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Analytical Modeling of Sandwich Beams
with Functionally Graded Core

N. A. APETRE AND B. V. SANKAR*

Department of Mechanical and Aerospace Engineering
University of Florida, Gainesville, FL 32611-6250, USA

D. R. AMBUR

NASA Glenn Research Center, 21000 Brookpark Road
Cleveland, OH 44135, USA

ABSTRACT: This study investigates several available sandwich beam theories for
their suitability of application to one-dimensional sandwich plates with functionally
graded core. Two equivalent single-layer theories based on assumed displacements, a
higher-order theory, and the Fourier–Galerkin method are compared. The results are
also compared with the finite element analysis. The core of the sandwich panel is
functionally graded such that the density, and hence its stiffness, vary through the
thickness. The variation of core Young’s modulus is represented by a differentiable
function in the thickness coordinate, but the Poisson’s ratio is kept constant. A very
good agreement is found among the Fourier–Galerkin method, the higher-order
theory, and the finite element analysis.

KEY WORDS: functionally graded cores, functionally graded materials, sandwich
panels.

INTRODUCTION

W
ITH THE DEVELOPMENTS in manufacturing methods [1–5] functionally
graded materials (FGMs) seem to have great potential as core

materials in sandwich structures. They possess properties that vary
gradually with location within the material such as to optimize some
function. New methodologies have to be developed to characterize FGMs,
and to design and analyze structural components made with these materials.
The methods should be such that they can be incorporated into available
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methods with minimal modifications. One of the important problems is that
of response of structures made of FGMs to thermo-mechanical loads.
Although FGMs are highly heterogeneous, it will be useful to idealize them
as continua with properties changing smoothly with respect to the spatial
coordinate. This will enable obtaining closed-form solutions to some
fundamental solid mechanics problems, and also will help in developing
finite element models of structures made of FGMs.

A considerable amount of literature exists on sandwich panels as they are
used in large number of applications varying from high-performance
composites in aerospace structures to low-cost materials for building
constructions. The limitations of classical plate theory in describing complex
problems (e.g., contact/impact problems, behavior of thick laminate plates)
necessitated the development of higher-order theories. The term higher-
order refers to the level of truncation of terms in a power series expansion of
displacements about the thickness coordinate. The models investigated here
can be classified into: single-layer theories (where the assumed displacement
components represent the weighted-average through the thickness of
sandwich panel), layerwise theories (where separate assumptions for
displacements in each layer are made), and exact theories (equilibrium
equations are solved without displacements assumptions). Although
discrete-layer theories are more representative for sandwich construction
than the single-layer theories, they experience computational difficulties
from a large number of field variables in proportion to the number of layers.

Reissner [6] and Midlin [7] were the first to propose a plate theory that
included the effect of shear deformation and that assumed linear long-
itudinal displacements and constant transverse displacements. Midlin [7]
introduced the correction factor into the shear stress to account for the fact
that the model predicts a uniform shear stress through the thickness of the
plate. Yang et al. [8] extended Mindlin’s theory for homogeneous plates to
laminates consisting of arbitrary number of bonded layers. Based on the
same model (Mindlin’s theory), Whitney and Pagano [9] developed a theory
for anisotropic laminated plates consisting of an arbitrary number of
bonded anisotropic layers that includes shear deformation and rotary
inertia. Displacement field is assumed to be linear in thickness coordinate.
Since then, the plate theory was improved by including higher-order terms in
displacements assumptions. Essenburg [10] assumed second-order transverse
displacements and linear longitudinal displacements; Reissner [11] included
third-order terms in the in-plane displacements’ z-expansion; Lo et al. [12]
included third-order in-plane and second-order out-of-plane terms. Reddy
[13] developed a third-order shear deformation theory (TSDT) for
composite laminates, based on assumed displacement fields (third-order
in-plane and constant out-of-plane displacement).
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Frostig et al. [14,15] developed a high-order theory to study the
behavior of a sandwich beam with transversely flexible core based on
variational principles. The main feature of the method is the higher-
order displacement fields in the thickness coordinate. The longitudinal
and the transverse deformations of the core are determined with the aid
of constitutive equations of an isotropic material, and the compatibility
conditions at the interfaces consist of non-linear expressions in thickness
coordinate. Their formulation is based on the beam theory for
face sheets and a two-dimensional elasticity theory for the core. The
sandwich behavior is presented in terms of displacements in face sheets
and shear stress of the core. Their model can be applied to sandwich
structures with honeycomb or foam cores. The model was applied to the
vibration analysis [16] and to sandwich structures with nonparallel
skins [17]. Zhu and Sankar [18] derived an analytical model for a
functionally graded (FG) beam with Young’s modulus expressed as a
polynomial in thickness coordinate using a combined Fourier series–
Galerkin method.

In order to provide a simple tool for describing the behavior of a
sandwich beam with FG core, this study compares four models found in the
literature. These models are: first-order shear deformation theory (FSDT);
TSDT, [13]; Fourier–Galerkin method developed by Zhu and Sankar [18];
and the higher-order theory of Frostig et al. [15]. A very good agreement is
found between Zhu and Sankar model and Frostig model. The conclusions
are supported with results from finite element analysis.

AN EQUIVALENT SINGLE-LAYER FIRST-ORDER SHEAR

DEFORMATION THEORY

The simplest model investigated in the present study is an equivalent
single-layer model or the FSDT [6,7] that includes a transverse shear
deformation. The following kinematic assumptions are made:

uðx, zÞ ¼ u0ðxÞ þ z ðxÞ

wðx, zÞ ¼ w0ðxÞ
ð1Þ

where u is the displacement in the horizontal direction, x, and w is the
displacement in the vertical direction, z. u0, w0,  are unknown functions to
be determined using the equilibrium equations of the first-order theory. The
dimensions of the sandwich beam are shown in Figure 1. The length of
the beam is L, the core thickness is h, the top face sheet thickness is ht and
the bottom face sheet thickness is hb.
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If the core material is isotropic at every point and the principal material
directions coincide with the x- and z-axes, the plane strain constitutive
relations are:
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or

r x, zð Þ ¼ cðzÞ e x, zð Þ:

The variation of Young’s modulus E in the thickness direction is assumed
to be a polynomial in z. e.g.,

EðzÞ ¼ E0 a1
z

h
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where E0 is the Young’s modulus at z¼ 0 and a1, a2, a3, and a4 are material
constants.

In order to calculate the flexural rigidity of the cross-section, the position
of the neutral axis z0 must be found. It is given by the coordinate system for

z

ht

z0

x

h/2

hb

h/2

Figure 1. The sandwich beam geometry.
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which the bending-stretching coupling term vanishes:

B11 ¼

Z htþh=2�z0

�ðhbþh=2þz0Þ

zc11ðzÞdz ¼ 0 ) z0: ð4Þ

Constitutive equations of the first-order theory take the following form:

Nx ¼ A11
du0
dx

Mx ¼ D11
d 

dx

Vz ¼ S  þ
dw0

dx

� �

8>>>>>>>><
>>>>>>>>:

ð5Þ

where A11 is the extensional stiffness, D11 is the bending stiffness, and S is
the transverse shear stiffness given by

A11 ¼

Z ðhbþh=2þz0Þ

�ðhbþh=2þz0Þ

c11ðzÞdz

D11 ¼

Z htþh=2�z0

�ðhbþh=2þz0Þ

z2c11ðzÞdz:

S ¼

Z h=2�z0

�ðh=2þz0Þ

c55ðzÞdz

ð6Þ

For a given set of external loads and boundary conditions, axial force
resultant Nx, bending moment resultant Mx, and shear resultant Vz can be
calculated. Then using system (5) the deformations are obtained. The
deformations can be integrated to obtain the displacements and rotation.

This model is applied for a sandwich beam with FG core. The main
feature of the model is that the transverse shear strain is constant through
the thickness of the beam. Results and discussions of this model are
presented in the last section.

AN EQUIVALENT SINGLE-LAYER THIRD-ORDER SHEAR

DEFORMATION THEORY

Reddy [13] developed a TSDT for composite laminates, based on assumed
displacement fields and using the principle of virtual displacements.
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Reddy [19] reviewed several other third-order theories and showed that they
are special cases of the theory proposed in his study. Reddy [20] and Reddy
and Cheng [21] expanded TSDT for the analysis of FG plates.

Here, a third-order equivalent single-layer model based on Reddy’s
assumption of vanishing of transverse shear stresses on the bounding planes
is investigated. The displacement field is assumed to be:

uðx, zÞ ¼ u0ðxÞ þ z ðxÞ þ z2�ðxÞ þ z3�ðxÞ

wðx, zÞ ¼ w0ðxÞ
ð7Þ

where u0 and w0 are displacements along middle axis, z¼ 0. Functions � and
� are eliminated using the assumption of zero shear stresses at top and
bottom:

� xð Þ ¼
ht � hb

h�
 xð Þ þ

dw0

dx

� �

� xð Þ ¼ �
2

3h�
 xð Þ þ

dw0

dx

� � ð8Þ

where

h� ¼ 2hthb þ hthþ hbhþ
h2

2
: ð9Þ

If the top face sheet thickness ht equals the bottom face sheet thickness hb,
then �(x)¼ 0.

Axial force resultant, bending moment resultant, and shear resultant are
calculated as follows:
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where b is the beam width, "0¼ du0/dx and stiffness coefficients AN through
CV are given by:
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The following set of constitutive equations is obtained:
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For a given set of external loads and boundary conditions axial force
resultant Nx, bending moment resultant Mx, and shear resultant Vz can be
calculated. Then using the system of equations (12) the displacements are
obtained.

This model is applied for a sandwich beam with FG core. The main
drawback of the model is given by the fact that the transverse shear strain
has a quadratic variation with respect to the thickness coordinate, whereas
the actual strains in a graded core may be different depending on the
gradation. Results from this model are compared with others in the last
section.
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FOURIER–GALERKIN METHOD

Zhu and Sankar (2004) derived an analytical model for a FG beam using
a combined Fourier series–Galerkin method. They considered problems in
which the elastic constants were expressed as polynomials in the thickness
coordinate, z. It should be mentioned that the method solves the
elasticity equations, and hence no assumptions are made regarding the
displacement field. In the present work, the model is applied to a sandwich
beam with FG core.

The dimensions of the sandwich beam are shown in Figure 2. The length
of the beam is L, the core thickness is h, and the face sheet thicknesses are hf.
The beam is divided into four parts or elements: the top face sheet, top half
of the core, bottom half of the core, and the bottom face sheet.

The coordinate systems for each element are chosen at the interface
(Figure 3), because it will be convenient to enforce displacement
compatibility and continuity of tractions between elements at the interface
nodes. The face sheets are assumed to be homogeneous and isotropic. The
core is orthotropic at every point. The elasticity equations are formulated
separately for each element, and compatibility of displacements and
continuity of tractions are enforced at each interface (node) to obtain the
displacement and stress field in the sandwich beam. This procedure is
analogous to assembling element stiffness matrices to obtain global stiffness
matrix in finite element analysis.

It is assumed that the top face sheet is subjected to normal tractions
such that:

�zz x, 0ð Þ ¼ pa sin �xð Þ ð13Þ

where

� ¼
n�

L
, n ¼ 1, 3, 5, . . . ð14Þ

h

 

Element 1: Top facesheet

Element 2: Top half of core 

z
hf 

 2h
x

L

Node

Node

Node
Element 3: Bottom half of core 

Element 4: Bottom facesheet

Figure 2. Sandwich beam with functionally graded core divided into four elements.
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and pa is known. Since n is assumed to be odd, the loading is symmetric
about the center of the beam. The loading given by Equation (13) is of
practical significance because any arbitrary loading can be expressed as a
Fourier series involving terms of the same type. Boundary conditions of
the beam at x¼ 0 and x¼L are w(0,z)¼w(L,z)¼ 0 and �xx (0, z)¼ �xx
(L, z)¼ 0, which corresponds to simple support conditions in the context of
beam theory.

In this study, a brief description of the procedures is presented in
order to obtain the stiffness matrix of top half of the core. The
derivation of the stiffness matrices of other elements follows the same
procedures.

The differential equations of equilibrium for the top half of the core are:

@�xx
@x

þ
@�xz
@z

¼ 0

@�xz
@x

þ
@�zz
@z

¼ 0:

ð15Þ

x

z

Top face-sheet

 

x

zTop half  of
sandwich core 

x

z
Bottom face-
sheet 

Bottom half of
sandwich core  x 

z

pa

t1 ,U1 , p1, W1

t2 ,U2

t3 ,U3

t3 ,U3

t4 ,U4

t4 ,U4

p2 , W2

p2 , W2

p3 , W3

p3 , W3

p4 , W4

p4 , W4

Figure 3. Traction forces and displacements at the interfaces of each element in the FGM
sandwich beam.
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The constitutive relation is given by Equation (2) and the Young’s
modulus variation is given by Equation (3). It is assumed that width in the
y-direction is large and plain strain assumption can be used.

The displacements can be expressed as:

uðx, zÞ ¼ UðzÞ cos �x

wðx, zÞ ¼ WðzÞ sin �x:
ð16Þ

In order to solve Equations (15), the Galerkin method is used. The
solutions are assumed in the form of polynomials in z as follows:

UðzÞ ¼ c1�1ðzÞ þ c2�2ðzÞ þ c3�3ðzÞ þ c4�4ðzÞ þ c5�5ðzÞ

WðzÞ ¼ b1�1ðzÞ þ b2�2ðzÞ þ b3�3ðzÞ þ b4�4ðzÞ þ b5�5ðzÞ
ð17Þ

where �s are basis functions, and bs and cs are coefficients to be determined.
For simplicity, basis functions are chosen as:

�1ðzÞ ¼ 1 �2ðzÞ ¼ z �3ðzÞ ¼ z2 �4ðzÞ ¼ z3 �5ðzÞ ¼ z4: ð18Þ

Substituting the approximate solution (16) in the governing differential
equations (15) and minimizing the residuals (by equating their weighted
averages to zero) the stiffness matrix of the top half of the FG core that
relates the surface tractions to the surface displacements is determined:

T2

S2

T3

S3

0
BBB@

1
CCCA ¼ Sð2Þ

� �
U2

W2

U3

W3

0
BBB@

1
CCCA: ð19Þ

In order to satisfy equilibrium, the contributions of the different tractions
at each interface should sum to zero. Enforcing the balance of force and
compatibility of displacements at the interfaces allows one to assemble the
stiffness matrices of the four elements to obtain a global stiffness matrix S:

S½ � U1 W1 U2 W2 U3 W3 U4 W4 U5 W 5

	 
T
¼ 0 pa 0 0 0 0 0 0 0 0

	 
T
: ð20Þ

The displacements at the interfaces U1, W1 . . .W5, are obtained by solving
Equation (20). The displacement fields along with the constitutive relations
are used to obtain the stress field in each element.
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A HIGHER-ORDER SHEAR DEFORMATION THEORY

Frostig et al. [15] developed a higher-order theory for a sandwich beam
with a transversely flexible core that uses a beam theory for the face sheets
and two-dimensional elasticity equations for the core. Swanson [22]
addressed details of implementation of the Frostig model and presented
solutions for several cases. The main feature of the method is the higher-
order displacement fields in the thickness coordinate: second order for the
transverse displacements and third order for the longitudinal displacements.
Another advantage of this model, as a model based on variational principle,
is that the boundary conditions are obtained uniquely as a part of the
derivation. The main difference between this model and the previous one is
that the higher-order displacements are derived and not assumed. The
equations developed by Frostig et al. [15] and modified for a FG core are
briefly presented here.

The dimensions of the sandwich beam and the coordinate systems are
shown in Figure 4. Constitutive relations (which assume isotropic elastic
behavior) for the face sheets and for the core are given by:

Top face sheet: Nt
xx ¼ At

11u0t,x Mt
xx ¼ �Dt

11wt,xx

Bottom face sheet: Nb
xx ¼ Ab

11u0b, x, Mb
xx ¼ �Db

11wb,xx

Core: � x, zð Þ ¼ Gc zð Þ� x, zð Þ

�zz x, zð Þ ¼
ð1� �ÞEc zð Þ

ð1þ �Þð1� 2�Þ
wc, z x, zð Þ

ð21Þ

where Ni
xx are the resultant axial forces in the face sheets, Mi

xx are the
bending moments in the face sheets, Ai

11 andD
i
11 are, respectively, the axial

x, uc
zt , wt

x, uot

ht

h

hb

x, uob

zb, wb

z, wc

Figure 4. Sandwich beam geometry. Length of the beam is L, the core thickness is h, the top
face sheet thickness is ht and the bottom face sheet thickness is hb.
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and flexural rigidities for the face sheets, u0i, wi are face sheets longitudinal
and vertical displacements at the centroid (i¼ t for top face sheet and i¼ b
for bottom face sheet):

Ai
11 ¼

Z hi=2

�hi=2

ci11ðzÞdz

Di
11 ¼

Z hi=2

�hi=2

z2ci11ðzÞdz:

ð22Þ

Linear variation for Young’s modulus and shear modulus are assumed:

EðzÞ ¼ azþ b

GðzÞ ¼ a1zþ b1:
ð23Þ

Governing differential equations, boundary conditions, and continuity
conditions are derived based on variational principles. The equilibrium
equations for the core are:

�x, x þ �xz, z ¼ 0

�xz, x þ �z, z ¼ 0:
ð24Þ

The following assumptions and conditions are used to derive the core
displacement field: (a) compatibility of the displacements at the core–face
sheet interfaces; (b) the core is transversely flexible, i.e., it has much lower
stiffness relative to the face sheets, so that the core does not carry any
longitudinal stresses; and (c) the shear stress is nearly constant through the
core. Then the core displacement fields are derived as follows:

uc x, zð Þ ¼ � xð Þ
1

a1
ln

a1
b1

zþ 1

� �
þ �,xx xð Þ

1

2a
z2 � wt,x xð Þ zþ

ht
2

� �
þ uot

þ wb,x � wt,x þ
h

a
�,xx xð Þ

� �
zþ ðb=aÞð Þ ln ða=bÞzþ 1ð Þ � z

ln ða=bÞhþ 1ð Þ
ð25Þ

wc x, zð Þ ¼ �
z

a
�,x xð Þ þ

ln ða=bÞzþ 1ð Þ

ln ða=bÞhþ 1ð Þ
wb,x � wt,x þ

h

a
�,xx xð Þ

� �
þ wt

where u0i and wi are longitudinal and vertical displacements of the centroid
of each face sheet (i¼ t for top face sheet and i¼ b for bottom face sheet);
� is core Poisson’s ratio. In the above expression a linear core Young’s
modulus was assumed: Ec(z)¼ azþ b. Similar relations can be obtained for
any Young’s modulus variation expressed by a differentiable function.
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Governing differential equations, boundary conditions and continuity
conditions are derived based on the variational principle. Governing
equations, written in terms of transverse displacements wt and wb of the
top and bottom face sheets and shear stress of the core, � are:

	1wt,xxxx xð Þ þ 
1�,x xð Þ þ �1wb xð Þ þ �1wt xð Þ ¼ qt xð Þ �mt,x xð Þ

	2wb,xxxx xð Þ þ 
2�,x xð Þ þ �2wb xð Þ þ �2wt xð Þ ¼ qb xð Þ �mb,x xð Þ

	3wt,xxx xð Þ þ 
3wb,xxx xð Þ þ �3�,xxxx xð Þ þ �3�,xx xð Þ þ !3� xð Þ

¼
1

At
11

nt xð Þ �
1

Ab
11

nb xð Þ

8>>>>><
>>>>>:

ð26Þ

where qi, mi, and ni are distributed pressures, moments, and axial forces
applied on top (i¼ t) and bottom (i¼b) face sheets and the coefficients are
given by:

	1 ¼ Dt
11 
1 ¼ �d

ht
2
þ

h

lnðða=bÞhþ 1Þ
�
b

a

� �
�1 ¼ �

ad

ln ða=bÞhþ 1ð Þ

�1 ¼
ad

ln ða=bÞhþ 1ð Þ
	2 ¼ Db

11 
2 ¼ d �h�
hb
2
þ

h

ln ða=bÞhþ 1ð Þ
�
b

a

� �

�2 ¼
ad

ln ða=bÞhþ 1ð Þ
�2 ¼ �

ad

ln ða=bÞhþ 1ð Þ

	3 ¼ �h�
ht
2
þ

hþ ðb=aÞð Þ ln ða=bÞhþ 1ð Þ � h

ln ða=bÞhþ 1ð Þ


3 ¼ �
hb
2
�

hþ ðb=aÞð Þ ln ða=bÞhþ 1ð Þ � h

ln ða=bÞhþ 1ð Þ

�3 ¼
1

2a
h2 �

h

a

hþ ðb=aÞð Þ ln ða=bÞhþ 1ð Þ � h

ln ða=bÞhþ 1ð Þ
�3 ¼

1

a1
ln

a1
b1

hþ 1

� �

!3 ¼ �d
1

At
11

þ
1

Ab
11

� �
ð27Þ

where d is the beam width.
In order to obtain the homogeneous solution for (26), the following

characteristic equation is derived:

	1

4 þ �1 �1 
1


�2 	2

4 þ �2 
2


	3

3 
3


3 �3

4 þ �3


2 þ !3

�������

�������
¼ 0: ð28Þ
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Denoting with 
j, j¼ 1, . . . , 12, the roots of characteristic equation,
the following rescaling of constants needs to be done in order to
avoid numerical difficulties (given by the case when Real(
j)40)
expð
jxÞ �!

x!L
1):

ðiÞ If Reð
jÞ5 0 ) solution ¼ cje
Reð
jÞx

ðiiÞ IfReð
jÞ4 0 ) solution ¼ cj
e�
jL

e�
jL
eReð
jÞx ¼ ~cje

�
j L�xð Þ½ �: ð29Þ

Forstig’s theory needs the above described rescaling of constants in order
to avoid numerical difficulties. For a given set of external loads and
boundary conditions the governing system of differential equations (26) can
be solved. Results and discussions are presented in the next section.

RESULTS AND DISCUSSION

A simply supported sandwich beam of length L¼ 0.3m, core thickness
h¼ 20� 10�3m, and face sheets thickness hf¼ 0.3� 10�3m is considered to
investigate the effects of varying core properties through the thickness. The
face sheet Young’s modulus was chosen as 50GPa. The face sheets Poisson’s
ratio is �f¼ 0.25 and the core Poisson’s ratio is �¼ 0.35.

Two cases are considered:

(a) A simply supported sandwich structure with FG symmetric core about
the midplane under a uniform distributed load, p¼ 1N/m2

(b) A simply supported sandwich structure with FG asymmetric core
about the midplane under a sinusoidal distributed load given by
p(x)¼ sin(�x/L) N/m2.

Figure 5 depicts the variation of core elastic moduli through the thickness
of the core. For case (a), the core Young’s modulus E has a linear symmetric
variation with respect to thickness coordinate, z. E¼ 50MPa at the middle
core and E¼ 500MPa at the core–top face sheet interface (as well as at the
core–bottom face sheet interface). For case (b) the core Young’s modulus E
has a linear asymmetric variation with respect to thickness coordinate.
E¼ 50MPa at the core–bottom face sheet interface and E¼ 500MPa at the
core–top face sheet interface.

Using the commercial finite element software ABAQUSTM [23] a 2D
finite element model was created to model problem (a). The FG core was
partitioned through the thickness into 20 strips with constant properties.
Four elements were considered through the thickness of each strip and two
elements were considered through the thickness of the face sheets.
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The elements considered were 2D, quadratic, plane strain elements.
Boundary conditions assume w(0,z)¼w(L,z)¼ 0.

Figures 6–10 present a comparison for five models: the equivalent single-
layer first-order and third-order shear deformation theories, Fourier series–
Galerkin method (Sankar model), Frostig model, and a finite element
model. For problem (a), which is the symmetric core under a uniform
distributed load, a very good agreement between Sankar model and FE
model was found. As the core is symmetric about the mid-plane, the
variation of displacements, strains, and stresses are symmetric with respect
to the thickness coordinate.

Figure 6 presents deflections at bottom face sheet–core interface. The
FSDT and the TSDT beams are stiffer than that predicted by the Sankar
model.

Comparison of longitudinal displacements in the core at the same cross-
section (L/4) for the two cases is presented in Figure 7(a) and (b). A perfect
agreement was found between the Sankar model and the finite element
model for Problem (a), and between Sankar model and the Frostig model
for Problem (b). For both problems, as expected, FSDT gives a linear
variation of displacements.

Bending stresses (Figure 8(a) and (b)) in the core at a given cross-section
(x¼L/4) are almost the same for all models except TSDT. TSDT
overpredicts the bending stress values at core–face sheets interfaces for the

z 
(m

m
)

10

5

0

0 1 10
E(z)/E(z0)

−5

−10

Symmetric core
Asymmetric core

Figure 5. Non-dimensional core modulus: symmetric core about the centerline and
asymmetric core about the centerline.
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symmetric core case. For the asymmetric core, a larger compression value is
found at the top core where the load is applied and the Young’s modulus
is larger.

Comparison of shear strain in the core at a given cross-section (L/4) is
presented in Figure 9(a) and (b). Sankar model, Frostig model, and the finite
element solutions present a 1/z type variation for the core shear strain (this is
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Figure 6. Comparison of deflections: (a) symmetric core about the centerline under uniform
distributed load p¼ 1N/m2 and (b) asymmetric core about the centerline under a distributed
load given by p(x)¼ sin(�x/L) N/m2.
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correct because the shear stress is constant though the core thickness and
elastic modulus is linear with respect to the core thickness). The FSDT gives
a constant shear strain while the TSDT gives a quadratic shear strain with
respect to the thickness coordinate.

The same conclusion was reached for the shear stresses in the core at the
cross-section given by x¼L/4 (Figure 10). Sankar model, Frostig model,
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Figure 7. Comparison of longitudinal displacement in the core at x¼L/4: (a) symmetric core
about the centerline under uniform distributed load p¼ 1N/m2 and (b) asymmetric core
about the centerline under a distributed load given by p(x)¼ sin(�x/L) N/m2.
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and the finite element solution present an almost constant shear stress,
whereas the FSDT gives a linear shear stress and the TSDT gives a cubic
variation of shear stresses with respect to the thickness coordinate. The
equivalent single-layer theories are not accurate for shear stresses because
they are not based on two-dimensional equilibrium equations (24). In order
to improve the accuracy for shear (strains and stresses) in single-layer
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Figure 8. Comparison of longitudinal stress in the core at x¼ L/4: (a) symmetric core about
the centerline under uniform distributed load p¼1N/m2 and (b) asymmetric core about the
centerline under a distributed load given by p(x)¼ sin(�x/L) N/m2.
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theories (both first order and third order) the shear stress was obtained by
integrating the equilibrium equations (4) for the core and the bending stress
previously derived (Figure 8):

�xx, x þ �xz, z ¼ 0 ) �xzðx, zÞ ¼ �

Z z

0

�xx,x x, �ð Þd� þ �xzðx, 0Þ: ð30Þ
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Figure 9. Comparison of shear strain in the core at x¼ L/4: (a) symmetric core about the
centerline under uniform distributed load p¼ 1N/m2 and (b) asymmetric core about the
centerline under a distributed load given by p(x)¼ sin(�x/L) N/m2.
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Figure 10 includes both shear stresses: obtained from single-layer theories
and that obtained from equilibrium equation (30). The results are identical
with those obtained based on Sankar model and the finite element model.

CONCLUSIONS

In order to describe the behavior of a sandwich structure with FG core
under a distributed load, several methods can be used. This study compares
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Figure 10. Comparison of shear stress in the core at x¼ L/4: (a) symmetric core about the
centerline under uniform distributed load p¼1N/m2 and (b) asymmetric core about the
centerline under a distributed load given by p(x)¼ sin(�x/L) N/m2.
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four analytical models and a finite element solution. The simplest model, a
combination between FSDT and equilibrium equations for the core (used in
order to obtain accurate shear stresses) gives relatively good results. This
method yields linearly varying longitudinal displacements and slightly
smaller deflections. The TSDT overpredicts the bending stresses at the core–
face sheets interfaces, and needs to be used in combination with equilibrium
equations in order to predict constant shear stress for the FG core. Higher-
order theories, e.g., Frostig et al. [15] and Zhu and Sankar (2004), require
more computational effort, but give the most accurate results.
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