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Meshless Local Petrov-Galerkin Micromechanical Analysis of Periodic
Composites Including Shear Loadings

Thi D. Dang' and Bhavani V. Sankar?

Abstract: In this paper the meshless local
Petrov-Galerkin (MLPG) method is used in the
micromechanical analysis of a unidirectional fiber
composite. The methods have been extended to
include shear loadings, thus permitting a more
complete micromechanical analysis of the com-
posite subjected to combined loading states. The
MLPG formulation is presented for the analysis
of the representative volume element (RVE) of
the periodic composite containing material dis-
continuities. Periodic boundary conditions are
imposed between opposite faces of the RVE. The
treatment of periodic boundary conditions in the
MLPG method is handled by using the multipoint
constraint technique. Examples are presented to
illustrate the effectiveness of the current model,
and it is validated by comparing the results with
available analytical and numerical results. The
current method shows a great potential in applica-
tions to composite material analysis, especially in
micromechanics of composites, wherein the com-
plexities of meshing can be avoided.

Keyword: Composite Materials; Elastic Con-
stants; Meshless Local Petrov-Galerkin (MLPG)
Method; Micromechanical Analysis; Periodic
Boundary Conditions

1 Introduction

For years there has been an interest in developing
efficient methods for the prediction of effective
material properties of fiber reinforced composite
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materials (Ishikawa and Chou, 1982; Chou and
Ishikawa, 1983; Christensen, 1990; Whitcomb,
1991; Naik, 1994; Marrey and Sankar, 1995;
Poe et al, 1997; Cox and Flanagan, 1997; Peng
and Cao, 2000). The methods developed include
empirical models, finite element based microme-
chanics, analytical models and experimental tech-
niques. Due to the immense variety of available
composite materials and possible fiber architec-
ture, it is impractical and very time consuming to
characterize them by experimental approach. An-
alytical models, on the other hand, cannot deal
with complex microstructures. Though the finite
element method is effective in predicting material
properties (Yi at al, 1998; Takano at al, 1999), the
huge computational cost limits its application in
modeling complex microstructures such as in tex-
tile composites. Furthermore, the finite element
based micromechanical models are satisfactory
for stiffness prediction because stiffness proper-
ties are based on volume averaging of stresses
and strains in the representative volume element
of the composite. The approximation involved in
the FE meshing does not affect the results signif-
icantly. However, modeling the damage, espe-
cially progressive damage, requires accurate de-
scription of the stress field in different phases and
requires a very fine mesh as reported by Mar-
rey and Sankar (1995) and Zhu et al. (1998).
The FEM-based micromechanical models have
been successfully employed in predicting thermo-
elastic constants of many composites materials;
their use for strength prediction under multiax-
ial loading conditions is not practical (Zhu et al,
1998).

In the development of advanced composite mate-
rials, especially textile composites such as braided
and woven composites, one of the major techni-
cal barriers is the finite element mesh generation
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(Marrey and Sankar, 1995). For composite mate-
rials with complex yarn architectures, the mesh-
ing of individual yarns in the unit-cell is quite
simple as they are simply connected; however
the meshing of interstitial region between ma-
trix phases and individual yarns is much more
difficult. The region is multiply connected, and
meshes in different phases may not be compati-
ble (Kim and Swan, 2003). It is difficult to get
a suitable mesh in which opposite faces of the
RVE have identical nodes so that periodic bound-
ary conditions can be implemented using multi-
point constraints.

We expect that the tediousness and inaccuracies
involved in mesh generation and hence inaccu-
racies in the results can be avoided by using a
new class of meshless techniques that do not re-
quire a mesh to discretize the problem. One such
technique is the meshless local Petrov-Galerkin
method (MLPG) recently developed by Atluri
(2004). The MLPG approach proposed by Atluri
and Zhu (1998a, 1998b) is one of the several
meshless schemes. The main advantage of this
method compared to other meshless methods is
that no background mesh is used to evaluate var-
ious integrals appearing in the local weak formu-
lation of the problem. Therefore, this method is
a truly meshless approach in terms of both inter-
polation of variables and weighted-integration of
the equilibrium equations. The meshless methods
have been recently improved and demonstrated
to be efficient in solving a variety of problems,
in 2-D and 3-D elasticity problems (Atluri et al.,
1999, 2000, 2002; Raju and Chen, 2001; Raju
and Phillips, 2003; Nie, Atluri and Zuo, 2006;
Atluri , Liu, and Han, 2006a, 2006b); plate and
shell problems (Li et al, 2005; Sladek et al, 2006a;
Jarak, Soric and Hoster, 2007); multiscale prob-
lems (Shen and Atluri, 2004; Shen and Atluri,
2005); nonlinear problems with large deforma-
tions and rotations (Han, Rajendran and Atluri,
2005); dynamic and fracture problems (Ching and
Batra, 2001; Batra and Ching 2002; Han and
Atluri, 2004; Sladek et al, 2005; Andreaus, Ba-
tra and Porfiri, 2005; Gao, K. Liu and Y. Liu;
2006); heat and thermoelastic Analysis (Sladek et
al, 2006b; Ching and Chen, 2006; Sladek et al,
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2007); solving PDEs and ODEs (Atluri and Shen,
2005; Mai-Cao and Tran-Cong, 2005); impact,
penetration and perforation problems (Han et al,
2006; Liu et al, 2006); non-isothermal fluid flow
problems(Arefmanesh, Najafi and Abdi, 2008).

In this study the MLPG method is applied to mi-
cromechanics of composites. A major drawback
in applying meshless methods to problems of in-
homogeneous materials is the treatment of mate-
rial discontinuity at the interface. The high-order
continuity of the moving least squares approxima-
tion (MLS), which is at least C!, allows for con-
tinuity of displacements and stresses throughout
the sub-domain. However, the high order conti-
nuity imposes a difficulty when considering dis-
continuities of derivatives at the interface of inho-
mogeneous bodies, because the shape functions
from the MLS approximations do not have the
Dirac delta function properties. For the analy-
sis of linear elastostatic problems by the element
free Galerkin method (EFG), Cordes and Moran
(1996) used the method of Lagrange multipliers;
Krongauz and Belytschko (1998) employed a spe-
cial jump function at the line or the surface of dis-
continuity with parameters governing the strength
of discontinuity; and Cai and Zhu (2004) used the
direct imposition of essential boundary and inter-
face conditions. Whereas Cordes and Moran stud-
ied a two-dimensional elastostatic problem, Kro-
ngauz and Belytschko as well as Cai and Zhu ana-
lyzed a one-dimensional elastostatic problem, all
based on EFG method. Batra et al. (2004) also
used the MLPG method to analyze heat conduc-
tion in which the continuity of the normal com-
ponent of heat flux at the interface between two
materials is satisfied either by the method of La-
grange multipliers or by using a jump function.
Li et al. (2003) introduced a method for the treat-
ment of material discontinuity by combining the
MLPG-5 method and the MLPG-2 method. The
MLPG-5 method is used inside the homogenous
domain; the MLPG-2 method is used only at the
interface. The weak form of the MLPG-2 method
uses the Dirac delta function on the nodal loca-
tion. Another main drawback in applying the
MLPG method to the micromechanical analysis
of composite materials is the treatment of peri-
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odic boundary conditions. In the finite element
method one can use a penalty formulation or La-
grange multipliers to enforce the periodic bound-
ary conditions. However, there are some difficul-
ties in using this approach in the MLPG method
due to its nature of using local weak forms over
overlapping sub-domains.

In the current paper the meshless local Petrov-
Galerkin (MLPG) micromechanical analysis has
been presented and extended to include shear
loadings, both out of plane and in-plane shear,
thus permitting a more complete micromechan-
ical analysis of composites. For the treatment
of material discontinuity at the interface between
different phases of the composite, we used the
technique of direct imposition as shown by the
authors (Dang and Sankar, 2005, 2007), in which
the different phases of the composite are consid-
ered as distinct homogeneous bodies. The MLS
approximation is used separately within each of
the homogeneous domains. The actual displace-
ments are to be computed at the nodes on the ma-
terial interface. After that, conditions of continu-
ity of displacements at the interface are directly
enforced as in the FE method. For the treatment
of periodic boundary conditions, we propose an
algorithm using the multipoint constraints to han-
dle the periodic boundary conditions in the MLPG
method.

Composites are periodic structures, if a represen-
tative volume element or a unit cell that repeats
itself throughout the volume of the composite can
be identified. The unit cell can be considered as
the smallest possible building block for the com-
posites such that the composite can be constructed
from spatially translated copies of it, without the
use of rotations or reflections. The response of
the composites to external loads can then be com-
puted by analyzing the behavior of a single unit
cell with suitable boundary conditions.

Appropriate boundary conditions of the unit cells
have been derived from the symmetry considera-
tions for micromechanical analysis by many au-
thors (Chou and Ko, 1989; Marrey and Sankar,
1995; Cox and Flanagan, 1997; Li, 1999; Whit-
comb, Chapman and Tang, 2000; Tang and Whit-
comb, 2003). Most of the authors implemented
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periodic boundary conditions using multipoint
constraints in commercial finite element software.
In general there are three methods used to im-
plement multipoint constraints in finite element
codes (Shephard, 1984; Mechnik, 1991; Farhat,
Lacour and Rixen, 1998; Miyamura, 2007): (1)
the master-slave nodes method, (2) the penalty
method and (3) the Lagrange multiplier method.
According to our experience, it is difficult to use
the last two methods to enforce the multipoint
constraints in the MLPG method due to its na-
ture of using local weak forms over overlapping
sub-domains. We can use these methods to en-
force the essential or natural boundary conditions
on the same boundary, but to impose the displace-
ment or stress constraints (multipoint constraints)
on different boundaries in the MLPG in which test
and trial functions are chosen from different func-
tional spaces is very difficult. Because the shape
functions from the MLS approximations do not
have the Dirac delta function properties, the im-
plementation of the multipoint constraints in the
MLPG methods is more complicated than that in
the finite element methods.

In our previous work (Dang and Sankar, 2007),
we use the micromechanical model to predict the
stiffness properties of composites for cases €M =
1, el =1, el = 1 only (see Table 1). For these
cases, because of load and geometry symmetry of
the unit cell, only one quadrant of the unit cell
need be considered to describe the behavior of
the unit cell (see Figure 1). Therefore the peri-
odic boundary conditions were replaced by sim-
ple boundary conditions, and the implementation
of the periodic boundary conditions using multi-
point constraints were not carried out in that paper
(Dang and Sankar, 2007).

In the current study we developed the microme-
chanical model using the MLPG method to pre-
dict the stiffness properties of composites for six
cases of the macro-strains. In this problem, the
treatment of periodic boundary conditions is re-
quired for the case of shear test in the x; — x»
plane corresponding to the imposed macro-strain
¥ =1 on the RVE. The quadrant of the RVE in
Figure 1b is not suitable for this analysis. There-
fore we use the full model of the RVE as shown
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in Figure 4 to analyze the problem.

The paper is organized as follows. In Section 2,
the RVE analysis, constitutive relations and pe-
riodic boundary conditions are presented. We
provide the MLPG formulation for modeling the
RVE of a unidirectional fiber composite corre-
sponding to six linearly independent deformations
imposed on the RVE. Also in this section, the
treatment of periodic boundary conditions is pre-
sented in detail. The computation and discussion
of results are given in Section 3. Conclusions are
summarized in Section 4.

2 Theory of the problem

2.1 RVE analysis for three-dimensional elastic
constants

The micromechanical analysis of a fiber compos-
ite is performed by analyzing the RVE of the com-
posite using the MLPG method. We assume that
uniform macro-stresses exist through the compos-
ite. It is assumed that the fibers are circular in
cross section packed in a square array. Thus the
representative volume element (RVE) is a square
(recall we are solving a plane problem). The RVE
is shown in Figure 1, where the edges of the RVE
are assumed to be parallel to the coordinate axes
X1, xp and x3, with RVEs repeating in all direc-
tions. The length of the square RVE is 2a. The
thickness of the RVE in the z-direction is taken as
unity. The RVE analysis assumes that the com-
posite is under a uniform state of strain on the
macroscopic scale. However, the actual stresses
in the fiber and the matrix within the RVE will
have spatial variation. These stresses are called
micro-stresses.

The macro-stresses are average stresses Gl-’;f’
required to create a given state of macro-
deformations, and they can be computed from
the micro-stresses o;; obtained from the MLPG
method as:

1
o = V/oijdv (1)
4

where V is volume of the RVE. The composite is
assumed to be homogeneous and orthotropic on
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the macro-scale. The composite behavior is char-
acterized by the following constitutive relation:
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We can calculate all stiffness constants ¢;; cor-
responding to the six cases of the macro-strains,
which are imposed on the boundaries of the RVE.
The engineering elastic constants can be com-
puted by the relation given below:

{e"} =1s1{c""} (3)
where
[S]=[c]' =
[ & —1% —®0 0 0]
\% vV
—5% 5 IELj 0 0 0
_E;? _153 E; 0 0 0 “)
0 0 0 & 0 0
0 0 0 0 & O
0 0 0 0 0 &=

In the micromechanical analysis, the RVE is sub-
jected to six linearly independent macroscopic de-
formations. In each deformation case, one of the
six macro-strains is assumed to be non-zero and
the rest of the macro-strains are set equal to zero.
The six cases are: case 1: e} = 1;case 2: e} = 1;
case 3: e¥l =1;case 4: ¥ =15 case 5: ¥ = 1;
and case 6: )1 = 1. The periodic boundary con-
ditions for these six cases are shown in Table 1.
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Figure 1: (a) Representative volume element RVE of a unidirectional composite; (b) Quadrant to be analyzed

due to symmetry

Details of deriving the periodic boundary condi-
tions can be found in Marrey and Sankar (1995).
For all strain cases except for case 4 (}/{"5 =1), (not
shown in Figure 1), because of load and geometry
symmetry of the RVE, only one quadrant of the
RVE needs to be considered to describe its behav-
ior. The entire RVE (Adams and Crane, 1984) is
used for Case 4. Note that Case 3 (€} =1) is to
be solved as a generalized plane strain problem,
and the Cases 5 and 6 are longitudinal shear load-
ing problems and also to be solved as special gen-
eralized plane strain problems (Adams and Doner,
1967; Gibson 1994).

Various numerical tests such as uni-axial tension
in the x1, xp and x3 directions, as well as the
treatment of material discontinuity at the interface
have been considered by Dang and Sankar (2005,
2006). In this paper, we will extend the MLPG
micromechanical analysis to include shear load-
ings, and focus on handling the periodic boundary
conditions.

2.2 Meshless Local Petrov-Galerkin formula-
tion for deformation in the x| — x, plane

Consider the general case of a composite body
along with boundary conditions including peri-
odic boundary conditions pertaining to the cases
of six macro-strains. In this study, periodic
boundary conditions are imposed using multi-
point constraints. For simplicity, the problem has
two phases separated by a single interface I';,; 7 in
the domain Q = Q) UQ®) which is bounded by
r=rurh)ur!" (Figure 2). The interface is
defined by n§2)7 the unit outward normal of Q(?),
along the material boundary.

The equilibrium equations in the two phases are

o) +b" =0 in QU (5)
o +b? =0 in Q¥ (6)

(1)
where o;; " and 0;;

bl( D and bfz) are the body forces in the two media.

2) are the Cauchy stress tensors,
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Table 1: Periodic boundary conditions for the MLPG method

Case Constraints between left Constraints between top Out of plane strains
and right faces and bottom faces
gl =1 w2axz)—ui(0,x2) =2a ui(xs,2a) —ufx;,0)=0 el =0, =0,
ux(2a,x7) — ux(0,x2) =0 i=12
2(2a,x2) — ux(0,x2) 71 =0
g;; =1 u(2a,x;) —uf0,x2)=0 ui(xp,2a) —ui(x;,0)=0 g}"? :(),7/3"’1’ =0,
i=1,2 ur(x,2a) — ux(x;,0) = 2a
2(61,20) — 1(x1,0) 220
el =1 ui(2a,x;) —ui0,x;) =0 uixp2a) —ufx;,0) =0 | g =1, =0, =0
i=1,2 i=1,2
7/11\24 =1 u;(2a,x;)—u1(0,x2) =0 u,-(x;,Za)—ui(x],O) =0 8;;1 :O,}/;"ll =0,
u>(2a,x5) — ux(0,x5) = 2a i=1,2
2(2a,x2) — u2(0,x2) =0
vl =1 us(2ax2)—u3(0,x2) =0 us(xp,2a) — us(x1,0) = 2a £y =0, =0
yib=1| us2ax2)—us3(0,x2) = 2a us(xs,2a) — us(x1,0) = 0 £3=0,7, =0

X3

I =r® urd urd ur

Q=0"uQ®

—TO LT LTO
r=r,ur, ur,

pu

int f

Figure 2: Illustration of an inhomogeneous body including multipoint constraints

The boundary conditions are as follows:

o\)n") =% on 1) (7)

1

u =7 on T )

where 7; is the prescribed traction on a surface
F,(l), and %; is the prescribed displacement field
1“5,1), and ngl) is the unit outward normal to the

boundary I'. 1“5,1) and F,( Dare complementary sub-
sets of T

The multipoint constraints for the faces l“;;u &,
of the body are

“z‘r,tu ul\r;u—cl only; i=1,....m (9
where m is number of nodes on the face T}, (or

I',,), T}, and T, are complementary subsets of
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F;,lu), and ¢; is constant.
Continuity of tractions and displacements on the
interface I, s are given as

) = u? on Ty (10)

1 1 1 2) (2 2
i) =onl) =6Pnl? = onyy 1)

where superscripts 1 and 2 refer to variables be-
longing to Q1) and Q®), respectively.

In our study, we use the transformation approach
in conjunction with the multipoint constraint tech-
nique to handle the periodic boundary conditions
in equation (9); therefore we do not need to
enforce the periodic boundary conditions at the
variational level. The treatment of the periodic
boundary conditions using the multipoint con-
straint technique and the transformation approach
is presented in detail at the end of this section.
Also in our study, we consider the inhomoge-
neous body as two separate homogeneous bodies,
and the weak form and its discretization are pre-
sented for each of homogeneous bodies. And then
we apply interface continuity conditions in equa-
tions (10-11) to reconnect the bodies via com-
mon nodes, and this is similar to the collocation
method in FEM. The treatment of material dis-
continuity at the interface I';, s using the transfor-
mation approach and then collocation method can
be found in our recent work (Dang and Sankar,
2007). In addition, we use the penalty method to
enforce the essential boundary conditions in equa-
tion (8) for all cases of macro-strains imposed. In
this study, the periodic boundary conditions are
applied only when we use the full RVE for the
case of in-plane shear y}4 = 1.

Now, we derive the weak form and its discretiza-
tion for each of homogeneous media. For simplic-
ity, we use general notations to present the weak
form and its discretization below for a homoge-
neous body. A generalized local weak form of
equations (5-8) over a local sub-domain € can
be written as follows:

/(Gij,j+bi)vidQ—/a(ui—ﬁi)vidF:O (12)
QS rl‘

where u; and v; are the trial and the test functions,
respectively, and T',, is the part of the boundary
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0Q; of Qg, over which essential boundary condi-
tions are specified. In general, Qg = 'y UL, with
T'; being the part of the local boundary located on
the global boundary and L; being the other part
of the local boundary over which no boundary
conditions are specified, i.e., I'y = dQ;NT with
I'y = 0Q, —Ly. Inequation (12), o is a penalty pa-
rameter (o >>Young’s modulus/Length), which is
used to impose the essential boundary conditions.
In this paper we choose a value of o = 108. Also,
the test functions v; are chosen such that they van-
ish on L, and this can be accomplished by using
the weight function w; in the MLS approximation
as also the test function v;, but the radius »; of the
support of the weight function is replaced by the
radius r, of the local domain €);.

Using integration by parts and the divergence the-
orem in equation (12), and after some algebraic
operations, we obtain the expression in the matrix
form as

/ £,6dQ+ o / vudl — / vidT =

QS rS u rs u

/Vfdl“—l—a/vﬁdl“—l—/vbdﬂ (13)
rst rsu QS

In equation (13) ¢, denotes the strain matrix de-
rived from the test functions, and o is the stress
vector derived from the trial functions. That is

O11 (1 L) (1)

g, €

c=1{(0n,, a__[{5 6 n%] (14)
o2 €1 & T2

where the superscript i denotes the i’ test func-
tion. Functions v, u, t, and b are defined as fol-
lows:

V_Pn\my u_{m}

Va1 V22 u
_Jn b

= o)

The two sets of test functions v in equation (15)

should be linearly independent. The simplest

choice for v as proposed by Atluri and Zhu (2000)

is v;j = vo;; or v =vI where §;; is the Kronecker
delta and I is the identity matrix.

15)
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As long as the union of all local sub-domains cov-
ers the global domain, equations (5-8) will be sat-
isfied in the global domain € and on its bound-
ary respectively. Using the moving least squares
approximation (see Atluri and Zhu, 2000; Atluri,
2004) for the functions u, and substituting it into
equation (13), and summing over all nodes leads
to the following discretized system of linear equa-
tions:

n
D / &,(x,x;)DB;1,;dQ
=g,

—|—OCZ /V(X,Xi)s¢jﬁjdr
=1

rS u

-y / v(x,x;)NDSB;ii T
j:lr

su

:/V(X,Xi)EdF—I—OC/V(X,Xi)Sﬁdr

rsl rs u

+/V(X,Xi)bdQ (16)
Q

where v(x, X;) is the value at x of the test function
corresponding to node i, and

N — [nl 0 nz]

0 n m
i1 O
Bj=10 ¢
’ (17)
$i2 )
= 1 v 0
E
D=—— |V 1 0
I=vilo 0o 1-v)2
o E for plane stress
a (I_E—vz) for plane strain ’
(18)
— \4 for plane stress
VvV =
Ty for plane strain
and
IS 0],
5= [0 Sz] ’
- : (19)
s {1 if u; is prescribed
l' pu—

0 if u; is not prescribed on I,
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Equation (16) can be simplified into the following
system of linear algebraic equations in i;:

N
N Kijij=f; i=12,..,N (20)
j=1
or
Ki=f 21

where 11 is the generalized fictitious displacement
vector. The so-called stiffness matrix K and the
load vector f are defined by:

Kij :/SV(X,Xi)DBde—I—OC/V(X,Xi)s¢jdr
Qg s

—/V(X,Xi)NDBdeF (22)
rSll

fi:/V(X,Xi)EdQ—I—OC/V(X,Xi)Sﬁdr

rsl rs u

+ [ v(x,x;)bdT" (23)
/

We can use the MLPG formulation as shown
above for uniaxial tension and in plane shear tests
in the x; — xp plane with the treatment of material
discontinuity and periodic boundary conditions.
However, modifications have to be made for the
numerical tests corresponding to the linearly in-
dependent macroscopic deformation £} = 1. The
MLPG formulation for generalized plane strain
problem (8§"3’ = 1) has been presented in Dang and
Sankar (2005, 2006)

2.3 Outofplane shear test: special generalized
plane strain problem

The case of out-of-plane shear test is a longitudi-
nal shear problem (Adams and Doner, 1967; Gib-
son, 1994). The macroscopic deformation ¥4 = 1
or 153 = 1 is applied to the RVE, and for reasons
mentioned above, only the quadrant of the RVE
need be considered as shown in Figure 3 with the
shear loading.

The problem of longitudinal shear loading is de-
fined by a displacement field of the form:

u=v=0, w=w(xy,x) (24)
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A X2

Matrix /
Tl
/ X
X3

Figure 3: Longitudinal shear problem

v

For such a system of displacements, the only non-
vanishing stress components are:

ow ow
731 :Gl38—x1’ 1732:G23a—xz (25)

where G;3 and G»y3 are the shear moduli of the
constituent materials. Thus we implicitly assume
that the principal material axes of the fiber and
matrix are parallel to the coordinate axes.

The assumed displacement field automatically
satisfies the equilibrium equations in the x; and
X, directions, while equilibrium in the x3 direction
requires that

ot 9T _
8x1 8x2 -
or (26)

*w  I*w
GlZ=—Z+Z22") =
(ax%+ax5) ’

0

Using procedures similar to that given in section
(2. 2), we obtain the weak form below:

a3 | dTp _
/(a—xl—i-a—xz—l-b3> VdQ—/OC(W—W)vdF

Q L
=0 (27)

where W and b3 are the prescribed displacement
field and the body force, respectively in the x3 di-
rection. The discretized equations are derived as:

N
N Kipwj=fi; i=1,2,...,N (28)
j=1

177

where N is the total number of nodes and W is
the fictitious displacement in the x3direction, the
stiffness and load vector are:

Kij :/ev(XaXi)GBde-i-OC/V(X,Xi)(l)jdr
QS rsu
—/V(X,Xi)NGBde

rSl‘

i :/V(X,Xz’)ﬁdﬂ—l-a/v(x,xi)wdl“

rsl rs u

+ / V(X, Xi)b3dr
Q

(29)

where &, (X, X;) is the value of the test function cor-
responding to node i, evaluated at the point x. The
prescribed traction in the x3 direction is denoted
by 73, and

g, ={n: 13}, N={m m},

_ )%
B {%2}’

. Gi3 0
=T o)

(30)

2.4 Treatment of periodic boundary conditions

In the current paper, we have developed the mi-
cromechanical model using the MLPG method to
predict the stiffness properties of composites for
six cases of the macro-strains. In this problem,
the treatment of periodic boundary conditions is
required for the case of shear test in the x; —x»
plane corresponding to the imposed macro-strain
¥ =1 on the RVE. The quadrant of the RVE in
Figure 1b is not suitable for this analysis. There-
fore we use the full model of the RVE as shown
in Figure 4 to analyze the problem.

The periodic boundary conditions for the RVE in
this case (y}3 = 1) are given in Table 1. The peri-
odic boundary conditions on tractions are weakly
satisfied at the variational level, thus we need to
only treat the periodic boundary conditions on
displacements. We re-write the periodic bound-
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Figure 4: Illustration of periodic boundary conditions for the deformation 74 = 1 (a) Representative volume
element; (b) Periodically deformed unit cell of fiber composites

ary condition for this case as

ulR —ul =0

WR—yl =24 TR = _TL
vN and " N 3D
u” —u" =0 ™ = -T

MW =0

Below is an algorithm for the treatment of pe-
riodic boundary conditions on displacements in
the MLPG method using the multipoint constraint
technique. Our purpose is to incorporate multi-
point constraints into the equation system, which
is discretized from the MLPG weak from. For
clarifying our algorithm, assume that we model a
body or a unit cell with 9 nodes as shown in Figure
5. Let u be defined as an actual displacement vec-
tor, and 1 is defined as a fictitious displacement
vector.

Assume the periodic boundary condition for the
opposite faces L & R of the unit cell is:

wf—ub=¢, i=1,....m (32)

where m =3 is number of nodes on the face R (or
L), and ¢; are constants.

3
‘40 ° o’
5@ ° o3
2
° ° ®
6 1 7

Figure 5: Illustration of a body with multipoint
constraints

Expanding equation (32) we have:

u7 —uUg = Cq
V7 — Vg = C2
ug —us = Cq
(33)
Vg — V5 = ()
Ug —Ugq4 = Cq
\V9—V4:C2

The periodic boundary conditions that relate to
the complete degree of freedom of the unit cell
u, can be written in the form
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where
000000 -1 0 0 0 0 000000 -1 00
000O0O0OO0OO0 -1 O
000000 O -1 0 0 O
L 00 0O0O0OO0O 0 0 -1
0000O0OO0OO O -1 0 O [A }:
000O0O0OO0OTO0O O O
0000O0OO0OO O O -1 0
000O0O0OO0OTO0O O O
0000O0OO0OO O O 0 -1 000000 0 0 0
1000000 O 0O 0 0 O - )
0 000 O0T1 07 8 8 8
0 00 O0O0O1 0o o0 o0
0 001 0O0O (1.} 1 0 o0 37
0 00 O0T1O0O * 0 -1 o0
0 100 00O 0 0 —1
-1 01 0 0 0 0| 46,12)
cr) 00 0 0 1 0]
2 00 0O0O01
_Ja 001 00O
e’ AT=10 001 0 0 (38)
€1 1 00 00O
\;2 01 0 0 0 0] 66)
{u*} = [ ﬁ] \’51 ﬁz 92 ﬁ3 \’53 Ug V4 U4 V5
us Ve Uy V7 ug Vs Uy Vo | i) 10y
(34) \’51 V4
)i Ly Jus |,
or i} = 123 I {u} vs [’
ﬁ3 Ue
[A](ﬁ,ls){”*}(ls,l):{C}(ﬁ,l) (35) 3 . 6
uz
where the matrices A and C contain constants. V1
There are more degrees of freedom in u, than the { uf b= us \ .
constraint equations, so the matrix A has more v8
columns than rows. u, is partitioned as: "9
\ V9

a4 W {{alh-© co ={{u})

A oA A T
:[Ml Vi dp Vo U3 V3 ug v4 Uus Vs Ug V6]§

-]

= ()

where A is a known 2m x 2N matrix, (m=3, N=9

and in the above example), u, is an unknown 2Nx 1
vector, N is total number of nodes in the unit cell.

B {MVL} isa (2N —4m) x 1 vector of fictitious displace-
{us} = { } ments of nodes which do not lie on the boundary
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R & L (superscript r stands for the rest of displace-
ments). is a 2mx 1 vector of actual displacements
of nodes on the boundaryL. is a 2mx1 vector
of actual displacements of nodes on the bound-
ary R. w’Fis a (2N-2m)x 1 vector. A* is a known
2mx (2N — 2m) matrix, and AR is a 2m x2m ma-
trix.

Actually, columns of the matrix A" that corre-
spond to the added fictitious displacement vector
in equation (36) are zero.

Because there are as many degrees of freedom as
there are independent equations of the constraint
equations, the matrix AR is square and nonsingu-
lar. From the first equation (36), we obtain

{uf} = [a*] ({c} - [A] {u"}) (40)

The complete array of degrees of freedom can be
written as

ey = {3 } = [ )
+ { ; A_{,%}{C}} )

or

{u} = [T1{ul"} +{Q0}

7= |k ) @2

Ry

where I is a (2N- 2m)x(2N-2m) unit matrix, and
the matrix T is a 2Nx(2N-2m) matrix, while Q,
is a2Nx1 vector.

The algebraic equation system as shown in equa-
tion (21) obtained from discretizing from the
MLPG weak form

kin kip ... ki

k k ...k .

ST T @asy = asy
kigg kigp ... kigis
{ﬁ}T:[ﬁl Byl e e 99]

(43)

or
K} = 1}
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where
{a"} .
{a} = }L;IL% = {{{ﬁuLR}}} (44)
{@"} is defined in equation (39), and
(AR} = [ag 04 ds - - B) (@45)

Equation (43) can be rewritten in the form as
K { )= 6)

The global stiffness matrix can be transformed
into the form below by using the previously de-
veloped method to treat the material discontinuity
at the interface with the displacement vector par-
titioned {u,} as shown in the last equation (36),
in which we use the transformation formula (see
Eq. (43) in Dang and Sankar, 2007), and rewrite
it as

(a8} = [0"8] ' [~ [0 @} + {u}] @)

to transform equation (46) as:

K] { {uw}} {7} (48)

where [K] and { f} are analogous to [K] and {f},
respectively (see Eq. (45) in Dang & Sankar,
2007), and

{uLR}:[M V4 U5 e e V9]T 49)

Obviously

7 {ﬁr} rL
{ur} — ML — {M* } =du
(= st~ e o0
So the equation (48) can be re-written as
(K] {u.} ={T} (51)

Pre-multiplying the global equations (51) by T,
we hav

1) [K] {u.} = (11" {7} (52)
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We substitute for {u,} = [T]{u/"} +{0Q,} from
equation (42), we obtain the reduced equation set
as

(K] {ui} = {F™} (53)
where

(k™) = [17) [R] 7]

[Fr) = [T"] ({F} - [K]{Q.})

After we get 'l from equation (53), we can sub-
stitute it into equation (40) to obtain u®.

(54)

3 Results and discussions

The elastic constants such as axial and trans-
verse modulus and Poisson’s ratio have already
predicted using the MLPG method. Especially,
stresses at the interface and displacement com-
parisons have been presented in detail by the au-
thors (Dang and Sankar; 2005, 2006). Hence, the
analysis of the RVE for predicting the full three-
dimensional elastic constants including shear
moduli of a unidirectional E-glass/epoxy compos-
ite is presented in this section. The fiber and
matrix materials of the composite were assumed
isotropic. The elastic constants for the glass fiber
and epoxy matrix are given in Table 2.

Table 2: Material properties of E-glass fiber and
€poxy matrix

Property E-Glass | Epoxy
Axial modulus (GPa) 73.1 3.45
Transverse modulus (GPa) 73.1 345
Axial Poisson’s ratio 0.22 0.35
Transverse Posson’s ratio 0.22 0.35
Axial shear modulus (GPa) | 30.19 1.83
Volume fraction 0.503 0.497

Six numerical tests as presented in Table 1 are
carried out corresponding to the linearly indepen-
dent macroscopic deformations £/ = 1; e} = 1;
el =1, v4 =1, ¥ =1and ¥} = 1, which are
imposed on the RVE. Except for the case of shear
testin the x; —x; plane (y)3 = 1), because of sym-
metry, only one-quarter of the RVE is modeled.
The boundary is represented as a square with a
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side dimension of 10um (a=10um), and the ra-
dius of fiber R =8um. The MLPG method with
183 nodes is used, the composite is assumed to
be in a state of plane strain normal to the x; —x;
plane. Figure 6 represents the tension tests in
the x; and x, directions (e} =1 and &} = 1)
by imposing a specified uniform displacement u=
10um on the RVE.

For the case of shear test in the x; — x, plane
(y¥ = 1), the full RVE as shown in Figure 7a is
used, and is discretized with 577 nodes (Figure
7b), the periodic boundary conditions (equation
31) are imposed on the RVE.

Figure 8 shows the distribution of shear stresses
and deformed shape of the RVE. We can see
that the deformations obtained by the MLPG mi-
cromechanics are in good agreement with the
FEM results as shown in Figure 8.b.

The micro-stresses are computed by the MLPG
method, and then the average stresses are com-
puted using equation (1), and finally the stiffness
properties ¢;; are computed by equation (2). From
the stiffness coefficients c;;, elastic constants are
computed using equation (4), and they are pre-
sented in Table 3 using the notations used in com-
posite mechanics. The elastic constants such as
transverse and longitudinal modulus, Poisson’s
ratio computed using the current method are very
close to those obtained by the Halpin-Tsai equa-
tions (Halpin and Tsai, 1969). The maximum er-
ror is 3.51% for v, 2.35 % for vy, 2.27% for
E7, and the error obtained is 0.59% for E;. Note
that the Halpin-Tsai formula is not available for
vrr. The current method also gives a reasonable
prediction for Gyrand Grr.

Figures 9-10 show the comparison of the com-
puted elastic constants Ey and Gpr under vari-
ous fiber volume fraction V; with those from the
mechanics of material approach (Kaw, 1997) and
Halpin- Tsai’s equation (Halpin and Tsai, 1969)
as well as experimental data (Tsai, 1964; Noyes
and Jones, 1968).

As shown in Figure 9, the experimental data for
the transverse elastic modulus (Tsai, 1964) are
quite higher compared to those obtained from the
mechanics of materials approach, and are slightly
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Figure 6: Tension tests in x| and x, directions (¢ =1 and e = 1)

Nodal Mesh

2a

Matrix

2a
() ®)

Figure 7: RVE for shear test (}/{‘g = 1) in the x; —x, plane. (a) RVE and its support; (b) nodal mesh (577
nodes)

FEM results as shown in Figure 8.b.

3.00 1 ——FEM
— -e- — Current method

-2.00 OR 5 9 . 2.00

(b)
Figure 8: Periodic deformation of RVE for shear test (}f{"é = 1) (a) Results from the finite element method;
(b) comparison between FEM and the current MLPG method
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Elastic Constants | Halpin-Tsai equations | Current MLPG Method
E;(GPa) 38.484 38.256
E7(GPa) 11.514 11.253

vVir 0.285 0.275
vrL 0.085 0.083
vrr —_— 0.322
Gyr (GPa) 4.771 5.322
Grr (GPa) 3.06 2.897

183

Table 3: Comparison of elastic constants between the current method and Halpin-Tsai equations

lower than those predicted by the meshless local
Petrov-Galerkin micromechanical analysis. The
Halpin-Tsai’s equation gives a good approxima-
tion due to the fact that it is a semi- analytical em-
pirical function. The mechanics of materials ap-
proach provides a lower bound for the transverse
elastic modulus.

—2A— Mechanics approach
—%— Current Method
——H-T Equation

® Experimental

Transverse modulus (GPa)

0.2 0.3 04 0.5 0.6 0.7

Fiber Volume Fraction

Figure 9: Comparison of transverse elastic modu-
lus E7 of the composite

Figure 10 shows that shear modulus Gy7 of the
composite as a function of fiber volume frac-
tion. The mechanics of materials approach un-
derestimates the shear modulus, while the cur-
rent method gives more reasonable results than
the Halpin- Tsai’s equation compared with the ex-
perimental data (Noyes and Jones, 1968). No ex-
perimental data of other elastic constants is avail-
able for comparison.

Table 5 shows the comparison of elastic constants
obtained from the current method with those from
FEM (Marrey and Sankar, 1995) and Halpin-Tsai
equations for the E-glass/epoxy composite with

® Experimental
91 |—&— Mechanics approach
g | |— H-TEquation

—x— Current method

Shear modulus (GPa)

0.4 0.45 0.5 0.55 0.6 0.65 0.7
Fiber volume fraction

Figure 10: Comparison of shear modulus G of
the composite

Table 4: Material properties of E-glass fiber and
€poxy matrix

Property E-Glass | Epoxy
Tensile modulus (GPa) 70 3.5
Poisson’s ratio 0.2 0.35

Axial shear modulus (GPa) | 29.167 | 1.296
Volume fraction 0.6 04

constituent materials as shown in Table 4. We re-
alize that the current method seems to give a better
prediction than FEM for the elastic constants, es-
pecially for E;, we can see that the current method
and FEM give more reasonable result for Gyr
than the Halpin-Tsai’s equation compared with
the experimental data (Noyes and Jones, 1968).
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Table 5: Comparison of elastic constants by various methods including the current MLPG method

Elastic Constants | Halpin-Tsai | FEM | Current MLPG method
E;(GPa) 43.40 43.12 43.658
E7(GPa) 14.792 18.15 13.718

vir 0.260 0.242 0.268
vrL 0.252 0.222 0.247
vrr —_— 0.102 0.083
Gyr (GPa) 4451 5.590 5.390
Grr (GPa) 3.860 3.92 3.796

4 Summary

A micromechanical analysis has been presented
and extended to include shear loadings in this pa-
per for predicting the full set of elastic constants
of composite materials by modeling the RVE us-
ing the MLPG formulation.

An algorithm for the treatment of periodic bound-
ary conditions in the MLPG method using the
multipoint constraint technique has been pre-
sented for the first time. The solutions obtained
from the current method are in a good agreement
with FEM solutions.

The elastic constants obtained by the MLPG mi-
cromechanical analysis match well with Halpin-
Tsai equations and experimental data.

The current method is a truly meshless method,
wherein no elements or background cells are in-
volved, either in the interpolation or in the inte-
gration.

The present method shows a great potential in
micromechanical analysis of textile composites
where the meshing of the RVE has been quite dif-
ficult.
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