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Abstract—A shear deformable beam finite element with nodes offset to either the top or bottom side has
been developed. The delaminated beam is considered as two sublaminates above and below the plane of
delamination, and these are modeled by offset beam finite elements. An expression for the J-integral in
terms of force and moment resultants in sublaminates connected to the crack tip is derived. From the
J-integral two more methods of computing the strain energy release rate have been developed. In the crack
tip force method, the strain energy release rate is expressed in terms of forces transmitted by the crack
tip rigid element. The second method is similar to the crack closure method used in two-dimensional
fracture problems. The effectiveness of the present method is illustrated by analyzing three composite test
specimens widely used to measure fracture toughness.

1. INFTRODUCTION

The subjects of stress analysis of delaminations,
analytical and numerical methods for predicting the
mechanical behavior of delaminated structures, and
inspection methods for characterizing delaminations
and debonding have received considerable attention
in recent years [1]. An analytical prediction method-
ology for delamination growth is important for deter-
mining the useful life and frequency of inspection of
any delaminated structure. The general principlesin the
analysis of delaminations have been (a) estimation of
a fracture parameter under the given loading con-
ditions, and (b) comparison of that with a critical
parameter for the particular material system and lami-
nate configuration measured, using coupons with im-
planted delaminations. The strain energy release rate
has been accepted as the standard fracture parameter
not only because it is convenient, but also because it
is based on a sound energy balance principle.

Effective numerical or analytical methods are
necessary for the analysis of delaminations in both a
laminated structural element and test specimens used
to measure fracture toughness. A fully three-dimen-
sional stress analysis, e.g.[2], will be prohibitively
expensive, and may not be necessary, at least during
the initial stages of design and analysis. Analytical
methods based on Jaminated plate theories have also
been developed [3]. Finite element methods are popu-
lar for their ability to model complex shapes and
loading conditions. In the present study a novel finite
element is proposed for the analysis of delaminations,
and its effectiveness is illustrated by using the method
to analyze some composite beam specimens widely
used to measure fracture toughness.

In the present study we assume that the delamina-
tion will continue to grow in the same plane. The

laminate is divided into two sublaminates, one below
and one above the plane of delamination. The sub-
laminates are modeled by finite elements with nodes
offset to the top or bottom. In the uncracked portion
the nodes corresponding to the top and bottom
sublaminates are connected by rigid elements that
ensure continuity of displacements and rotation at
the plane of delamination. In the cracked portion the
nodes of top and bottom sublaminates are connected
by gap elements that will: be effective only when
contact occurs. We assume that there is no friction
against sliding of the sublaminates, if they are in
contact. The concept of offsetting the nodes has been
in use to join a beam element with some other type
of element, for instance, a plate element [4]. Modify-
ing the conventional beam element stiffness matrix to
account for offset results in error due to incompatible
displacement fields [5].

In the present study we develop a shear deformable
beam finite element with nodes offset to the bottom
or top side of the beam. This formulation introduces
new stiffness terms b, and d,;, which are different
from the conventional stiffness terms By, and D,,. An
expression for the J-integral in terms of the newly
defined force and moment resultants is derived. From
the expression for the J-integral two new methods of
computing G, the strain energy release rate, are
derived. Both methods are convenient in the sense
that the necessary quantities are degrees of freedom
in the finite element model, and hence are part of the
solution. In the first method, the crack tip force
method, G is computed from the forces in the crack
tip rigid element. Physically, this means that the crack
tip element will break when the set of forces transmit-
ted by that element exceeds a certain limit. The
second method is analogous to the virtual crack
closure method. The results are compared with G
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computed using analytical methods, and the agree-
ment is found to be excellent.

2. LAMINATED BEAM EQUATIONS

In this section we derive the relevant equations for
a laminate beam which is situated just above the
reference plane (x—y-plane). The procedure is very
similar to that for conventional composite laminate
equations, where the x—y-plane is the midplane of the
laminate and shear deformation is also considered.
The in-plane and transverse displacements are
assumed to be of the form

u(x, z) = up(x) + 29 (x) o
and

W, 2) = w(x) @

. where u,(x) is the axial displacement of points in the

x—y-plane, and ¥ (x) is the rotation about the y-axis.
The transverse displacements, w(x), are assumed to
be constant through the thickness of the laminate.
The strains can be derived as

€=U, = U, + 2P, T (3)

and
yx:Eu:+wJ=¢+w.x' . (4)

In eqns (3) and (4), a comma denotes partial differen-
tiation with respect to the subscripted variable.
The force and moment resultants are defined as

Ah
FT: LP: M’ V.J = J‘ Laxxs Z0xxs sz.l dZ, (5)
0

where # is the beam thickness. In eqn (5), and
throughout the paper, boldface letters denote
matrices, and a superscript T denotes the transpose of
a matrix. We will assume that there is no bending-
twisting or extension—twisting coupling in the lami-
nate. Assuming a state of plane strain parallel to the
x—-z-plane, the stress—strain relations [6] for a layer
are

Oxx = Ql 1 éxx (6)
and . o
Tx: = st),X:' (7)
From eqns (3)~(7), we 6btain
C Fose, - ®)
where the notations
ay, b, 0
s=|by, d, O
0 0 Ass

and

ef= I_ex:u Kuxxs yx:_]

are used. The stiffness coefficients of the laminate are
defined as

Lan, by, dyys ass |

h
=L LQ!]»ZQIHZZQIHKQSSsz' ®)

In the above relations k,, =/ , is the beam curvature,
and the shear correction factor, x, may be assumed
as 5/6. It may be noted that for a given laminate the
stiffness coeflicients a,, and as; will be equal to 4,
and A, of the conventional laminated plate theory,
but by, and d;; will be different from B), and D,;. The
above relations are for a laminate which is above the
x—y-plane. For a laminate below the x—y-plane, the
lower and upper limits of integration in egns (5) and
(9) will be —#h and O respectively. For two identical
laminates situated symmetrically about the x-y-
plane, a,;, ass and d,, terms will be the same, but b,
will differ only in sign.

_ In the following an expression for strain energy per
unit length of the beam will be derived. Denoting the
strain energy density by W and strain energy per unit
length of the laminate by U,

W = (1/2)(0ax€sx + Tx:Vs:) (10)

and
.
U =J. W dz. (1D
0

Substituting in eqn (10) the stress—strain relations (6)
and (7), and the strain-displacement relations (3) and
(4), and performing the integration in eqn (11), we
obtain

U=(1/2)e"se. (12)

An alternative expression for U can be obtained as
follows. Let ¢ =s~'. Then e = s~'F = cF. Substituting
in eqn (12) we obtain

U = (1/2)F"cF. 13)

3. BEAM FINITE ELEMENT WITH OFFSET NObES

In this section a beam finite element with nodes
offset either to the top or bottom side of the beam is
developed. The beam element has three nodes as
shown in Fig. 1. The two extreme nodes have three
degrees of freedom each, u, ¥, and w respectively. At
the middle node only w displacement is defined. The
displacements are interpolated as

u(x) = uy Ny (x) + 14, Ny (%) (14)
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Fig. 1. Beam finite element with nodes offset to bottom side.

Y(x) =¥, N, (x) + Y, Ny (x) (15)

and
w(x)= W1N1 (*)N;(x) — wy Ny (x)N;(x)
+ 4wy N (x)N,(x). (16)

The interpolation functions are defined as N,(x) =
(1—x/L), Ny(x)=x/L, and N;(x)=(1-2x/L),
where L is the element length. The strain energy in the
beam element is given by

Ue=rde. -an

0

Substituting the assumed displacements (14)<16) in
eqn (12), and using eqns (3) and (4), we obtain

U= (1/2)q'K’q, ' (18)

where k’ is the 7 x 7 stiffness matrix and q is the
vector of nodal displacements. The stiffness matrix is
given in Appendix A. Although one can work with
the 7 x 7 stiffness matrix, it has been found to be
more efficient to apply static condensation to remove
the central node. The resulting 6 x 6 stiffness matrix

k is also given in Appendix A.
It may be noted that the present finite element gives .
the exact solution for a couple or an axial force '

applied at the tip of a cantilever beam. Hence the
performance of the finite element was evaluated by
considering an orthotropic cantilever beam of length
!/ and unit width subjected to a transverse end load.
The beam material principal directions 1-2-3 co-
incide with the x—y—z-axes. In that case 0,; = Q) =
E; /(1 —vyyvy), and Qg5 = Qss= G,5. To bring in the
effect of shear deformations, the shear modulus G,; of
the beam material was assumed to be equal to E, /80.
The tip displacements for various //h ratios are shown
in Fig. 2. The displacement results are normalized
with respect to the Bernoulli-Euler beam tip deflec-
tion given by 4PI%/3d,,. It may be seen that with three
elements the present finite element gives exact
solution in the wide range of 0.1 <I/h < 1000. It is
instructive to note here that for very short cantilever
beams, e.g. I/h <1, one element solution for tip
deflections, g, is found to be

qﬁp = ICR, (19)

CAS 38/2—1
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Fig. 2. Tip deflection of cantilever beams for various I/h
ratios.

where R is the vector consisting of axial force, couple,
and transverse force applied at the tip of the beam.
This result will be used later to derive a virtual crack
closure formula.for strain energy release rate in
delaminated beams.

4. MODELING DELAMINATIONS

In modeling delaminations in a composite beam,
we assume that the given laminate consists of two
sub-laminates, one above and one below the delami-
nation plane (x-y-plane), as shown in Fig. 3. Fur- -
ther, we assume that the delamination plane is the
weakest and the crack will propagate parallel to the
x~y-plane. Thus the possibilities of crack branching

“are ignored. Beam finite elements with nodes offset to

the bottom and top are used to model the top and
bottom sublaminates respectively. In the uncracked
portion of the beam the nodes of the top and bottom
elements will be connected by rigid elements to ensure
continuity of displacements and rotation between the
top and bottom sublaminates. If one is interested
only in the impending delamination growth, then it
will be sufficient to connect the pair of crack tip nodes
(Nodes 1 and 2) by a rigid element, and have common
nodes (for example, Node 5 in Fig. 3) for the top and
bottom elements ahead of the crack tip. The rigid
element has nine degrees of freedom. Apart from the
three displacements at each node, the three general-
ized forces the rigid element transmits are also con-
sidered as unknown degrees of freedom. Thus, the
degrees of freedom of the rigid element are u,, ¥;, w,,
Uy, Y5, wy, and F,,, M, and F,. The last three
terms are the forces transmitted by the rigid element.

| PR - S— Plane of

® | ab. Deismination
Top
- . Bubllmlnlln]
I 2 N -~
g Subisminate
Crack-Tip
@ Rigid Elsment

Element

Fig. 3. Finite element model of delamination.
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The constraint equations corresponding to the rigid
element can be written as

F, 0, 0, ~Lj{q
Fpr=| 0 0, L (20)
0 -1, I 0, | | F,

where F, and F, are the nodal force vectors at Nodes
1 and 2, q, and g, are the vectors of nodal displace-
ments, F, is the vector of forces transmitted by the
rigid element, I is the 3 x 3 identity matrix, and 0, is
the 3 x 3 null matrix. The stiffness matrix in eqn (20)
can be multiplied by a suitable factor, say k, so that
it will be of the same order of magnitude as that of
the beam stiffness matrix. Thus. eqn (20) becomes

F, 0, 0, =kl G
Fyp = 0o, 0 kA, q ;- @1
0 —kd; K . 05 | (K /k)

Gap elements are used to connect the top and
bottom sublaminates in the cracked portion as shown
in Fig. 3. The gap elements are rigid elements that
transfer only transverse compressive forces and will
be effective only when the crack closes. In the present
study we assume that there is no frictional resistance
against sliding of the sublaminates. The constraint
equations of a gap element will be similar to that
given in eqn (21), but of size 3 x 3 as shown below:

F., 0 0 —k(w _
Fop=| 0 0 k< wy 2. (22
0 —k; k0 (F./k,

In eqn (22) F,; and F,, are the nodal forces, w, and
w, are the nodal displacements and F, is the contact

force transmitted. F, is negative when the gap element
is under compression.

5. COMPUTATION OF STRAIN ENERGY RELEASE RATE

In this section we will discuss three methods of
computing G, the strain energy release rate. We will
derive an expression for the J-integral, which is
identically equal to G, in terms of the force and
moment resultants in the sublaminates connecting the
crack tip. Based on the expression for J, we will
develop two more methods to compute G from the
finite element results.

5.1. J-Integral

Considering a zero volume path surrounding the
crack tip as shown in Fig. 4(a), an expression for the
J-integral is given by [7]

J= J‘ [anx - nx(o-xxu,x + Txz w,x) - nztx:u,x] ds.. (23)
r o :

The path T consists of four segments, one in each
sublaminate behind and ahead of the crack tip, as
shown in Fig. 4(b). For the path I'|, n,= —1 and
ds = —dz, and the J-integral takes the form

-

0
JO = -J. (W —ogu,—1.w,)dz. (24)
—h

Substituting for the strain energy density from eqn
(10), and using eqns (3), (4), (6), (7) and (11), we
obtain '

I = U0V, @)

where U” and ¥, are the strain energy per unit length
and shear force resultant respectively in sublaminate

Element 4 Element 3
3
z _ 5
Element | Element 2
| AL AL

.

\/]
» ”
Element 4 T / A3 Element 3
kR
/*/M‘ Ms\\
Vs
N adf
R R
Eiement 1 I 4/"1 Mg\ T,  Element 2
P~
V2

Fig. 4. (a) Zero-volume path for J-integral. (b) Forces in crack-tip elements.
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I just behind the crack tip. ¥, is the rotation at the
crack tip, which is same for all the four sublaminates
connected at the crack tip. Similarly, for the paths I';,
Iy, and T',, we obtain
TP = —UP+ ¥y,
I=—UO+ vy,
JO=UO—Vy,
and

J=Ju + J@ + J® + J9, (26)

Considering the equilibrium of forces in the z-
direction at the crack tip,

M+ V,=V.+ V5. @27
Thén ecin (26)v-bec'omes
J=UW4 Y- yd_ysd, (28)

Substituting for the strain energy density U from eqn
(13)

J =(1/2)(F]e,F, — F;¢,F, — Fi¢,Fy + Fi¢,F,). (29)
In the above expression F; denotes the force resultants
in the ith sublaminate at the crack tip; ¢, and ¢,

denote the ¢ matrix of the bottom and top sublami-
nates respectively. The force and moment resultants

can be obtained from the finite element results, and -

J can be evaluated using eqn (29).

5.2. Crack tip force method

A much more convenient method of computing G
can be derived from eqn (29). Considering the sub-
laminates 2 and 3, relations between the force resul-
tants F,, F; and deformations e,, e, can be written as
¢,F,=e,, and ¢, F;=e;. However, sublaminates 2
and 3 are integral and hence e, = e;. We thus obtain
the relation

¢, F; = ¢/ F,. 30)

Substituting eqn (30) in eqn (29), and also using the
equilibrium relations (F; + F,) = (F, + F;), we obtain

J =G =(1/)F, ~F) .+ ) F —F,). (31)
Actually (F, — F,) is the force transmitted by the rigid
element between the bottom and top crack tip nodes.
Thus, G can be written as

G = (I/2)FF(c,+ &, )F,, @2)

where F, is the vector of forces in the crack tip rigid
element. The above equation provides a convenient

method of calculating G, as the components of F, are
degrees of freedom of the rigid element connecting
the crack tips, and they are part of the finite element
solution.

At this point, some similarities between the crack
tip force method and the foundation spring model [8]
can be observed. In the foundation spring model, the
uncracked portions of the beam are assumed to be
connected by springs. The energy in the crack tip
springs is considered as the energy of fracture, and
the springs are ruptured when the energy reaches a
critical level. Such foundation parameters have not
yet been calculated for composite Jaminates, but the
expression in eqn (32) provides some guidelines for
such an approach. Usually, the foundation springs
are very stiff, and the forces in the crack tip spring can
be assumed to be equal to that in the crack tip rigid
element. Then from eqn (32) it may be seen that for
a given strain energy, the compliance term (¢, + ¢;)

. can be considered as the foundation spring compli-

ance ¢,. It may be noted that the rotational and shear
springs are coupled in this case. The inverse of the
compliance matrix ¢, is the foundation spring stiffness
matrix s,. For a homogeneous orthotropic beam of
thickness 2/ with a midplane crack, s, is diagonal.
Approximating Qy; by E, and Qs by Gy, the diag-
onal terms become E, 4/8, E,h*/24, and G;k/2, and
they represent the shear, rotational and extensional
stiffness of the foundation respectively.

5.3. Crack closure method

Referring to Fig. 3, as the crack propagates, the
crack tip Nodes 1 and 2 separate, and the crack tip
moves to Node 5. The relative displacements of
Nodes 1 and 2 can be computed by applying the pair
of self-equilibrating forces F,and —F, at Nodes 1 and
2. If, AL, lengths of finite elements just ahead of the
crack tip, are sufficiently small, then the displace-
ments of Nodes 1 and 2 are the tip displacements of
a cantilever beam of length AL, and can be obtained

‘us'ing eqn (19). Defining the crack opening displace-

ments as Ag, and Ag, we obtain from eqn (19)
Aq,=AL ¢,F,, and Aq,=—AL¢F,. (33)
Substituting eqn (33) in eqn (32) we obtain
G=(2ALFT(Ag—Aq),  (34)

which is analogous to the virtual crack closure
method used in two-dimensional fracture prob-
lems [9]. If sufficiently small finite elements are used,
and if the lengths of elements behind the crack tip
are also AL, then (Aq, — Aq,) will be approximately
equal to the difference in displacements of Nodes 3
and 4 behind the crack tip before the impending
propagation. Then G can be computed from

G = (1/2AL)F] (g5 — q). (33)
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Fig. 5. Specimen dimensions and loads.

6. NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed
method, three widely used composite specimens are
considered: (1) the double cantilever beam (DCB); (2)
the end notch flexure specimen (ENF); and (3) the
cracked lap shear specimen (CLS). In fact, all three
specimens have the same geometry except for the
loading conditions. The specimen considered is an
orthotropic beam with a midplane crack through half
of its length. The specimen dimensions and the loads
are shown in Fig. 5. The width in the y-direction is
assumed to be unity. The properties of the ortho-
tropic materal are E;=200GPa, E,=5GPa,
G;;=24GPa, and v,,=0.28. For a laminate of
thickness 0.002 m, the laminate stiffness coefficients
are: a;; =408 x 10°N/m, b,,=0.408 x 10°N, d,, =
544 Nm, and ass=4 x 10 N/m. The length of the
finite elements connecting the crack tip was varied
from 1073 to 10~°*m. The element length in other
parts of the beam was about 0.005 m. Gap elements
were used in the delaminated portion of the ENF
specimen. The applied load is 100 N for the DCB
and ENF specimens, and 10 x 10°N for the CLS

specimen. In the case of the CLS specimen, two types
of boundary conditions are considered. In CLS/1, the
lateral deflection and rotation of the bottom sub-
laminate at the point of application of load are not
constrained. In the second case (CLS/2 specimen), the
lateral deflection and rotation at the tip are set to
zero, which is a better representation of boundary
conditions of test specimens. In the CLS/1 specimen,
the resultant of the applied axial force is assumed to
be at the center of the bottom laminate. In the present
finite element model this force, F, has to be resolved
into a force acting at the node at the top side of the
laminate and a positive couple equal to Fh/2, where
h is the sublaminate thickness.

The results are presented in Table 1. The finite
element method was used to compute the force
resultants in the four crack tip beam elements, the
forces in the crack tip rigid element, and the displace-
ments of the two nodes immediately behind the crack
tip. The strain energy release rates G,, G, -Gy, and
G. were computed using respectively analytical
methods (see Appendix B), the J-integral [eqn (29)],
crack tip force method [egn (32)], and crack closure
method [eqn (35)]. The shear force F,,, bending
moment M,, and transverse normal force F,, trans-
mitted by the crack tip rigid element are also given in
Table 1. The agreement in G values obtained using
various methods is excellent. The ENF specimen
needed a finer mesh near the crack tip to obtain the
exact solution. In the case of the CLS specimens,
there is a significant difference in G values between
CLS/1 and CLS/2. The G for CLS/2 is about five
times that of CLS/1. The shear force transmitted by
the crack tip rigid element in CLS/2 is about twice
that in CLS/1 specimen. Further significant amounts
of transverse force and bending moment are also
transmitted by the crack tip rigid elements in the
CLS/2 specimen. :

7. CONCLUDING REMARKS

A laminated shear deformable beam finite element
with nodes offset to either top or bottom has been
developed. This element is used to model the sublami-
nates above and below the plane of delamination. A
rigid element is used to connect the crack tip nodes.
The strain energy release rate can be calculated using

Table 1. Strain energy release rates and crack tip forces in various specimens

GA GJ GT GC E\'r Myr F:r
Specimen (N/m) (N/m) (N/m) (N/m) N (Nm) ™)
DCB 0.7378  0.7378 0.7378 0.7378 0 10 100
AL =10"*m C )
CLS/1 0.1532 0.1532 0.1532 0.1532 1.25 x 108 0 0
AL=10"%m .
CLS/2 — 0.7700 0.7701 0.7677 - 2.44 x 10° 1586 26,492
AL=10"%m
ENF 0.137% 0.1379 0.1379 0.1379 3769 0 0
AL =10"%m
ENF 0.137% 0.1379 0.1379 0.1379 3750 0 0

AL =10"%m
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one of the three methods: J-intergal, crack tip force
method, or crack closure method. The last two
methods are convenient as the crack tip forces and
displacements are part of the finite element solution.
There are several advantages to the present formu-
lation. The finite element method can be used to
model any type of geometry and loading condition
(the CLS/2 specimen is a good example). Renumber-
ing of nodes and elements as the crack propagates can
be avoided. Friction between the contacting surfaces
of sublaminates can be modeled by using appropriate
friction elements between the top and bottom node,
and using incremental loading. If one is interested in
using the foundation spring model, appropriate foun-
dation springs can be used in place of the rigid
elements in the uncracked portion of the beam. The
present method will be very useful in studying dy-
namic delamination propagation problems[10, 11],
as the energy release rate can be calculated using the
crack closure method. Further, the present method
can be extended to problems of sublaminate buckling
and delaminations in composite plates.
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APPENDIX A

The non-zero coefficients of the 7 x 7 symmetric stiffness
matrix k” are given below. The degrees of freedom in the
appropriate order are uy, ¥, w,, 4, ¥,, w,, and w, (see
Fig. 1). The element length is L, and the width in the
y-direction is assumed to be .unity. The stiffness matrix is
derived for a laminate situated above the x—y-plane, i.e. z
is positive everywhere in the laminate. As noted in Sec. 2,
for a laminate below the x—y-plane, the only difference is in
the sign of b,,. Alternatively, a coordinate transformation
can be used to obtain the stiffness matrix in global coordi-
nates:

kly=ay/L, kiy=by/L, ki,=-—ay/L, kis=-b,L
kyp=dy[L +asL[3, k3= —5as/6, ki=—by/L,
kys= —d, /L +asL/6,
ki=ass/6, kin=2as[3, kiz=Tas[3L, kis=—as/6,
kyy=ass/3L, kiy=—8as[3L, kiy=ay/L, kis=by,/L,
kis=ki, kig=>5as/6, k&= —2as/3,
k¢ =Tass[3L, kg= —8as[3L, ki, =16as/3L.
After removing the w, degree of freedom by using static
condensation, we obtain the 6 x 6 stiffness matrix k as given
below. The non-zero coefficients of k are
ky=ay/L, ] kpy=0by/L, k= —ky,
kys=—ky, kp=d,|L+asL[4,
ky=—as/2, ky=kys, ky=—d,/L+asL/[4,
kg =ass[2, ky=as/L,
kas=kay, kyg=—ksy, ku=ky, ki=ky,

kss=ka, k=K, kes="ks.

APPENDIX B

In this section a brief description of the analytical method
used to compute the strain energy release rate G, is givcn
The elastic strain energy U in the specimens considered in
Sec. 6 are in general given by

U, = (1/2)Pg, (81
where P is the applied load and ¢ is the corresponding
displacement. For the constant load case the strain energy

release rate is simply the derivative of the strain energy U,
with respect to the crack length a. Thus

G =dU,/da = (1/2)P dg/da. (B2)
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The displacements g and strain energy release rate G for the
three specimens considered are given below. It may be
mentioned again that in the following expressions
dyy = 01,3, which is different from D,;. For the DCB
specimen the strain energy has to be doubled.

" gpep = 4Pa’[3d,, + Pajas (B3)
Gpep = 4P%a%d,, + PYas (B4)
ene = Pa’(2d,, + PPJ6d,; + Pl[2as (BS)
Genr = 3Pa’f4d),. (B6)

For the CLS/1 specimen, assuming that the force P is
applied at the center of the bottom sublaminate,

dosi = P( + a)/2a;, + P(l — a)h?(8d,, (B7)
Gersy =P2/4au —P3h2/16d,,, (B8)

In eqn (B8) the second term on the right-hand side rep-
resents the bending effect due to eccentric loading. In[12],
this term was considered to be small and was neglected. For
a homogeneous orthotropic beam d,, = ay,h*/3. Substituting .
in eqn (B8) we obtain Ggg = P?16a,,, which is only
one-fourth of G obtained ignoring the bending effect.

The analtyical solution for CLS/2 is not given here, but
the finite element results given in Table 1 show that the G
for CLS/2 is about five times that of CLS/1.




