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ABSTRACT: Currently fiber composites are used in thick structures with significant
out of plane stresses for which new 3D failure criteria are required. In this article the
direct micromechanics method is used to determine the exact failure envelope of a
unidirectional graphite/epoxy composite. A hexagonal unit cell of the composite is
modeled using finite elements. Assuming that the failure criteria for the fiber and
matrix materials and for the fiber-matrix interface are known, the exact failure
envelope is constructed from a large number of three-dimensional stress states that
correspond to failure initiation in the composite. These 3D failure stress states are
then used to develop five three-dimensional phenomenological failure criteria:
maximum stress; maximum strain; quadratic stress; quadratic strain; and optimized
quadratic failure criteria. It is observed that the 3D quadratic stress and strain failure
criteria may not always be closed, that is, they predict infinite strength in some
directions. They can be made closed in combination with the maximum stress or the
maximum strain failure criterion. It is found that a combination of aforementioned
3D failure criteria make failure prediction in thick composites more accurate and
reliable. It is noted that the newly proposed optimized quadratic failure criteria is
always closed, and is found to be more reliable than all other 3D failure criteria.

KEY WORDS: direct micromechanics method, failure criteria, fiber composites,
finite element analysis, graphite/epoxy, micromechanics, periodic boundary
conditions, unit-cell analysis.
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INTRODUCTION

C
URRENT FAILURE CRITERIA for unidirectional fiber composites assume a state of
plane stress and are therefore only applicable to thin laminates. With improved

manufacturing technology, fiber composites are used in thicker structures with significant
out of plane stresses, for which the plane stress assumption is no longer valid and thus, 2D
failure criteria are no longer reliable. Therefore, a new criterion, which does not assume a
state of plane stress, is needed for thick composites. In this paper, several 3D failure
criteria are proposed and their efficacies are evaluated.

To analyze the accuracy and reliability of a failure criterion, the failure envelope
predicted by that criterion is compared with the actual failure envelope of the composite.
The actual failure envelope can be developed from either experimental measurements or
numerical simulations. In this article, the actual failure stresses were obtained using the
direct micromechanics method (DMM), which is a finite element based micromechanical
failure analysis of the unit cell of the composite.

Fiber composites have been successfully analyzed using micromechanical methods in the
past, but most often to determine thermo-mechanical properties [1–4] and not for strength
predictions. Lin et al. [5] performed a finite element micromechanical analysis of fiber
composites to determine the elastic-plastic behavior under uni-axial loading, while the
effects of thermal residual stresses on the strength were analyzed by Ishikawa [6]. Strength
prediction under multi-axial loading conditions is not practical and hence phenomen-
ological failure criteria are still used in the industry instead of micromechanical models.
The most common phenomenological 2D failure criteria are the maximum stress
criterion, the maximum strain criterion and quadratic interaction criteria, such as the
Tsai–Hill and the Tsai–Wu failure criteria [7].

The DMM was initially proposed by Sankar and was demonstrated in several papers,
e.g., Zhu et al. [8], Marrey and Sankar [9] and (Karkkainen and Sankar) [10–12]. In Zhu
et al. [8] the DMM failure envelopes were compared with the phenomenological failure
criteria for plane stress states. It was observed that a combination of the maximum stress
and the Tsai–Wu criteria is the best choice for predicting the failure for thin unidirectional
fiber composites. A similar observation, based on experimental results, was made by
Daniel and Ishai [11], as it was recommended that one should use several failure criteria
and choose the most conservative criterion for a given state of stress. Karkkainen and
Sankar [10] analyzed failure initiation of plain weave textile composites with DMM, where
a failure envelope for in-plane force resultants – with and without applied bending
moment resultants – was developed and compared with phenomenological failure criteria.

In this article, several 3D failure criteria are proposed and their accuracy and reliability
are evaluated. It is assumed that the failure stress states predicted by the DMM constitute
the actual or real failure envelope, and we compare the proposed phenomenological
criteria against the DMM failure envelope. A particular failure criterion is evaluated by
studying how often the criterion predicts conservatively and how large the average
difference compared to the DMM failure stresses is. Ideally, a closed failure criterion,
which never predicts infinite strength and with no difference compared to the DMM, is
desired. For the finite element analysis in this study, a hexagonal unit cell is chosen as
described by Li [12] and as implemented by Choi and Sankar [13].

Initially, four 3D phenomenological failure criteria based on the DMM results are
proposed: (i) maximum stress theory; (ii) maximum strain theory; (iii) 3D quadratic stress
theory; and (iv) 3D quadratic strain theory. The quadratic failure criteria are similar to the
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Tsai–Wu failure criterion, but they do not assume a state of plane stress and consider all
six stresses. A similar criterion was developed for thin textile composite plates by
Karkkainen et al. [14], but considering three forces and three moments, instead of the six
stresses. The strength coefficients for the proposed phenomenological criteria are obtained
from uni-axial and bi-axial failure states determined from the DMM.

Obviously the maximum stress and strain theories are closed, meaning they always yield
closed failure envelopes. However, there is no guarantee that the failure envelopes of 3D
quadratic theories derived from uni-axial strength values will be closed. That is, they may
predict infinite strength in some directions. In order to ensure a closed envelope, a new
quadratic theory called optimized quadratic failure theory is proposed. The strength
coefficients of this theory are optimized with respect to random DMM failure stress states
and not from the uni-and bi-axial failure stresses as in conventional quadratic failure theories.

DIRECT MICROMECHANICS METHOD

In the present study, the failure stresses and the failure envelope are obtained using the
DMM, which is a finite element based micromechanical analysis of the composite unit cell.
The finite element analysis is performed for six linearly independent unit strains. Then, by
proper superposition, the microstress field can be determined for any given homogenous
macrostress state in the composite. Failure stresses for the composite can be determined
when failure criteria for the constituent elements are defined. The failure macrostresses
that are obtained from the micromechanical failure analysis in DMM are assumed to be
the real failure stresses, and can be compared with predicted failure stresses from any other
failure criterion to check how accurate and reliable it is.

The DMM is essentially used as an analytical laboratory that successfully simulates
physical testing of the composite. It can overcome the limitations of physical equipment
and can quickly determine diverse and complex failure stress states that include 3D stress
states. Of course, any failure criterion should be verified by performing various strength
tests on actual composite specimens before being used in design.

Finite Element Analysis

The objective of the finite element analysis is to determine the stress distribution in
the unit cell for six linearly independent deformations for further analysis in DMM.
Six strain cases are analyzed, where in each case, the unit cell is subjected to one of the unit
strains "1, "2, "3, �23, �13 or �12, while the others strains are set to zero.

For the present study, graphite/epoxy composite, a common aerospace material, is
chosen. The material properties for the transversely isotropic graphite fiber are presented
in Table 1, while the material properties for the isotropic epoxy matrix are given in
Table 2. The fiber and matrix properties were obtained form references [13] and [15],
respectively.

A hexagonal unit cell with a fiber volume fraction of 60% is analyzed in this article.
A hexagonal unit cell is chosen, as it is closer to random fiber distribution compared to
a square unit cell. The side length of the hexagon is taken as 10mm, the fiber radius
is 4.07mm and the unit cell thickness is 0.2mm. It should be mentioned that the actual
dimensions of the unit cell does not matter, and the fiber volume fraction is the key
parameter. The hexagonal unit cell is presented in Figure 1 with its coordinate system and
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surface definitions. The cross section surface of the hexagonal unit cell is modeled with more
than 4500 elements for high accuracy, while in the thickness direction only two elements are
used to reduce the total number of elements and hence the computational time. In fact, the
present analysis can be performed using generalized plane strain elements, as the stresses are
uniform in the 1-direction. However, 3D elements are used to facilitate implementation of
periodic boundary conditions on faces normal to the 1-direction.

To maintain compatibility of the displacements and continuity of the stress distribution
between each unit cell, each boundary of a unit cell has to deform as the adjoining
boundary of the adjacent unit cell. These constraints are enforced with periodic boundary
conditions, which are presented in Table 3 for the six different strain cases.

The deformations and the stress distributions for the six strain cases as obtained from
the finite element analysis are illustrated in Figure 2.

Homogenized Material Properties

From the finite element analyses of the six linearly independent unit strains, the stiffness
matrix C, that relates the macrostrains " with the macrostresses �, according to

� ¼ C" ð1Þ

Table 1. Graphite fiber properties.

Ef1 (GPa) Ef2, Ef3 (GPa) Gf12, Gf13, Gf23 (GPa) mf12, mf13 mf23

263 19 27.6 0.2 0.35

Table 2. Epoxy matrix properties.

Em (GPa) Gm (GPa) mm

3.2 1.19 0.35

b0

c1

a1

b1

c0

a0

3v

2u

1w

Figure 1. Unit cell surfaces and the coordinate system definitions.
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can be determined. With the stiffness matrix, the elastic constants of the composite can be
obtained using the relation

C�1 ¼

1=E1 ��21=E2 ��31=E3 0 0 0
��12=E1 1=E2 ��32=E3 0 0 0
��13=E1 ��23=E2 1=E3 0 0 0

0 0 0 1=G23 0 0
0 0 0 0 1=G31 0
0 0 0 0 0 1=G12

2
6666664

3
7777775
: ð2Þ

If the macrostresses and the macrostrains for each unit strain case are related as in
Equation (1), then it can be seen that the elastic constants Cij in the column corresponding

Figure 2. The deformed shape of the unit cell for various strain cases: (a) "1, (b) "2, (c) "3, (d) �23, (e) �13,
and (f ) �12.

Table 3. Periodic boundary conditions for the hexagonal unit cell for six different
unit strains.

e1^1 e2^1 e3^1 c23^1 c13^1 c12^1

ua1–ua0¼ 0 ua1–ua0¼
p
3/2L ua1–ua0¼ 0 ua1–ua0¼0 vz1–vz0¼ 0 uz1–uz0¼ 0

ub1–ub0¼ 0 ub1–ub0¼
p
3/2L ub1–ub0¼ 0 ub1–ub0¼ 0 wc1¼L/2 uc1¼ 0

va1–va0¼ 0 va1–va0¼ 0 va1–va0¼ L/2 uc1¼ 0 wc0¼�L/2 uc0¼ 0
vb1–vb0¼ 0 vb1–vb0¼ 0 vb1–vb0¼�L/2 uc0¼ 0 wa1–wa0¼ L/2 vc1¼ 0
vc1¼ 0 vc1¼ 0 vc1¼ L/2 va1–va0¼

p
3/2L wb0–wb1¼ L/2 vc0¼ 0

vc0¼ 0 vc0¼ 0 vc0¼�L/2 vb1–vb0¼
p
3/2L wa1–wa0¼

p
3/2L

wz1–wz0¼ t wz1–wz0¼ 0 wz1–wz0¼ 0 wz1–wz0¼ 0 wb1–wb0¼
p
3/2L
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to the unit strain are equal to the macrostresses. For example, the elastic constant C11 is
equal to the resulting �1 from the strain case "1¼ 1. The six macrostresses �i for each unit
strain case are calculated as the volume average of the corresponding microstresses �ðeÞi in
NEL elements according to

�i ¼
1

V

XNEL

e¼1

�ðeÞi VðeÞ, i ¼ 1 . . . 6, ð3Þ

where �ðeÞi are the stresses at the centroid of element e, V (e) is the volume of element e and
V is the total volume of the unit cell. For the graphite/epoxy composite in the present
example, the stiffness matrix is obtained as

C ¼

161:0 3:8 3:8 0 0 0
10:4 4:6 0 0 0

10:4 0 0 0
3:9 0 0

SYM 3:6 0
3:3

2
6666664

3
7777775
GPa: ð4Þ

To make sure that there are no major mistakes in the finite element model, the
calculated material properties are compared with material properties obtained with
Halpin-Tsai semi-empirical relations [15] as shown in Table 4. It should be noted that the
Halpin-Tsai equations are empirical in nature, which could explain the difference in G12

and G13.

Micromechanical Failure Analysis

With the results from the finite element analysis and with the calculated stiffness matrix,
the microstress distribution within the unit cell can be analyzed for any given macrostress
state. In the present study, the unit cell is analyzed for tensile and compressive failure in all
matrix and fiber elements, as well as for fiber/matrix interface tensile/shear failure. It is
assumed that the combined composite has failed if only one of the fiber or matrix elements
or if one of the fiber-matrix interface nodes has failed. This is a conservative assumption

Table 4. Material properties of graphite/epoxy composite.
Elastic constants are in GPa.

DMM Results Halpin-Tsai equations

E1 159.1 159.08
E2, E3 8.3 8.496
G12 3.3 4.1
G13 3.6 4.1
G23 3.9 –
�12, �13 0.253 0.26
�23 0.436 –
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but can be considered as the initiation of failure. For the fiber and the matrix, the
maximum principal stress criterion is used, while for the interface, maximum tensile stress
and maximum interfacial shear stress criteria are used. In Table 5, the failure stresses for
the graphite fiber and the epoxy matrix as well as for the interface are presented [15].
Further, fiber microbuckling is also investigated as it is assumed that the hexagonal unit
cell fails if the fiber buckles. However, it is observed that fiber microbuckling is never
critical for the analyzed graphite/epoxy as the calculated fiber stress at microbuckling is
higher than the critical fiber compressive stress.

For any given macrostress state �0, the corresponding macrostrains

"0 ¼ C�1�0 ð5Þ

are used to determine the microstresses in each of the finite element and at the fiber/matrix
interface nodes by superposition of the six unit macrostrain cases from the finite element
analysis. With the appropriate failure criterion, a load factor le for each element and
interface node is determined, where the load factor is defined as the factor by which the
given macrostresses have to be increased to initiate failure in element e. The load factor
that initiates failure in the composite is the minimum of all element load factors, and it is
denoted by lDMM. The corresponding failure stress state is then given by

�̂DMM ¼ lDMM�0: ð6Þ

In the present study, about 5000 random stress states �0 are generated, where both
positive and negative stresses have equal probability in all directions to obtain diverse
failure stress states. The flow chart of the micromechanical failure analysis is presented in
Figure 3.

PHENOMENOLOGICAL FAILURE CRITERIA

A smooth surface in the 6-dimensional space that passes through all the generated
failure stress states could be considered as the DMM failure envelop of the composite.
Although DMM can be used in practice to check if a given stress state is within or outside
the envelope, it is not convenient in the design of composite structures. A phenomen-
ological criterion in terms of the six components of stresses is desirable in design, especially
in using structural optimization methods. Hence, the use of DMM results in generating
several phenomenological failure criteria for thick composites is investigated and their
accuracy is evaluated by comparing with the DMM failure envelope. The phenomen-
ological criteria consider in the present study are: (i) maximum stress theory, (ii) maximum
strain theory; (iii) 3D quadratic stress failure criterion; and (iv) 3D quadratic strain failure
criterion. For reasons that will be given later, a new optimized 3D quadratic failure
criterion is also developed.

Table 5. The failure stresses for the graphite and epoxy materials and
the graphite/epoxy interface.

Failure stress (MPa) Graphite Epoxy Interface

Tension, �Tcr 4,120 49 127
Compression, �Ccr 2,990 121 –
Shear, �cr 1,760 93 243
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Maximum Stress Theory

The failure envelope according to the maximum stress theory, which we will denote by
M�, is a rectangular solid in the six-dimensional space similar to a rectangle in 2D or
a rectangular parallelepiped in 3D stress space. The maximum stress theory is given by

�SiC � �i � SiT, i ¼ 1, 2, 3 ð7Þ

and

�ij j � Si, i ¼ 4, 5, 6 ð8Þ

where the various uni-axial strengths of the composites, SiC and SiT, and shear strengths
Si can be determined using DMM. The symbols SiT and SiC denote the tensile and
compressive strengths, respectively.

Maximum Strain Theory

Similar to the maximum stress theory, the maximum strain theory, M", is given by

�RiC � "i � RiT, i ¼ 1, 2, 3 ð9Þ

Select the state of macrostress s0

Compute macrostrains e0

Compute microstresses in element e s (e)

Determine load factors for element failure

Determine load factor for interface failure

Determine minimum total load factor

Calculate failure stress

Determine load factor for microbuckling

No

No

if e = etot

if n = ntot

n = 1

n = n + 1

e = e + 1
e = 1

Yes

Yes

Check next element

Check next node

Compute microstresses in node n s (n)

Figure 3. The flow chart of the micromechanical failure analysis.
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and

"ij j � Ri, i ¼ 4, 5, 6 ð10Þ

Again, the uni-axial failure strains RiC (compression) and RiT (tension) and maximum
shear strains Ri can be determined using the DMM.

3D Quadratic Stress Failure Criterion

A 3D quadratic stress failure criterion, DQ�, is proposed, where failure will occur if

XX
Eij ��i ��j þ

X
Fi ��i41 ð11Þ

where

��i ¼
�i
SiT

ði ¼ 1, 2, 3Þ, ��i ¼
�i
Si

ði ¼ 4, 5, 6Þ ð12Þ

is the stress component �i normalized with respect to corresponding tensile strength SiT or
shear strength Si. The stresses are normalized due to the great disparity in the magnitude
of the strength values, which otherwise could lead to numerically ill-conditioned
calculations.

The procedures for determining the coefficients Eij and Fi are similar to that for 2D
quadratic failure criterion [16]. The coefficients Eij and Fi in (11) are obtained assuming
they satisfy all the uni-axial and bi-axial failure states determined by the DMM. With uni-
axial tensile failure stress states, (11) is simplified as

Eii þ Fi ¼ 1 ði ¼ 1, 3; no summation over repeated indicesÞ ð13Þ

while with uni-axial compressive failure stresses it is simplified as

Eii
SiC

siT

� �2

�Fi
SiC

SiT

� �
¼ 1: ð14Þ

For the case of shear, the uniaxial tensile and compressive states will be replaced by
positive and negative shear stress states. Solving (13) and (14) simultaneously, the
coefficients Eii and Fi in the failure equation (11) are obtained. The off-diagonal elements
Eij are obtained from the bi-axial failure stress states such that

��i ¼ ��j: ð15Þ

In that case, (11) can be reformulated as

Eij ¼
1

2 ��i ��j
1� Eii ��

2
i � Ejj ��

2
j � Fi ��i � Fj ��j

� �
, i 6¼ j ð16Þ

The uni-axial and bi-axial failure stresses obtained from the DMM and are presented
in Tables 6 and 7.
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From the DMM failure stresses presented in Tables 6 and 7, the coefficients E and F in
the 3D quadratic failure criterion (3DQ�) are obtained as

E ¼

1:2782 0:1213 0:0957 �0:0552 0:5933 0:4883
0:4040 �0:5780 0:3773 �0:2558 0:2527

0:4230 �0:2626 0:3005 �0:2288
1 �0:0793 0:4122

SYM 1 0:1242
1

2
6666664

3
7777775

ð17Þ

and

F ¼ �0:2782 0:5960 0:5770 0 0 0
� �T

: ð18Þ

3D Quadratic Strain Failure Criterion

A 3D quadratic strain failure criterion, 3DQ", is also proposed, where failure occurs if

XX
~Eij"i"j þ

X
~Fi"i41: ð19Þ

The method of determining the failure coefficients ~Eij and ~Fi is similar to that of 3DQ�,
but with uni-axial and bi-axial failure strains. Observe that the criterion (19) does not
have to be normalized as in (11), because there is no big disparity in the magnitude of
failure strains as in the case of strength values. With failure strains from the DMM,

Table 6. Uniaxial Strengths obtained using the DMM. The strength
values are in MPa.

S1T S1C S2T S2C S3T S3C S4 S5 S6

2,312 1,809 39.2 97.2 31.1 73.4 24.0 31.9 33.2

Table 7. Biaxial strength values in MPa units obtained
using the DMM.

Failure stress r1 r2 r3 s23 s13 s12

�1 – 39.3 31.1 24.0 31.7 33.0
�2 – 43.5 16.4 26.7 20.1
�3 – 20.5 18.1 24.6
�23 – 19.9 16.5
�13 – 21.7
�12 –
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the coefficients are obtained as

~E ¼

10405 8121 10714 7299 8216 6630
29901 �23008 21795 2275 7283

42685 �7777 8251 �3874
27141 �957 6438

SYM 12511 1147
10045

2
6666664

3
7777775

ð20Þ

and

~F ¼ 29:08 123:81 142:59 0 0 0
� �T

: ð21Þ

Combined Criterion

For any failure criterion to be physically possible it must have a closed surface, that is, it
should not predict infinite strength in any direction or for any given ratio of stresses. The
maximum stress and maximum strain criteria are closed as they are represented by a
rectangular solid in the 6D space. However, the quadratic failure criteria, derived from
uni-axial and bi-axial strength values, may not be always closed. It can be shown that the
requirement for a closed quadric surface given by (11) is that the matrix E must be positive
definite, which implies that all the eigenvalues of E must be positive. For the example
considered here with the coefficient matrix given in (17), the quadratic failure criterion is
not closed as the matrix is not positive definite as seen from the eigen values presented
in Table 8.

It is observed that the 3DQ� criterion predicts infinite failure stresses five times out of
the 5000 randomly generated 3D stress states. Similarly, the 3DQ" sometimes predicts
infinite failure stresses as the matrix ~E is not positive definite either. This phenomenon is
illustrated in Figure 4, where the failure envelopes for the 3DQ�, maximum stress (M�)
and maximum strain (M") criteria in the �2-�3 space (�1¼ �12¼ �13¼ �23¼ 0) are presented
together with 250 random DMM failure stresses. As it can be seen, the quadratic criterion
is not closed in this space.

Hence, the quadratic failure criteria are not recommended to be used by themselves as
they might predict infinite failure stresses. They should therefore always be considered in
combination with other closed failure criteria. In this paper, they are combined with both
M� and M". Three combined criteria are proposed; 3DQ�/M�/M", 3DQ"/M�/M" and a
combination of both quadratic failure criteria, 3DQ�/3DQ"/M�/M".

Similarly, Figure 5 depicts the failure criteria in the �1-�2 space (�3¼ �12¼ �13¼ �23¼ 0).
One can note that a combination of the three individual phenomenological criteria yields
conservative results when compared to DMM envelope.

Table 8. Eigenvalues of the coefficient matrix E
of the 3D Quadratic Stress criterion.

�0.19 0.29 0.45 0.71 1.85 1.99
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Figure 4. Failure envelopes in the �2-�3 space for the 3DQ�, M� and M" criteria. Also shown is the envelope
of 250 random DMM failure stresses.

−1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

s1

s 2

 

 

3DQσ

Mσ
Mε
DMM

Figure 5. Failure envelopes in the �1-�2 space for the 3DQ�, M� and M" failure criteria. Also shown is the
envelope of 250 random DMM failure stresses.

646 C. STAMBLEWSKI ET AL.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF FLORIDA Smathers Libraries on March 28, 2008 http://jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com


Criteria Comparison

We would also like to know the effects of using 2D failure criteria when the stress state is
truly three-dimensional. This we accomplish by including the Tsai–Wu criterion to the list
of phenomenological criteria to be evaluated. The 2D and 3D failure criteria are compared
with the 5000 randomly generated DMM failure stresses. The average difference between
the analyzed criterion and DMM for M number of stress states is given by,

�� ¼

PM
m¼1 �m
M

ð22Þ

where

�m ¼ 1�
lm

lDMM
ð23Þ

is the difference between the load factors for a particular criterion and the DMM for the
mth stress state. With this definition, a positive difference implies a conservative result,
where the failure criterion predicts a lower failure stress than the DMM.

The standard deviation � and the root mean square difference  are also determined for
the failure criteria as a measure of accuracy according to

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m¼1

�m � ��
� �2vuut ð24Þ

and

 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 �

2
m

M

s
ð25Þ

The reliability of a particular failure criterion is determined by the percentage of
conservative results.

In Table 9, the accuracy and reliability for complex 3D stress states for various criteria
are compared, where the average difference, standard deviation, the root mean square

Table 9. The accuracy and reliability of different criteria for random 3D stress states.

Criterion
Average

difference [%]
Standard

deviation [%]
Root mean

square diff [%]
Conservative
results [%]

M� �50 41 65 10
M" �423 48 64 20
2DQ �61 82 102 15
M�/M" �40 44 59 22
2DQ/M�/M" �26 37 45 28
3DQ�/M�/M" �1.8 28 28 56
3DQ"/M�/M" �0.33 35 35 59
3DQ�/3DQ"/M�/M" 5.3 28 29 65
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difference and the percent of conservative results are presented. Further, for the 2D
criteria, the accuracy and the reliability for pure 2D stress states are presented in Table 10.
As it is observed, for complex 3D cases, the quadratic criteria (in combination with M�
and M") are more reliable and accurate than the 2D criteria. Further, the accuracy and
reliability of the combined 3DQ�/3DQ"/M�/M" for complex 3D stress states, as seen in
Table 9, is comparable with the accuracy and reliability of the 3DQ for thin fiber
composites with pure 2D stress states, as seen in Table 10.

Finally, a histogram comparison between the combined 3DQ�/3DQ"/M�/M" criteria
and the 2D criteria for a set of random 3D DMM failure stresses is presented in Figure 6.
As mentioned earlier, a positive difference implies a conservative result, while a negative
difference implies that failure stress is over predicted compared with the DMM

Table 10. The accuracy and reliability of maximum stress, maximum
strain and 2D quadratic failure criteria for pure 2D stress states.

Criterion
Average

difference [%]
Standard

deviation [%]
Root mean

square diff [%]
Conservative
results [%]

M� �4.9 9.3 10 32
M" �3.6 20 21 34
2DQ 2.1 15 15 65
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Figure 6. Histogram comparison of various failure criteria compared with 5000 DMM failure stress states.
Positive difference with respect to the DMM failure stress denotes conservative result.
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failure stresses. One can see that the reliability determined by the percentage of
conservative predictions is very high for the combined criterion.

OPTIMIZATION OF FAILURE CRITERIA

As mentioned earlier, the quadratic criteria are not always completely closed, as in some
cases the coefficient matrices can have negative eigenvalues. Thus, the quadratic criteria
have to be combined with the other closed failure criteria. Further, as the coefficients for
the quadratic criteria are determined with the uni-axial and the bi-axial failure states, it is
assumed that only these measurements are completely true, as the criterion is fitted to these
values. This is a reasonable assumption when experimental measurements are used,
because these are usually the only failure states that can be measured. However, if the
DMM is used, it is possible to obtain more complex failure states, which should be, just as
the uni-axial and bi-axial failure states, equally true.

Therefore, it is investigated if it is possible to fit a criterion to more diverse DMM failure
stresses and if a more reliable and accurate criterion can be obtained. Also, it is analyzed if
it is possible to obtain a quadratic failure criterion that is closed by itself.

Optimized Quadratic Failure Criterion

In this section, the development of an Optimized 3D quadratic failure criterion (OQFC),
which is closed and also satisfies a given number of DMM failure states, is described.
In the optimization, the volume of a closed 6D ellipsoid is maximized for a given failure
states, i.e., the 6D ellipsoid should be as big as possible within the given failure states. For
a closed ellipsoid, the eigenvalues of the matrix E should be positive. However, it is known
that the volume of the ellipsoid is inversely proportional to the product of its eigenvalues,
which is equal to the determinant of the matrix E. Thus, the problem can be stated as an
optimization problem in which the coefficients E opt and F opt are selected such that

Minimize: fðE opt
ij ,F opt

i Þ ¼ det 2E opt
� 	

Subjected to the constraints:
XX

E opt
ij ��ðkÞi ��ðkÞj þ

X
F opt
i ��ðkÞi 41, k ¼ 1 . . .N

eigenvalues of E opt40

ð26Þ

where N is the number of DMM failure stress states selected for the optimization problem.
Further, to ensure that the positive and the negative shear strengths are equal, the
condition

F opt
4 ¼ F opt

5 ¼ Fopt
6 ¼ 0 ð27Þ

is imposed. It is also required that E opt be symmetric. Thus 24 coefficients are optimized.
The MATLAB� optimizer fmincon was used for the optimization problem stated in (26).

Although all the available DMM failure states can be used for optimization, i.e. N¼ 5000,
it is found that the computational time becomes prohibitively large as N approached a
few dozen states. Hence, a smaller number compared to 5000 for N is used in the
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present analysis. However, the accuracy and the reliability of the optimized quadratic
failure criterion are still evaluated by comparing with the all of the DMM failure states.

Optimization with DMM Failure Stresses

The accuracy and the reliability of the OQFC depend on how many DMM failure stress
states N are used for the optimization process. In Figure 7(a), the percentage of
conservative results is plotted against the number N. One can note that the reliability of
OQFC reaches about 90% with N¼ 30 failure states used in the optimization. Thereafter,
the convergence is slow in the sense that one may need a large N to improve the reliability.
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Figure 7. (a) Conservative results and (b) average difference as functions of number of failure stresses used
in the optimization.
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At this time the computational resources do not seem to be adequate for this purpose. The
average difference between OQFC and DMM are plotted against N in Figure 7(b).

For the purpose of illustration the optimized coefficients were obtained from 30 DMM
failure states (N¼30) as

E opt ¼

1:6274 0:1849 0:3909 0:2096 0:1532 0:1914
0:8155 �0:6031 0:3589 �0:1911 �0:0688

0:8368 0:0763 �0:0773 �0:2230
1:4598 �0:2406 0:1871

SYM 1:5519 0:0207
1:4982

2
6666664

3
7777775

ð28Þ

and

Fopt ¼ �0:0395 0:8245 0:6623 0 0 0
� �T

: ð29Þ

Note that the coefficients are normalized with respect to uni-axial DMM tensile strength
values. With these coefficients, 90% conservative results and an average percentage error
of less than 18% are obtained. The uni-axial and bi-axial strength values based on the
OQFC can be obtained from the coefficients given in (28) and (29). The strength values
based on the OQFC are presented in Tables 11 and 12 together with the original strength
values obtained from DMM.

For all optimized failure criteria, it was observed that E opt has no negative eigenvalues,
as this was imposed as a constraint. Thus, the optimized criterion is a closed one and does
not need to be combined with other criteria to make it closed.

For the purpose of easy visualization the OQFC is compared with DMM and 3DQ�

criteria in Figures 8 and 9. Figure 8 presents the failure envelopes in the non-dimensional
�2-�3 space and Figure 9 corresponds to �1-�2 space.

Table 12. Optimized bi-axial failure stresses of the composite. The DMM
values are given in parentheses.

Failure stress (MPa) r1 r2 r3 s23 s13 s12

�1 – 27.9 (39.3) 23.7 (31.1) 19.8 (24.0) 25.6 (31.7) 27.1 (33.0)
�2 – 19.8 (43.5) 13.6 (16.4) 18.7 (26.7) 18.5 (20.1)
�3 – 13.9 (20.5) 16.9 (18.1) 18.4 (24.6)
�23 – 17.1 (19.9) 15.1 (16.5)
�13 – 18.5 (21.7)
�12 –

Table 11. Optimized uni-axial failure stresses of the composite.

Strength (MPa) S1T S1C S2T S2C S3T S3C S4 S5 S6

OQFC 1841 1785 27.9 67.6 23.8 48.4 19.8 25.6 27.1
DMM 2312 1809 39.2 97.2 31.1 73.4 24 31.9 33.2
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Figure 8. 2D failure envelopes in the �2-�3-space for the optimized and original quadratic failure criteria and
250 random DMM failure stresses.
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CONCLUSIONS

The DMM is used to determine a large number of random failure states of a
unidirectional graphite/epoxy composite. Assuming these failure stresses represent the true
failure states of the material, four 3D phenomenological failure criteria are developed.
They are: maximum stress; maximum strain; quadratic stress; and quadratic strain failure
criteria. It is found none of the above criteria are reliable and accurate in the entire 6D
stress space. Furthermore, the quadratic stress and strain criteria may not be closed,
predicting infinite strength in some directions in the 6D stress space. Instead of using the
uniaxial and biaxial strength values to determine the coefficients in the quadratic failure
criteria, an optimization procedure is then used to develop a 6D ellipsoid that will cover a
maximum number of failure states. This criterion is called the OQFC. Some of the
comparisons between various criteria are as follows.

From the analysis of the phenomenological failure criteria, it was observed that these
criteria are not good for complex 3D stress states. Even if all are combined, only 27%
conservative results are obtained with an average error of almost 26% over prediction of
the DMM failure stresses. If they are considered separately, even worse comparison with
DMM failure stresses are obtained. Thus, these criteria cannot be considered reliable and
should not be used when analyzing thick fiber composites with complex 3D stress states.

If both quadratic failure criteria are combined with the maximum stress and the
maximum strain failure criteria, which have closed failure envelopes, the combined criteria
predicts 65% conservative results with an average difference of 5% under prediction with
respect to the DMM failure stresses. This is comparable with the accuracy and reliability
of 2DQ, the Tsai–Wu failure criterion, for thin fiber composites with pure 2D stress states.

From further analysis, it is observed that applying a factor of safety to the failure
criteria has basically the same effect as the optimization. With a factor of safety of 1.6, the
combined 3DQ�/M�/M" yielded 90% conservative results, which is as much as it is
obtained with the optimized criterion, when 30 stress states are used for the optimization.
However, the optimized criterion is more accurate with an average error of less than 18%,
compared to the 30% error with the factor of safety approach. Thus, it could be argued
that introducing a factor of safety would be an easier method to correct the original
failure criterion. However, if a factor of safety is applied, the final failure criterion will
have the same shape as the original criterion, i.e. a non-closed failure criterion will remain
non-closed even if a factor of safety is introduced. Therefore, the quadratic failure criteria
have to still be combined with other closed failure criteria, even with a factor of safety.
This is easier than optimizing, but on the other hand, if optimization is used to improve
the failure criterion, it is possible to enforce constraints so that the final failure criterion
is closed.

In conclusion, it could be said that if only experimental methods are used to determine
the failure stresses and with only uni-axial and bi-axial measurements available, the best
method to create a reliable criterion is to combine the quadratic failure criteria with the
maximum stress, the maximum strain or both, and applying a factor of safety so that the
desired level of conservative failure envelope is obtained. However, if the failure stresses
are obtained from the DMM, then an optimization of the failure criterion is
recommended, as it is possible to create a more reliable, closed failure criterion, which
considers more diverse failure stresses and does not necessarily have to be combined with
other failure criteria. Also, as mentioned, the optimized failure criterion is more accurate
than introducing a factor of safety.
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