
discretized into a 21 by 21 point grid of points that are each
checked for failure (441 total points).

The conventional method is accomplished by determin-
ing the curvature per unit pressure at each point via the
shear deformable plate theory. Eq. (13) then determines
strains as per classical lamination theory. Stress is calcu-
lated by approximating a stiffness matrix [Q] from the [A4]
matrix (determined via the DMM) as indicated by Eq.
(16), and multiplying by the corresponding strain. It should
be noted that this in itself can represent an improvement
over conventional methods, as a stiffness matrix would gen-
erally be calculated from homogenized material properties
or estimations rather than from direct simulation or exper-
iment. However, unlike bending properties, these methods
can often be acceptable for in-plane stiffness properties.

o = Q¢ ~ Ate (16)

In the above, ¢ is the thickness of a layer and A4 represents
the in-plane stiffness matrix of a layer. This stress can then
be compared to a maximum allowable stress via the Tsai—
Wu failure theory (for which failure coefficients can be
found via the DMM or experimental methods).

The procedures for the direct simulation (MDMM) as
well as the QSFT and ADMM methods have been detailed
above, which is not repeated. In these cases, the maximum
allowable moment per unit pressure is found, and the max-
imum allowable pressure can then be compared.

Table 11 tabulates the maximum allowable pressure for
each of the three geometries under consideration, for each
of the four prediction methods. The relative accuracy of
prediction is indicated as deviation (error) from that of
MDMM direct simulation. Again, a positive error indi-
cates a non-conservative prediction.

For all three cases, the QSFT and ADMM represent a
significant improvement over the conventional approach.
This is due to the presence of significant stress gradients
across the thickness dimension of the RVE (as accounted
for with the moment resultants), contrary to common
isostrain assumptions used in textile micromechanics or
failure theory development. The relative accuracy of con-

Table 11
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ventional methods increases somewhat for Case 3. The
disparity between the conventional and DMM-based
approaches, which include consideration of stress gradi-
ents, will diminish as the relative presence of stress gradi-
ents diminish with respect to other loads present.

In general, the ADMM will be more accurate than the
QSFT, as the QSFT is an approximation method which
is slightly further removed from the developmental data.
Though both methods involve multi-layer approximations,
the QSFT must also approximate the DMM stress field
data. For Case 1 versus Case 2, the agreement of the two
mutli-layer analysis methods (ADMM or QSFT) with the
direct FEM simulation is similar, for both mechanical
regimes. Although the low aspect ratio plate is naturally
able to withstand a much higher pressure, prediction accu-
racies are similar. These predictions are both non-conserva-
tive, though Tables 8 and 9 have shown that this is not
generally true. For Case 3, these methods are conservative
compared to the MDMM. In this case, at the failure point,
there is a different load ratio (M, = 2M,, rather than the
M, = M, of Case 1 and 2), thus a different portion of the
failure space is being predicted.

As most often seen in previous [1,2] results, the initial
failure mode for these design cases is transverse failure of
the fiber tow, beginning in the tensile layer. This represents
a fiber pull-apart initiation, or an intra-tow matrix crack-
ing. For the unbiased (M, = M,) biaxial bending of Cases
1 and 2, failure initiates in both fiber tows, as the transverse
stresses will be equal for both tows.

In contrast to the design of a textile plate under uniform
pressure, there are other common design cases for which
there would be no improvement in accuracy in employing
the QSFT or ADMM rather than conventional methods.
We consider the problem of a thin-walled pressure vessel
in which a biaxial stress state with negligible stress gradi-
ents will exist. In this case, conventional methods will pre-
dict similar maximum allowable pressure when compared
to the QSFT or ADMM. The wall thickness is assumed
as 0.508 mm and the radius to thickness ratio as 20. Force
resultants are found from basic thin-walled pressure vessel
theory [19]. Since there are no moment resultants in thin-
walled cylinder, this example serves as a comparison of
the MDMM simulation and the QSFT, contrasted to
conventional methods, for a test case in which stress gradi-
ents are small. Results for this design case are shown in
Table 12.

Maximum allowable pressure for the textile plate of Fig. 2 for the 3 cases described in Table 10 as predicted from various multi-layer analysis methods

Case 1 (a=b, a/t =200)

Case 2 (a = b, a/t = 20)

Case 3 (a/b =2, aft = 200)

Pmax (kPa) % Difference Pmax (kPa) % Difference Pmax (kPa) % Difference
DDMM 19.5 N.A. 135.3 N.A. 34.7 N.A.
Conventional 24.0 23.1 169.1 25 40.6 17
QSFT 20.5 5.1 142.1 5.0 32.6 —6.1
ADMM 20.1 3.1 139.4 3.0 33.7 -29

The efficacy of each method is measured from its deviation from MDMM.
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Table 12
Maximum allowable pressure for a textile composite pressure vessel as
predicted by various multi-layer analysis methods

Pmax (MPa) % Difference
MDMM 1.89 N.A.
Conventional 1.93 +2.1
QSFT 1.86 -1.6

As expected, it is seen that predicted maximum allow-
able pressures are similar for all methods. Although there
are stress gradients along the radial direction, the variation
is relatively small, thus the moment resultant that is present
will be nearly negligible. These results will hold true for any
thin-walled pressure vessel.

6. Summary

In this paper micromechanical methods are used to ana-
lyze the failure of multilayer textile composite. A two-layer
plain-woven graphite/epoxy composite is used as an exam-
ple. Three methods are proposed and they are compared
with conventional laminated plate theory type analysis.
The first method is the multi-layer direct micromechanics
(MDMM) which is computationally intensive, but can be
considered as more accurate than any of the other meth-
ods. The second method is adapted direct micromechanics
(ADMM) in which a single layer of interest is analyzed
using micro-mechanics. The force and moment resultants
in that layer are obtained from structural analysis. The
third method is the simplest, in which a quadratic stress
gradient failure theory (QSFT) is applied to the layer of
interest. In the fourth method, conventional analysis, the
stresses are obtained using laminated plate theory and
stress based failure theories are used. It is found that
ADMM and QSFT compare well with the detailed and
expensive MDMM. The two theories predict failure loads
within 6% compared to MDMM. The ADMM is still
expensive because of the use of micromechanics. However,
QSFT is a phenomenological model and is highly amenable
to failure analysis of textile composite plates. The conven-
tional theory fails to capture the stress gradient effects, and
hence is not suitable for textile composites. Several simple
but significant design cases have been presented as a prac-
tical application of the methods presented in this disserta-
tion. Multi-layer failure prediction methods have been
shown to be sufficiently accurate, and the importance of
the consideration of stress gradients in a common design
situation is shown.
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