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ABSTRACT: A finite element analysis-based micromechanics method is developed
to investigate development of microcracks in a graphite/epoxy composite liquid
hydrogen tank at cryogenic temperatures. The unit cell of the composite is modeled
using finite elements. Periodic boundary conditions are applied to the boundaries
of the unit cell. The temperature-dependent properties including the coefficient
of thermal expansion of the matrix material are taken into account in the analysis.
The thermoelastic constants of the composite are calculated as a function of
temperature. The stresses in the fiber and matrix phases and along the fiber–matrix
interface are calculated. When the laminated composite structure is subjected to
combined thermal and mechanical loads, the macrostrains are computed from the
global analysis. Then, the macrostrains and temperatures are applied to the unit
cell model to evaluate microstresses, which are used to predict the formation of
microcracks in the matrix. The method is applied to a composite liquid hydrogen
storage system. It is found that the stresses in the matrix phase could be large enough
to cause microcracks in the composite.

KEY WORDS: composite material, cryogenics, graphite/epoxy, liquid hydrogen
storage, microcracks, micromechanics, periodic boundary conditions, thermal
stresses, unit cell.

INTRODUCTION

T
HE NEXT GENERATION reusable space launch vehicle is proposed to provide a tenfold
reduction in the cost of launching payloads into space, from 10,000 to $1000 per

pound. Reducing the structure weight of the vehicle is of paramount importance in
reducing the launch cost. Composite materials such as graphite/epoxy offer many
advantages, such as low density, high specific stiffness and specific strength, and low
coefficient of thermal expansion (CTE). Therefore, fiber composite materials are
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candidate materials for cryogenic storage tanks for liquid hydrogen. In this article, we
study the problems in using fiber-reinforced composites at cryogenic temperatures as
occurs in composite tanks used for storing liquid hydrogen (LH2).

When the LH2 composite tank is subjected to combined thermal and mechanical loads,
microcracks develop in the fiber composite, which cause permeation of hydrogen through
the microcracks [1]. This can lead to very dangerous conditions in the vehicle including
catastrophic failure. From a macroscopic perspective, the composite material is considered
to be homogeneous and transversely isotropic or in general, orthotropic. For example, the
laminated plate theory has been formulated based on this assumption. Even when three-
dimensional analyses are used for composite structures, each ply or layer of the composite
is modeled as a homogeneous orthotropic material. This macroscopic approximation has
been found to be satisfactory in most situations including thermal stress analyses. Thus
most of the thermal stress problems in composites focus on the differences in thermal
expansion coefficients between the plies. However, in extreme situations a micromechanics
approach wherein the fiber and matrix phases are differentiated is necessary for accurate
prediction of stresses, and hence failure. The present problem falls in this category. To
predict the failure of a composite structure at macroscopic scale, an investigation of the
micromechanical behavior is necessary to understand the failure mechanisms in the fibers
and matrix at a microscale [2].

Before finite element (FE) methods were widely available, micromechanics analysis of
fiber-reinforced composites was performed using analytical methods, for example, Chen
and Cheng [3]. They analyzed the unit cell of a composite by solving the governing
elasticity equations using an infinite series and employing a combination of Fourier series
and least square methods. The periodic boundary conditions for stresses and displace-
ments were satisfied on symmetric boundaries. Micromechanics analysis methods for
elastic-plastic composites were investigated using the bounding technique by Teply and
Dvorak [4]. The problem of elastic-viscoplastic composites was solved by imposing
continuity of traction and displacement rate at the interfaces between the constituents of a
square unit cell by Paley and Aboudi [5]. A square unit cell model was used to investigate
the behavior of fiber-reinforced composites subjected to shear loading by Nedele and
Wisnom [6]. Marrey and Sankar [7–9] developed micromechanics methods for textile
structure composites using the FE method. Their method considered the effects of stress
gradients on the strength and stiffness properties of the composite.

In the present study, the micromechanics method is combined with a global laminate
analysis to predict the stresses in the fiber and matrix phases accurately. The method is
used to predict the development of microcracks in a composite laminate at cryogenic
temperatures. To predict the development of microcracks in fiber composites, one needs
accurate description of the stresses in the matrix phase and also along the fiber–matrix
interface. The problem of thermal stresses is complicated by the temperature-dependent
properties of the constituent materials. In the present study, a global/local approach is
used wherein traditional structural analysis is used to obtain information on macrostrains
in a ply in the composite laminate. Then the macrostrains along with the local temperature
are used in a micromechanical analysis to obtain detailed information on the stresses in
the constituent phases. Two types of representative volume elements (RVEs) are used in
the micromechanical analyses. In the first one, the RVE is a square with a circular fiber
at the center of the square. In the second, a hexagonal RVE is used. The differences in
thermal stresses in the two RVEs are discussed. The temperature dependence of the matrix
CTE is taken into account in the micromechanics. The microstresses in different types
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of laminates used in a typical LH2 tank are studied and the possibility of microcracking
is discussed. The results indicate that the maximum tensile stresses in the brittle matrix
reach values very close to the tensile strength of the matrix material raising the possibility
of microcrack development in composite liquid hydrogen storage systems.

MICROMECHANICAL MODEL

The microscopic image of a uniaxial fiber-reinforced laminate (Figures 1 and 2) shows
that the fiber arrangement is quite random in reality. However, for analytical/numerical
modeling, it is convenient to assume some repetitive pattern of fiber arrangement. In the
present analysis, both square and hexagonal unit cells are considered. In both cases, the
dimensions are chosen such that the fiber volume ratio is 60%, which is typical of
graphite/epoxy composites. When fibers are arranged in a square unit cell, one can obtain
a maximum fiber volume fraction of 79%. The square unit cell was modeled using 1600
quadratic solid elements with periodic boundary conditions [7–9]. The periodic boundary
conditions ensure displacement compatibility and stress continuity on the opposite faces of
the unit cell.

The hexagonal pattern of unit cell can be found more commonly in fiber–matrix
composites, especially when the composite is fabricated with high fiber volume fraction.
Theoretically, one can obtain a maximum fiber volume fraction of 91% with hexagonal
RVE. In a hexagonal RVE, there is symmetry about the y-axis and also about the �30�

directions. The hexagonal unit cell is modeled using 2400 quadratic solid elements with
periodic boundary conditions [10].

Figure 2. A hexagonal RVE and corresponding FE mesh.

Figure 1. A square representative volume element and corresponding finite element mesh.
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The unit cells are subjected to axial and shear displacements combined with thermal
effects using periodic boundary conditions. The periodic boundary conditions maintain
equal boundary displacements with the adjacent unit cells to satisfy the compatibility
of displacements on opposite faces of the unit cell and enforce the continuity of stresses.
The unit cell is subjected to different strain components individually using the periodic
boundary conditions shown in Table 1 (see Figure 3) [7–9]. For the hexagonal unit cell, the
periodic boundary conditions corresponding to unit value of each strain component are
shown in Table 2 [10]. The equations of periodic boundary conditions corresponding
individual unit strains were embedded in the ABAQUS� input code to perform the FE
analysis.

THERMOELASTIC PROPERTIES OF THE COMPOSITE CONSTITUENTS

For accurate prediction of stresses at cryogenic conditions, one requires temperature-
dependent thermoelastic properties of the constituent materials. In the present study,

Figure 3. Geometry of square and hexagonal unit cells.

Table 2. Periodic boundary conditions for the hexagonal unit cell
for unit values of different strain components.

"x¼1 "y¼1 "z¼1 �xy¼1 �xz¼ 1 �yz¼1

ua1�ua0¼
p

3/2L ua1�ua0¼ 0 ua1�ua0¼0 ua1�ua0¼0 uz1�uz0¼0 vz1�vz0¼0
ub1�ub0¼

p
3/2L ub1�ub0¼0 ub1�ub0¼0 ub1�ub0¼ 0 uc1¼0 wc1¼L/2

va1�va0¼0 va1�va0¼ L/2 va1�va0¼ 0 uc1¼0 uc0¼0 wc0¼�L/2
vb1�vb0¼0 vb1�vb0¼L/2 vb1�vb0¼0 uc0¼0 vc1¼0 wa1�wa0¼ L/2
vc1¼0 vc1¼L/2 vc1¼ 0 va1�va0¼

p
3/2L vc0¼0 wb0�wb1¼L/2

vc0¼0 vc0¼�L/2 vc0¼ 0 vb1�vb0¼�
p

3/2L wa1�wa0¼
p

3/2L
wz1�wz0¼0 wz1�wz0¼0 wz1�wz0¼ t wz1�wz0¼0 wb1�wb0¼

p
3/2L

Table 1. Periodic boundary conditions for the square unit cell
for unit values of different strain components.

"x¼1 "y¼1 "z¼1 �xy¼1 �xz¼1 �yz¼ 1

ux1�ux0¼L ux1�ux0¼0 ux1�ux0¼ 0 vx1�vx0¼ 0.5L wx1�wx0¼L wy1�wy0¼L
vy1�vy0¼0 vy1�vy0¼L vy1�vy0¼ 0 uy1�uy0¼ 0.5L uz1�uz0¼0 vz1�vz0¼0
wz1�wz0¼0 wz1�wz0¼ 0 wz1�wz0¼ t wz1�wz0¼0
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the matrix properties are considered as temperature dependent and the fiber properties as
temperature independent. In most of the advanced composite systems such as aerospace
graphite/epoxy are cured at about 455K. When the temperature rises above the melting
temperature Tm, the epoxy resin becomes a rubbery solid and then becomes a viscous
liquid. When the laminate is cooled down to the glass transition temperature Tg, the epoxy
resin becomes an amorphous solid. The difference in the CTEs for the constituents
under temperature changes causes residual stresses in the composite laminate. Thermal
stresses in composites are largely influenced by matrix thermomechanical properties. Also,
the chemical reaction of epoxy causes shrinkage, which rises residual stress in the matrix
phase. In this study, the residual stress due to chemical reaction of epoxy is assumed to be
negligible.

In this study, the 977-3 epoxy system is used as the matrix material. The CTE and the
Young’s modulus of this material system [11] as a function of temperature are shown in
Figure 4, respectively. The actual and average CTE of the epoxy resin are nonlinear with
respect to temperature. The average CTE from a reference temperature is used as input in
the ABAQUS� FE program. The average CTE is calculated by using the relation

��� ¼

R Tcryogenic

Tcuring
�ðT Þ dT

T� Tcuring
ð1Þ

In the above equation, the curing temperature Tcuring is 455K where the epoxy resin
becomes solid during the curing process of composite laminates. The cryogenic tempera-
ture Tcryogenic is 50K where the liquid hydrogen boils.

When the temperature decreases from curing to cryogenic temperature, the actual CTE
decreases from 73.0� 10�6/K to 18.1� 10�6/K and the Young’s moduli increases from 1.2
to 5.2MPa. The tensile strength for heat-cured epoxy is in the range of 70–90MPa at room
temperature [11]. In general, the strength of epoxy increases from curing to cryogenic
temperature since the epoxy becomes brittle [11,12], but no data are available in the
complete range of temperatures up to liquid hydrogen temperature. In this study, the
tensile strength of the epoxy is assumed as 100MPa at cryogenic temperature.
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Figure 4. CTE and Young’s modulus of epoxy as a function of temperature.
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The transversely isotropic properties of the glass and graphite fibers used in this study
are shown in Table 3 [13,14]. The material properties of fiber are assumed to be
independent of temperature changes.

ESTIMATION OF THERMOELASTIC CONSTANTS

The unit cell model is used to estimate the elastic constants and the CTE using the
FE-based micromechanics method. The fiber volume fraction was assumed to be 60%.
The thermoelastic stress–strain relations of the composite material at macroscale can be
written as:

�1

�2

�3

�23

�31

�12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

SYM C55 0

C66

2
666666664

3
777777775

"1

"2

"3

�23

�31

�12

0
BBBBBBBB@

1
CCCCCCCCA
��T

�1

�2

�3

�23

�31

�12

0
BBBBBBBB@

1
CCCCCCCCA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð2Þ

The elastic constants and the CTEs in Equation (2) were obtained by performing 7 sets of
micromechanical analyses. In the first 6 cases, the temperature difference �T was set to
zero and the unit cell was subjected to periodic boundary conditions corresponding to one
of the macrostrains as given in Tables 1 and 2. The macrostresses in the unit cell were
calculated as the volume average of the corresponding microstress components:

�i ¼
1

V

XNELM

k¼1

�ðkÞi V ðkÞ, i ¼ 1, 6 ð3Þ

In Equation (3), k denotes the element number, NELM is the total number of elements in
the FE model, V (k) the volume of the kth element, and V the volume of the unit cell. The
average or macrostresses are used to calculate the stiffness coefficients in a column
corresponding to the nonzero strain. To calculate the CTEs, the unit cell is subjected to
periodic boundary conditions such that the macrostrains are identically equal to zero and

Table 3. Material properties of fibers used in the verification problem.

E-glass fiber Graphite fiber (IM7)

E1 (GPa) 72.4 263
E2, E3 (GPa) 72.4 19
G12, G13 (GPa) 30.2 27.6
G23 (GPa) 30.2 27.6
�12, �13 0.2 0.2
�23 0.2 0.35
�11 (10�6/�C) 5.0 �0.9
�22, �33 (10�6/�C) 5.0 7.2
Tensile strength (MPa) 1104 1725
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a uniform �T is applied to the unit cell. From the macrostresses, the CTEs can be
calculated as:

�f g ¼
1

�T
C½ ��1 �f g ð4Þ

In this study, the properties and residual stresses were calculated at 50K, which
corresponds to �T¼�405K. The elastic constants, such as Young’s moduli, shear
moduli, and Poisson’s ratios can be obtained from the compliance matrix S¼C�1.

The thermoelastic constants determined from the micromechanical analyses are
compared with available empirical formulas in Table 4. Halpin–Tsai [13] equations are
used to calculate the approximate elastic constants and Schaprey’s formulas [13] are used
for the CTEs in Table 4. The results from the FE model and the empirical formulas agree
reasonably well. The elastic moduli E1 and E2 from the FE models and the empirical
formulas differ by less than 4%. However, the transverse modulus is very sensitive to the
geometry of the unit cell. Since Halpin–Tsai equations are empirical, the method cannot
accurately predict the transverse modulus. There are no simple solutions to estimate the
elastic properties G23 and v23 [13]. In the present study, the properties G23 and v23 are
estimated by the Halpin–Tsai [13] equations and the difference is comparatively larger
than the other results.

To verify the transverse isotropy of the square and hexagonal unit cells, the shear
modulus G23 calculated from the transverse Young’s modulus and Poisson’s ratio is
compared with the G23 calculated using the results from the FE analysis. If the composite
is truly transversely isotropic, then it should satisfy the relation G23 ¼ ðE2=2ð1þ v23ÞÞ.

Table 4. Results of elastic constants for glass/epoxy and graphite/epoxy laminates.

Elastic
constants

Empirical
formulas

(EMP)

Square unit cell (SQR) Hexagonal unit cell (HEX)

Difference
between
SQR and
HEX (%)

FE
result

Difference
between
SQR and
EMP (%)

FE
result

Difference
between
HEX and
EMP (%)

Glass/
epoxy

E1 (GPa) 45.4 45.4 0.13 45.5 0.13 0.26
E2, E3 (GPa) 19.4 19.7 2.02 16.3 18.5 17.3
G12, G13 (GPa) 6.00 6.10 1.60 5.59 7.31 8.30
G23 (GPa) 7.71 4.62 66.8 5.83 32.2 26.1
�12, �13 0.260 0.253 2.83 0.260 0.08 2.91
�23 0.255 0.275 7.35 0.391 33.1 38.5
�11 (10�6/�C) 5.41 5.45 0.75 5.46 0.91 0.16
�22, �33 (10�6/�C) 9.92 9.04 9.75 9.27 7.03 2.54

Graphite/
epoxy

E11 (GPa) 160 159 0.43 160 0.10 0.33
E22, E33 (GPa) 11.1 11.5 3.75 10.8 2.31 5.92
G12, G13 (GPa) 5.90 5.98 1.41 5.50 7.17 8.01
G23 (GPa) 4.05 3.40 19.0 3.72 8.99 9.20
�12, �13 0.260 0.257 1.29 0.254 2.29 0.98
�23 0.367 0.417 12.1 0.448 18.1 7.37
�11 (10�6/�C) �0.712 �0.698 2.00 �0.685 3.94 1.86
�22, �33 (10�6/�C) 12.1 11.6 4.91 11.6 4.17 0.71
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As shown in Table 5, the difference in the shear moduli calculated from the two methods is
small for the hexagonal unit cell. Hence, the hexagonal unit cell model can be considered
as more realistic for fiber-reinforced composites [2]. Also, the micromechanics method
provides better results for lamina properties compared to empirical formulas.

EFFECTS OF FIBER VOLUME FRACTION

The effect of fiber volume fraction on the thermal coefficients of graphite/epoxy
composite was analyzed using the micromechanics method. Figure 5 shows the variation
of longitudinal and transverse thermal coefficients as a function of fiber volume fraction
for glass/epoxy and graphite/epoxy composites at cryogenic temperature. The CTEs
estimated using both square and hexagonal unit cells are very close. It should be noted
that the graphite fiber has a negative thermal coefficient, and also the product of thermal
coefficient � and Young’s modulus (�E ) is almost equal for the fiber and matrix. Hence
the longitudinal thermal coefficients are negligibly small and they change sign as the fiber
volume fraction is varied. At about 40% fiber volume fraction, the longitudinal thermal
coefficient is almost equal to zero. The transverse thermal coefficient also reduces due to
increase in fiber volume fraction because of the reduction in the effect of matrix material.
The results show that the micromechanics method will be useful in developing a new
composite material system for various applications by changing the combination of the
constituent materials.
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Figure 5. Longitudinal and transverse CTE with various fiber volume fractions for glass/epoxy and graphite/
epoxy laminates at T¼50 K.

Table 5. Comparisons of G23 for square and hexagonal unit cells
to test transverse isotropy.

Square cell (MPa) Hexagonal cell (MPa)

G23 E23=2ð1þ v23Þ % Error G23 E23=2ð1þ v23Þ % Error

Glass/epoxy 4.62 7.74 67.5 5.83 5.91 1.41
Graphite/epoxy 3.40 4.06 19.3 3.72 3.74 0.56
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PREDICTION OF STRESSES AT MICROSCOPIC LEVEL

The micromechanics method was extended to estimate the microstresses of the graphite/
epoxy composite laminate under combined thermal and external loads. The procedure
used to obtain the relation between macro- and microstresses is described in the algorithm
shown in Figure 6. Six independent sets of unit strains are applied to the unit cell
boundary as explained in the previous section and microstresses are calculated in each
element corresponding to the unit strain states. The temperature in the unit cell was also
made equal to the temperature of the structure. The individual microstresses are multiplied
by laminate strains in each layer calculated using the laminate theory [13].

The microstresses obtained by superposition are used to calculate the maximum and
minimum stresses in each finite element in the unit cell model. The failure of the laminate
can be predicted by using the maximum stress criterion for the fiber and matrix phases.
The maximum stress criterion is reasonable as the fiber and matrix are expected to behave
in a brittle manner at cryogenic temperature. The tensile strength of graphite fibers is
taken as 1725MPa and that of epoxy at cryogenic temperature is �100MPa.

The graphite/epoxy composite laminates (IM7/977-3) with various stacking sequence
(Specimen A: [0]s; Specimen B: [0/90]s and Specimen C: [0/45/90]s) were subjected to
thermal stresses at cryogenic temperatures by using the FE-based micromechanics
method. The thickness for each layer of the specimens is 0.07mm. For the various
laminated specimens, the longitudinal and transverse strains at the laminate level at
cryogenic temperature (�T¼�405K) were calculated using the laminate theory and they
are presented in Table 6. The microlevel stresses were obtained by the superposition
principle as described above. In the case of plane stress normal to the laminate plane,
the strain in the thickness direction can be calculated by:

"3 ¼
�C31ð"1 � �1�T Þ � C32ð"2 � �2�T Þ

C33
þ �3�T ð5Þ

Macrolevel Microlevel

Composite structure subjected
to external and thermal loads

Apply laminated plate
theory

Obtain macrostrain results for
each layer (εL, εT, γLT)

Unit cells subjected to six independent sets of
unit strain and temperature change

Compute microstresses in each element

Use superposition to compute the microstresses
in the composite structure from the macrostrains

Check failure of constituent phases based on the
strength properties of fiber and matrix

Figure 6. Flow chart of algorithm used to predict the failure due to microstresses.
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The macromechanical or structural analysis also provides stresses in each ply of the
composite. These stresses can be expressed in the corresponding principal material
coordinate system as shown in Table 7. The microstresses in the fiber and matrix phases
are estimated using the micromechanics methods, and the principal stresses �1 and �2 are
calculated based on the microstress results as shown in Table 7. The difference in principal
stresses calculated using the square and hexagonal cells are presented in Table 8.

Table 7. Maximum principal stresses in the fiber and matrix phases
in the unit cell of various graphite/epoxy laminates.

Sample �

Macroanalysis Microanalysis

LPT

Square cell Hexagonal cell

Fiber (MPa) Matrix (MPa) Fiber (MPa) Matrix (MPa)

�L �T �LT �1 �2 �1 �2 �1 �2 �1 �2

A 0 0 0 0 1.78 �36.9 39.4 �20.7 3.29 �33.8 41.3 �10.1

B 0 �24.9 46.4 0 54.3 �104 63.4 �35.5 51.2 �91.0 63.4 �21.8
90 �92.9 49.9 0 59.0 �217 65.4 �36.3 55.2 �204 66.6 �22.9

C 0 �54.3 43.1 7.76 50.8 �155 69.2 �34.2 47.7 �147 68.4 �21.4
45 16.2 39.5 �2.85 45.3 �33.5 61.3 �33.4 43.3 �23.4 61.3 �19.7
90 �136 47.3 �7.76 55.9 �291 71.4 �35.4 52.2 �283 71.1 �22.7

Table 8. Percentage difference in results for principal stresses in the unit cell
of various graphite/epoxy laminates.

Specimen �

Fiber (MPa) Matrix (MPa)

�1 (%) �2 (%) �1 (%) �2 (%)

A 0 84.7 �8.56 4.76 �51.2

B 0 �5.60 �12.1 �0.10 �38.5
90 �6.33 �5.99 1.87 �37.0

C 0 �6.16 �4.92 �1.19 �37.5
45 �4.57 �30.1 0.03 �41.2
90 �6.61 �2.85 �0.39 �36.1

Table 6. Macrostrains in different laminates due to thermal loads (�T¼�405 K).
The subscript z denotes the thickness direction.

Sample � "L (10�3) "T (10�3) "Z (10�3) �LT (10�3) �LZ (10�3) �TZ (10�3)

A 0 0.277 �4.71 �4.71 0 0 0

B 0 0.0476 �0.382 �6.59 0 0 0
90 �0.382 0.0476 �6.63 0 0 0

C 0 �0.130 �0.648 �6.406 1.410 0 0
45 0.316 �1.094 �6.369 �0.518 0 0
90 �0.648 �0.130 �6.449 �1.410 0 0

10 S. CHOI AND B. V. SANKAR



The results for principal (micro) stresses �1 and �2 in the fiber and matrix phases are
shown in Table 7. For the unidirectional laminate (Sample A), the laminate macrostresses
calculated using the laminate theory is zero since the laminate undergoes free thermal
contraction. However, the stresses at microscale are generated because of contraction
between the fiber and the matrix. The difference in principal stresses calculated using the
square and hexagonal cells are shown in Table 8. The maximum principal stress is
relatively consistent for both square and hexagonal unit cells, but the minimum principal
stress in the matrix is reduced by �40%. In the case of unidirectional laminate (Sample A),
the stresses in the fiber are very small compared to the matrix stresses.

The results from the FE simulation can be used to compute the normal and shear
stresses at the fiber–matrix interface in the unit cell. The normal and tangential stress
components were calculated using the transformation matrix given in Equation (6).

�n

�s

�ns

2
64

3
75 ¼

cos2 � sin2 � 2 sin � cos �

sin2 � cos2 � �2 sin � cos �

� sin � cos � sin � cos � cos2 � � sin2 �

2
64

3
75

�x

�y

�xy

2
64

3
75 ð6Þ

where � is the angle measured from the x-axis as shown in Figure 7.
The normal and shear stresses around the periphery of the fiber are investigated when

the uniaxial laminate is subjected at the cryogenic temperatures �T¼�405K without
external loads. To compare the results for both unit cells, the interfacial stresses are
plotted for the half region of the model (90�<�<270�). The angle is measured from the
horizontal axis of the model. From the results shown in Figure 8, one can see that the
absolute values of interfacial normal and shear stresses are lower for the hexagonal unit
cell. This means that the interfacial fracture between fiber and matrix is less likely to occur
in a hexagonal unit cell than in a square unit cell.

In real composite, fiber distribution is closer to the hexagonal pattern, and hence the
interfacial stresses will be less.

APPLICATION TO THE LIQUID HYDROGEN COMPOSITE TANK

The micromechanics method is used to predict the failure of the LH2 composite tank
due to combined thermal and external loads. The LH2 composite tank is made of a
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θ θ

τns
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Figure 7. Normal and shear stresses at the interface of fiber and matrix of square and hexagonal unit cells.
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honeycomb composite sandwich structure [1]. The inner face sheet is a 13-ply, IM7/977-2
laminate (0.066 in. thick) with the stacking sequence [45/903/�45/03/�45/903/45]T. The
outer face sheet is a 7-ply, IM7/977-2 laminate (0.034 in. thick) with the stacking sequence
[65/0/�65/90/�65/0/65]T. The material properties used for the IM7/977-2 laminates are
estimated in Table 2. The honeycomb core is Korex 3/16�3.0 (1.5 in. thick). The elastic
constants of the core are E1¼E2¼ 4.14MPa, E3¼ 137.9MPa, G12¼ 4.14MPa,
G13¼ 74.5MPa, G23¼ 15.9MPa, v12¼ 0.25, v13¼ v23¼ 0.02. The thermal expansion of
the honeycomb core is assumed to be zero.

The LH2 composite tank is subjected to appropriate boundary conditions in the
ABAQUS� FE model to simulate the situation at which it failed during proof test [1]. The
actual LH2 composite tank was modeled using eight-node solid elements (see Figure 9).
The quarter model of the composite tank has 137 elements with 75 integration points in the
thickness direction. The layup configuration of the composite laminates is specified in the
layered solid elements. The IM7/997-2 laminate properties used for the macromodel are
given in Table 4.

Figure 9. Maximum principal stress distribution in the LH2 graphite/epoxy composite tank. Tank
pressure¼10 kPa and temperature¼50 K (�T¼�405 K). The arrow indicates where the peak stress occurs.
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Figure 8. Interfacial normal and shear stresses of uniaxial graphite/epoxy laminate system at �T¼�405 K.
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The macrolevel analysis was performed to predict the microstress at the location where
the peak stress occurs when the composite tank is subjected to internal pressure at
cryogenic temperature. The analysis investigated two cases. In the first case, the tank was
exposed to cryogenic temperature without internal pressure. In the second case, an internal
pressure was applied in addition to the cryogenic temperature. The displacement contours
shown in Figure 9 correspond to a pressure of 10 kPa and �T¼�405K. The location
denoted by the arrow in Figure 9 was selected for further investigation of failure due to
microstresses. The macrolevel strains and curvatures in the longitudinal and transverse
fiber directions were computed using the FE analysis (Tables 9 and 10). The microstresses

Table 9. Laminate macrostrains used to obtain the microstresses in the inner and outer
facesheets of the sandwich composite at T¼50 K without internal pressure.

Layer � "L (10�3) "T (10�3) "Z (10�3) �LT (10�3) �LZ (10�3) �TZ (10�3)

Inner facesheet 45 �0.149 �0.227 �5.43 �0.299 0.512 �0.0831
90 �0.0386 �0.338 �5.43 0.0773 0.422 0.302
�45 �0.226 �0.150 �5.43 0.299 �0.0898 �0.510

0 �0.338 �0.0380 �5.43 �0.0748 0.296 �0.425
�45 �0.224 �0.151 �5.43 0.300 �0.0965 �0.508

90 �0.0374 �0.337 �5.43 0.0723 0.428 0.289
45 �0.152 �0.222 �5.43 �0.300 0.506 �0.103

Core � �0.337 �0.0367 �5.43 �0.0697 0.283 �0.431

Outer facesheet 65 �0.0899 �0.203 �5.51 �0.298 0.543 �0.452
0 �0.296 0.00423 �5.51 0.106 �0.182 �0.684

�65 �0.00858 �0.283 �5.51 0.162 �0.698 �0.123
90 0.00447 �0.296 �5.51 �0.107 0.686 �0.185
�65 �0.00792 �0.283 �5.51 0.161 �0.701 �0.121

0 �0.296 0.00470 �5.51 0.108 �0.188 �0.687
65 �0.0904 �0.0200 �5.51 �0.300 0.544 �0.463

Table 10. Laminate macrostrains used to obtain the microstresses in the inner and outer
facesheets of the sandwich composite subjected to a pressure of 10 kPa at T¼50 K.

Layer � "L (10�3) "T (10�3) "Z (10�3) �LT (10�3) �LZ (10�3) �TZ (10�3)

Inner facesheet 45 �0.147 0.419 �5.90 �0.731 3.11 �3.69
90 0.501 �0.230 �5.90 �0.563 4.81 �0.407
�45 0.412 �0.144 �5.90 0.732 �3.67 �3.13

0 �0.233 0.500 �5.90 0.553 �0.371 �4.81
�45 0.405 �0.141 �5.89 0.734 �3.64 �3.16

90 0.498 �0.236 �5.89 �0.543 4.81 �0.335
45 �0.138 0.398 �5.89 �0.735 3.18 �3.62

Core � �0.238 0.497 �5.89 0.534 �0.299 �4.81

Outer facesheet 65 0.303 �0.366 �5.57 �0.622 5.30 0.118
0 �0.485 0.422 �5.57 �0.115 2.36 �4.75

�65 0.214 �0.280 �5.57 0.770 �3.31 �4.15
90 0.421 �0.487 �5.56 0.119 4.75 2.37
�65 0.212 �0.280 �5.56 0.774 �3.30 �4.17

0 �0.489 0.421 �5.56 �0.122 2.39 �4.75
65 0.306 �0.375 �5.56 �0.618 5.32 0.165
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in the inner and outer facesheets were calculated using the superposition method described
in the previous section.

The results of the maximum and minimum principal stresses in the fiber and matrix
phases in each layer of the laminate are shown in Table 11. When the cryogenic
temperature is applied to the composite tank without tank pressure, the maximum
principal stress in the matrix phase (70MPa) is below its strength (100MPa). The result
indicates that microstresses in the matrix phases, although very high, are not large enough
to initiate microcracks. However, when the tank pressure increases and reaches 10 kPa, the
microstress in the matrix in the inner facesheet exceeds the tensile strength indicating the
possibility of microcrack development.

CONCLUSIONS

The LH2 composite tank proposed for space vehicles is exposed to extreme thermal and
external loads. A finite element (FE)-based micromechanics method has been developed
to predict the temperature-dependent thermomechanical properties of fiber composites
such as graphite/epoxy. The unit cell was modeled using periodic boundary conditions.
Temperature-dependent elastic constants and CTE of the matrix material were used in the
FE analysis. The micromechanics method yields detailed microstress distribution in the
fiber, matrix, and the interface between the fiber and the matrix. These microstresses can
be used to predict microcracking of the composite at various temperatures with or without
external loads. The method was used to analyze the stresses in the LH2 composite tank.
The stresses in the matrix phase seem to exceed the tensile strength of the matrix material
indicating that microcracking is a possibility. However, matrix strength measured at
cryogenic temperatures should be used for the accurate prediction of the formation of
microcracks.

Table 11. Maximum and minimum principal stresses in the fiber
and matrix phases in the inner and outer facesheets.

Layer �

Without tank pressure at T¼ 50 K Tank pressure¼ 10 kPa at T¼50 K

Fiber (MPa) Matrix (MPa) Fiber (MPa) Matrix (MPa)

�1 �2 �1 �2 �1 �2 �1 �2

Inner facesheet 45 58.8 �138 70.9 �2.71 77.8 �167 101 �21.2
90 57.8 �107 69.3 �2.47 121 �33.5 93.2 �27.2
�45 59.6 �157 71.0 �2.49 92.5 �37.1 96.4 �23.0

0 60.6 �185 71.3 �2.73 79.0 �162 90.0 �14.1
�45 59.6 �156 71.0 �2.50 90.8 �38.1 96.4 �22.8

90 57.8 �107 69.3 �2.50 121 �33.7 92.9 �27.1
45 58.8 �139 70.9 �2.74 77.5 �166 101 �21.4

Core – – – – – – – – –

Outer facesheet 65 59.1 �123 71.3 �3.79 84.8 �78.0 93.1 �27.5
0 61.1 �175 71.7 �3.74 80.8 �242 99.3 �16.2

�65 58.2 �101 70.4 �3.99 74.7 �76.8 96.9 �19.0
90 58.1 �97.5 70.3 �3.87 100 �45.7 96.2 �25.2
�65 58.2 �101 70.4 �4.00 74.7 �77.3 97.0 �19.0

0 61.1 �175 71.7 �3.75 80.8 �244 99.5 �16.3
65 59.1 �123 71.4 �3.82 85.5 �77.7 93.0 �27.6
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