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ABSTRACT: Based upon previous results of direct micromechanical method
(DMM) analysis of the representative volume element (RVE) of a plain-weave
textile composite, two methods for predicting failure envelopes are presented:
a parametric ellipse-fitting scheme and a 27-term quadratic stress-gradient failure
criterion. Both include the consideration of micro level stress gradients and
effectively predict failure in agreement with the DMM. The parametric ellipse-
fitting method was found to agree with DMM results to within a few percent.
The quadratic failure criterion was found to agree within 9.3%, but the method
is more robust in its-ability to predict failure for complex loading cases.
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INTRODUCTION

ESIGNS OF CURRENT textile composite structures are often based upon well-known
Dphenomenological failure criterion. Although micromechanical models have been
successfully employed in predicting thermo-elastic constants of fiber-reinforced composite
materials, their use for strength prediction in multiaxial loading conditions is not practical,
as computational analysis must be performed for each loading case. The development

*Author to whom correspondence should be addressed. E-mail: sankar@ufl.edu

jGraduate student (rkarkkai@ufl.edu), currently with Army Research Laboratory, Aberdeen, MD, USA.
*Newton C. Ebaugh Professor.

SResearch engineer.

Figures 1, 3 and 6-10 appear in color online: http://jcm.sagepub.com

Journal of COMPOSITE MATERIALS, Vol. 00, No. 00/200? 1

0021-9983/0?/00 0001-21 $10.00/0 DOI: 10.1177/0021998302069905
© 200? SAGE Publications

+ [Ver: 8.07r g/W] [30.8.2006-6:49pm] [1-22] [Page No. 1] FIRST PROOFS ~ K:/Journals/Inprocess/Sage/Jem/JCM 089905.3¢ ~ (JCM)  Paper: JCM 069905 Keyword


proofreader
Text Box
1,4


+

2 R. L. KARKKAINEN ET AL.

of commonly employed failure theories has generally been based upon the mechanical
behavior of unidirectional composite materials. However, woven or braided textile
composites present increased microstructural complexity and unique challenges as
compared to a unidirectional composite. Laminate analysis, property homogenization,
and other common approaches will no longer apply. Thus, current designs of textile
structures will not be optimized for maximum damage resistance and minimum weight.
The employment of textile composites requires unique approaches to micromechanical
analysis, the results of which can be incorporated into an appropriate failure theory.

Phenomenological failure criteria are still the predominant choice for design in industry.
There are three major types of engineering failure criteria for unidirectional composite
materials: maximum stress criterion, maximum strain criterion, and quadratic interaction
criterion, such as the Tsai—Hill and Tsai—Wu failure theories [1]. Towards development
of new failure theories, most of the micromechanical modeling work done thus far have
focused on predicting thermo-mechanical properties. Most of the current analytical and
numerical methodologies developed to characterize textile composites assume that the
textile composite is a homogeneous material at the macroscopic scale.

A more detailed survey of current research in the areca of failure modeling of textile
composites is offered in a companion study [2] to the current paper. A sampling of these
works is presented below for clarity and ease of reference.

Initial and progressive failure of a plain weave composite [3] using finite element analysis
has provided insight into the failure modes under axial loading conditions. The capability
for more detailed stress fields in the representative volume element (RVE) under
investigation has been included [4], and techniques have been developed to minimize
required computation times [5]. Accurate stress distributions for plain weave composites
in flexure have been investigated, and-effective stiffness properties for multi-layer
specimens have been predicted [6]-

The binary model [7,8] utilizes 1-D line elements to represent fiber tow embedded within
the bulk matrix. This allows for quick and efficient finite element analysis of any textile
weave of interest, and is robust for alteration of micro-architectural parameters such
as tow waviness, tow misalignment, varying weave architectures, etc. Some micro-level
stress field detail is lost while still maintaining accurate macro-level representation.

The analytical method referred to as the mosaic model and its adaptations [9,10]
represent a textile composite RVE as an assemblage of homogenized blocks, each with
unidirectional composite or matrix properties. Classical laminated plate theory can be used
to determine the global stiffness matrix of the RVE. For macroscopically homogeneous
load cases, good agreement has been shown with experimental data.

Effective prediction of compressive strength of braided textile composites using a
detailed finite element method (FEM) micromechanical model has been performed [11],
which shows good comparison to experimental results in a parallel study [12]. Biaxial
loading is considered in both the experimental and computational analyses. Buckling
analysis has been performed, and the effects of tow waviness and micro-architecture on the
compressive strength are shown.

Modeling of damage initiation and progression utilizing finite element methods and
new methods to replace traditional property knockdown schemes after element-failure
have been accomplished for general composite structures [13]. This utilizes a relatively
new failure criterion [14] which in itself has been used to effectively predict damage
in composite materials by analysis of the strain state including dilatational induced
damage initiation.
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A previous study by the authors [2] extended a method, known as the direct
micromechanics method [15] (DMM), to develop failure envelopes for a plain-weave
textile composite under plane stress in terms of applied macroscopic stresses. The micro-
scale stresses within the RVE were computed using finite element methods. The relation
between the average macrostresses and macro-strains provide the constitutive relations
for the idealized homogeneous material. The micro-stresses are used to predict the failure
of the yarn or matrix, which in turn translates to failure of the textile composite.

The current paper presents methods based upon the results of a previous study [2]
to develop a failure criterion for textile composites. The methodology herein can then be
extended in general to any textile composite of interest. Using the DMM, the failure
envelope is developed for in-plane force resultants, with and without moment resultants.
No currently accepted failure criteria exist that may be used explicitly for the analysis
of textile composites, or which include this ability to account for stress gradients at the
micromechanical level. Thus the methods and results employed herein are used to develop
phenomenological failure criteria for textile composites. Based -on the DMM results,
two methods are presented which may be used to predict failure of a textile'composite.
The first is a parametric method based on prediction of regular trends in the failure
envelopes of a given 3D stress space. The second method represents the formulation
of a 27-term quadratic failure equation that can be evaluated to determine failure of the
textile under any general force and moment resultants.

METHODS
Finite Element Micromechanical Method

Micromechanical analysis has been performed to determine the stiffness, strength,
and failure envelopes of a plain weave textile composite. Details of this analysis are
available in a previous study [2], but methods therein are presented here in an abbreviated
fashion. In the previous study, stress gradient effects are investigated, and it is assumed
that the stress state is not uniform across the RVE. This represents an extension of
the micromechanical models used to predict the strength of textile composites [15-18].
The stress state s defined in terms of the well-known laminate theory force and moment
resultants, [N] and [M], in which the latter term captures the presence of a stress
distribution or gradient that is typically neglected. Furthermore, structural stiffness
coefficients analogous to the [A4], [B], [P] matrices are defined. In this approach, these
structural stiffness coefficients are computed directly from the micromechanical models,
rather than making conventional approximations. Thus, in the current paper, failure
envelopes and stress analysis are described in such terms. Some of the basic assumptions
of micromechanics will still apply to the current work. For example, it is assumed that
the RVE is truly representative at the macro level. Further, as will be shown more
clearly in discussion of the DMM for failure analysis, it is assumed that the micro level
(element level) failure criteria is known. Also, the criteria developed later in this paper
apply to plane stress states. For thick composites which may show appreciable through
thickness stresses, extra analyses extending the current methods must be performed.

The textile architecture under investigation is a plain weave, and this RVE is shown
in Figure 1. This architecture was chosen from a literature source [19] that provided
a complete and detailed description of the needed geometrical parameters.
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Figure 1. RVE geometry of a plain weave textile composite.

Given parameters are representative of micro-architectures as experimentally observed via
SEM or standard microscope. Total fiber volume fraction, given these dimensions, will be
25%, incorporating the fact that the resin-impregnated towitself has a fiber volume fraction
of 65% (this is calculated directly from the finite element software ABAQUS® which yields
element volumes as outputs, thus the volume of all matrix elements can be compared to the
volume of all tow elements). Though this volume fraction may secem low for structural uses,
it can be representative of many significant low-load, impact-resistant applications, such as
automotive lightweight body panels. It should be noted thata number of parameters such as
tow spacing, tow dimensions, shape of tow cross section, RVE dimensions, etc., are required
to exactly specify the textile geometry. These specifications will have a significant effect on
micromechanical modeling. Consequently, care should be taken when comparing the results
to ensure that textile geometries under comparison are equivalent.

In order to evaluate the stiffness and strength properties of the textile composite
under consideration, the DMM is essentially employed as an analytical ‘laboratory’ that
quickly and effectively simulates physical testing and experimental procedures. Though
experimental verification remains a baseline of veracity to FEM analysis, once such checks
have been performed this procedure effectively overcomes the limitations of physical
apparatus and can rapidly populate diverse failure spaces. Also, results achieved from
the DMM are completely three-dimensional stress or strain fields, i.e., the results can
be visualized throughout the thickness of the specimen. This overcomes the limitations
inherent to physical application of experimental stress analysis techniques, which are
labor-intensive and generally limited to surface visualizations.

In the direct micromechanics method (DMM), the RVE is subjected to macroscopic force
and moment resultants, which are related to macroscopic strain and curvature according to:

{{N}}:[[A] [B]}{{e}} O
{M} [Bl [D]]|{x}

Thus the constitutive matrices must be evaluated to determine this correlation.
Note that Equation (1) borrows the nomenclature of classical laminate theory but does
not represent a direct employment of this theory. This is to say that such nomenclature
is used to incorporate the consideration of micro level stress gradients as mathematically

accounted for by inclusion of moment resultant terms (M;). Once this relationship
has been determined, a macroscopic deformation can be applied using an FEM code.
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Failure Criteria for Textile Composites 5

In this way, the FEM results for stress in each element yield the microstresses resulting
from an applied force or moment resultant.

The RVE is subjected to independent macroscopic unit deformations in order to
fully evaluate the stiffness matrices of Equation (1). In each of the six cases, a single unit
strain or a single unit curvature is applied, and all other deformation terms are set to zero,
and the appropriate periodic boundary conditions are applied [2,14].

The FEM results for cach element yield the microstresses resulting from a given
macro-level strain and curvature. The corresponding macro-level force and moment
resultants in each case can be computed by averaging the microstresses over the entire
volume of the RVE:

1
N; = (ab> ZG,V‘ )
M = (%) > zopye 3)

where e denotes summation over all elements in the FE model of the RVE, V¢ is
the volume of the eth element, and ¢ and b are the dimensions of the RVE as shown
in Figure 1. These equations determine the overall macro level force and moment
resultants, which are calculated as the net effect of the microstress field throughout the
volume of the RVE as taken from the FEM results. The volume averaging accounts
for the fact that smaller elements represent a smaller contribution to the total macro
level force or moment resultant, and vice versa.

Thus the constitutive matrices of Equation (1)can be found by independently evaluating
six unit strain and curvature cases, in tandem with Equations (2) and (3). By applying
the appropriate displacements which correspond to a given unit strain or curvature case,
the stiffness coefficients in a column corresponding to the non-zero strain can be evaluated
directly from the force and moment resultant values as calculated from the finite element
micro stresses via Equations (2) and (3). Thus the six load cases completely describe
the six columns of the [4], [B], [P] matrix. Again, the reader is referred to our previous
work [2] for more details on these methods.

Direct Micromechanics Method for Failure Analysis

The method described above can be used to predict failure strength by comparing
the computed microstresses in each element against failure criteria for the constituent yarn
and matrix-of the textile composite. The microstresses in each element can be extrapolated
from the preliminary RVE analysis (described above) of each of the six linearly
independent macrostrain components. The microstress state for a general applied force
or moment resultant is obtained by superposing multiples of the results from the unit
macrostrain analysis:

. ol e
(0} =[FN S @
where the 6 x 6 matrix [F°] contains the microstress in element e resulting from the unit

strain and curvature analysis. For example, the microstress o, in the RVE for £,0=10.05
and «, =0.003 m~ ! is calculated as 0, =0.05F>; +0.003 F>s.
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| Select the state of macrostress [N], [M] |
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Figure 2. Flowchart for failure analysis using the direct micromechanics method.

Failure is checked on an element-by-element basis, and the failure criterion of each
element can be selected appropriately based upon whether it is a yarn or matrix element.
It is assumed that the entire textile composite has failed, even if only one of the yarn
or matrix elements has failed. Although this may be considered conservative, it is
realistically representative of the initial failure ‘of the composite. It can be thought
of by analogy to the first-ply failure of a laminated composite, i.e., the point at which
property loss becomes significant, even if remaining material can continue to support
applied loading. For the isotropic matrix elements, the maximum principal stress
criterion is used to evaluate element failure. For fiber tow elements, the Tsai-Wu failure
criterion is used. This criterion is more suitable to the orthotropic nature of the fiber tow,
which is essentially a unidirectional composite at the micro level. Microstresses in the
yarn are transformed to local/'coordinates tangent to the path of the yarn and compared
to strength coefficients for a unidirectional composite, using the Tsai—-Wu criterion.

A flow chart that describes the DMM procedure is shown in Figure 2. Failure envelopes
are generated by first selecting a macrostress state to investigate. Then the macrostrains
and curvatures resulting from this applied loading are calculated from Equation (1). The
resulting stress field for the entire RVE is then calculated by Equation (4), based on the
scaled superposition of the results from FEM analysis of the unit load cases. Failure is
then checked in each element against a given failure criterion. This cycle is then repeated
while progressively increasing a selected force or moment resultant, and holding all others
constant until an element level failure criterion is exceeded. If a particular failure criterion
isexceeded, the element and the RVE are considered to have failed, which then defines the
threshold of the failure envelope at a given point. Thus failure envelopes for the textile
composite can be generated in various force and moment resultant spaces.

RESULTS
A Parametric Approach to Predicting Failure Envelopes for a Given 3D Stress Space
Based on an extension of the results presented in more detail in [2] and shown here

in Figure 3, failure envelopes in the space of N,—N,~M, (a practical and useful failure
space which illustrates the limits of biaxial loading and the importance of consideration
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of stress gradients across an RVE) were seen to be characteristically elliptical in nature.
This is due to the prevalence of stress interaction effects, as well as the symmetry of the
plain weave geometry under analysis.

Figure 3 shows the discrete failure points as determined from the DMM for cases
of biaxial loading with constant applied moments of 0, 0.3, 0.5, and 0.8 times the critical
moment that would cause failure if it were the only load present. Also shown in this figure
are elliptical fits to each failure envelope, which were computed by a Matlab® based
routine that was used to determine a least squares fit to the DMM data points.

Phenomenologically, it can be seen that the failure envelopes become smaller as a larger
moment (stress gradient) is applied. An applied moment has the expectable effect
of shrinking the failure envelope, though in limited regions it has been seen that the
complexity of the superposed stress fields may have an offsetting or beneficial effect.

Analytically, it can be seen that there are definite trends in the axes and placement of the
failure ellipses. Failure ellipses were characterized with parameters such as major axis
length, minor axis length, ellipse axis orientation angle, and the ellipse center point.
Any general ellipse in (x, y) space can be represented by the expression:

xcosO+ ysind —uy]? [—xsin@+ ycosd— vyl
[ y 0} +[ y 0] - 5)

a b

where 6 is the orientation angle of the major axis of the ellipse with respect to the x-axis, u,
and vy are the coordinates of the ellipse center point, @ is half the major axis length, and b
is half the minor axis length. For each failure ellipse shown in Figure 3, these parameters
were then plotted as functions of the moment-applied for each case, in order to inspect
parametric trends.

For example, Figures 4 and 5 show the major and minor axis length of several
N, — N, — M, failure envelopes plotted against the moment resultant M, applied in each
case. A limited number of fitting cases were used, in order to reserve an adequate
number of test cases and to prevent over-fitting of the trends. As mentioned earlier and as
seen in the figures, a larger applied moment with a given failure envelope has the effect
of shrinking the envelope’s major and minor axes. These trends were regular enough to
be closely approximated with a polynomial trend line. For an applied moment equal to the
critical moment (the moment resultant which would cause failure if it were the only load
present), the ellipse axes lengths become zero, as a load sufficient for failure is already
applied, and no additional force resultants may be applied.

In addition to shrinking the failure envelope, larger applied moments also tend to cause
a small but significant shift in the center point of the failure ellipse. This is caused by the
fact that an applied moment is still a directional loading, and thus produces a directional
bias in the location of the failure envelope. These trends were also plotted (Figure 6) and
approximated with polynomial trend lines. Ellipse orientation angle (6) was found to be
very nearly constant, regardless of loading conditions, and thus no trend plot is shown.

Based on the above, an elliptical failure envelope of the form of Equation (5) can be
predicted by evaluating the expressions for ellipse parameters in terms of applied moment
resultant, as shown below:

b (6a)

[Nx cosf+ N, sinf — u0:|2+|:—Nx sin® + N, cos6 — v0:|2_ 1
a
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Comparison of predicted failure envelope with DMM results
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Figure 7. Failure envelopes predicted with the parametric approach as compared to DMM results
(applied moment resultant of 0.65 critical moment).

Thus a failure envelope for the plain-weave textile geometry of Figure 1 with any
combination of loads N,—N,—M, can be predicted with the above procedure and by
substituting loads into the expression of Equation (6a). For several test cases, a failure
ellipse is predicted and compared to discrete failure points as calculated directly from
the DMM. These comparisons are shown in Figures 7 and 8. The average deviation
between the failure envelopes predicted from the parametric curve fitting as compared
with the direct results of micromechanical modeling was less than 2%.

The greatest value of this parametric approach to predicting failure is that it provides
good insight nto the exact nature of the failure space under consideration. Further, the
results are quite accurate and could be useful for design purposes. However, the load
cases are limited, and the methods presented here would have to be extended if more than
three simultaneous loads were to be applied and analyzed.

Inspection of Failure Envelopes in Additional Stress Spaces

In general, failure envelopes in spaces other than those shown in Figure 3 will not
necessarily be elliptical in nature, as has been observed for cases including shear, twist,
and multiple moment loading terms. Figures 9 and 10 show failure envelopes in spaces
of M.—M~M,, and NM N,, respectively. Discrete points represent the failure
envelopes as determined by the DMM. Also shown for each envelope are predicted
envelopes labeled QFT as will be explained later in this paper.

Figure 9 isolates the relative effect of moment resultants, or stress gradients,
of varying types on the failure envelope, as well as the interaction of multiple moments.
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Comparison of predicted failure envelope with DMM results
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Figure 8. Failure envelopes predicted with the parametric approach as compared to DMM results (applied
moment resultant of 0.9 critical moment).

Each envelope is mapped out with a constant applied twist M. The overall character is
in some ways similar to that of Figure 3, i.c., the failure envelope symmetry reflects the
symmetry of geometry-and loading. Further, the strength limits in quadrants II and IV are
lower due to stress interactions. Whereas for biaxial loading, strength is decreased when
stresses act in the direction of the natural tendency of Poisson effects, in bending the
strength is decreased when biaxial bending acts in the direction of the natural tendency
of anticlastic curvature. As is generally seen in all failure analyses that have been
performed in this study, the dominant mode of failure is transverse failure of the fiber tow.

The Ny— M, — N,, failure envelope (Figure 10) provides a visualization of the effect
of the magnitude of stress gradient, or loading non-uniformity, for a given force resultant.
Each envelope is drawn for constant in-plane shear to further incorporate the effects
of multiple loading types. The envelope is symmetric about the x-axis due to the
mechanical equality of positive or negative bending moment. This symmetry is not seen
about the y-axis since the carbon-epoxy plain weave responds differently in tension
or compression.

Development of a Quadratic Stress Gradient Failure Criterion to Predict
Failure for 6D Loading

In order to bind together the failure spaces, which can be quite different in nature,
as can be seen in Figures 3, 9, and 10, methods of the previous section will not be
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Failure Criteria for Textile Composites 15

readily applicable. Therefore, development of an additional analytical method becomes
necessary. Further, an analytical approach to binding the results of multiple failure
envelopes as calculated via the DMM, along with the capacity to accommodate any
general plate loading condition has a practical value. Given the quadratic interactive
nature of the stress state in determination of failure, an expression of the below form has
been developed to predict failure:

CyFiF;+ D;F; = 1 (7

where F; represent general load terms (N N, N, M, M,, M,), and C; or D; represent 27
failure coefficients such that Equation (7) defines failure when its magnitude exceeds 1.
This expression represents the generic mathematical foundation of a failure theory that
is influenced by multiple loads (in this case force and moment resultants) and furthermore
influenced by the interactions between each when multiple loads are present. The relative
influence of each load or interaction is accounted for by the value of each undetermined
coefficient Cj; or D;.

Failure coefficients C;; and D; can be solved given a sufficient amount of known failure
points. However, Equation (7) is numerically ill-conditioned given the great disparity
in the magnitude of N; and M loads which will cause failure. These values will differ by
many orders of magnitude when typical units are utilized (Pa-m and Pa-m?). This makes
accurate solution of failure coefficients impossible when both such load types are present.
Thus, Equation (7) must be defined in terms of F; terms that arec normalized with respect
to a critical Ny or M.« that would cause failure if it were the only load present.

Coefficients C; and D; can be solved by evaluating Equation (7) with a load of F;

and setting all other loads to zero. For example, in order to obtain Cy; and D; a load
of Fy =N, is applied, all others are set to zero, and Equation (7) reduces to:

Ci N>+ DN, =1 (8)

Since the DMM has been used to determine the maximum tensile and compressive
allowable N,, each of which must satisfy Equation (8), two independent equations
are generated which can be simultancously solved to yield Cy; and D;. Note that,
as mentioned earlier, loads have been normalized for numerical robustness (in this case, N,/
N, critical).- The Ny gritical for-the plain weave carbon-epoxy in this study was found to be
6.40 x 10*Pa-m; this was used to normalize all force resultant terms. The My critical Used to
normalize all moment resultant terms was 1.85 x 10~*Pa-m?>. A complete table of strength
values for the carbon-epoxy plain weave textile composite is shown in Table 1. The &
indicates tension or compression for axial loads but is immaterial for shear or bending loads.

Table 1. Strength values for independent load conditions.

Strength (+) Strength (—)
Ny 6.40e3 Pa-m 5.86e3 Pa-m
N, 6.40e3 Pa-m 5.86e3 Pa-m
Ny 2.11e3 Pa-m 2.11e3 Pa-m
M, 1.85e-4 Pa-m? 1.85e-4 Pa-m?
M, 1.85e-4 Pa-m? 1.85e-4 Pa-m?
M 1.06e-4 Pa-m? 1.06e-4 Pa-m?

<
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16 R. L. KARKKAINEN ET AL.

These strength values, modified to the units and notations of classical laminate theory,
represent the largest allowable level of each load type when it is the only load present.

Remaining coefficients C;; can be solved by evaluating Equation (7) with the maximum
possible F;=1F; as determined by the DMM results. All other loads are set to zero.
This reduction in terms, along with knowledge of previously determined coefficients
C;; and D,, allows for the solution of all remaining coefficients. For example, Cy4 can be
determined by applying the maximum possible F; and F, such that:

Ny M,
Fi=F=—"= : ©)
N critical M critical

The failure coefficient is then solved from Equation (7) as:

Cuu= (1 —C”F%—C44F42‘—01F1 _D4F4) (10)

2F Fy

The above procedure is similar to that used in deriving Tsai~Wu failure theory for
unidirectional composites, e.g., [1]. The results of the above procedures are shown
in Tables 2 and 3.

Coefficients D3 through Dg are equal to zero since positive and negative failure values
are the same for any shear, moment, or twist loads.

For complete evaluation of the 27 failure coefficients, it will generally not be necessary
to complete 27 separate physical or simulated experimental evaluations. Exploitation
of weave geometry can lead to a significant reduction in the required evaluations.
The plain weave under investigation requires 13 evaluations to determine all coefficients,
and more complicated weaves will still often exhibit symmetry such that only this amount
is required. For the most general, asymmetric textile, 27 evaluations may be required.

Table 2. Normalized failure coefficients C; for quadratic failure
equation. (C,,, mth nth).

n=1 2 3 4 5 6
m=1 1.02 —0.81 245 0.15 0.15 —0.09
2 1.02 2.45 0.15 0.15 —0.09
3 9.29 0.15 0.15 -1.28
4 1.00 —0.65 0.29
5 1.00 0.29
6 3.05

Table 3. Normalized failure coefficients D; for quadratic
failure equation.

D, —0.011
D, ~0.011
Dy 0.000
D, 0.000
Ds 0.000
D 0.000
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Twelve evaluations involving a single load F; both in tension and compression will be
needed. Fifteen evaluations will be needed that involve every combination of two loads
applied equally (as normalized) until failure. These 27 evaluations may be performed either
by physical experiment or simulated via the DMM.

Tables 2 and 3 list failure coefficients for the plain-weave architecture of Figure 1.
The same methods shown in this section can easily be applied to any textile architecture
of interest. The 27-term quadratic failure equation is robust to adapt to the various
forms of failure spaces that may be exhibited by a particular architecture. In this case,
a new set of failure coefficients (C; and D;) will be determined from the DMM or
experimental analysis.

Referring back to Figures 9 and 10, the elliptical curves labeled QFT represent the
failure envelopes as predicted by the quadratic stress gradient failure theory of Equation
(7), plotted against the DMM failure envelopes. The overall agreement in these diverse
failure spaces is seen to be quite suitable, but with regards to Figure 10 it can be seen that
there will be ‘corners’ or portions of the 6D failure space that will be missed with the
essentially 6D ellipse space of the quadratic failure theory. Note that the predictions
in these cases tend to be conservative in areas of disagreement.

For further comparison and to incorporate more complex loading conditions, several
test cases were computed to determine the difference in solutions computed from
Equation (7) as compared to the results of the DMM. In general, F; may be populated by
as many as six terms from among (N, N, N, M, M, M,,). For cases in which 1, 2, or
3 terms are populated, the solution is accurate to within a few percent. For test cases
in which 4, 5, or 6 terms are populated, the average error was seen to be 9.3%, and several
example test cases are tabulated below. Care was taken to select a broad spectrum of cases,
i.e., both positive and negative values are employed, and multiple load ratios and load
types are employed. Load ratios () are shown to characterize the range and variety of test
cases, and are defined as:

o = (11)

Further, by maintaining the same load ratios, all predicted failure loads F; via Equation
(7) will maintain asingle ratio with respect to DMM failure points. Thus one ratio
(as shown in Tables 4-6) can characterize the congruence of these two solutions. For
example, a ratio of unity will imply complete agreement between the two solution
procedures. A ratio less than 1 indicates a conservative failure prediction, and a ratio
greater than 1 implies the converse.

CONCLUSIONS

Based upon failure envelopes constructed by analysis of the microstresses developed
in a representative volume element (RVE), two alternate methods for predicting
failure envelopes of a plain-weave textile composite have been developed. The previously
developed direct micromechanics method (DMM) has been used to construct failure
envelopes for a plain weave carbon/epoxy textile composite in plane stress. To allow for
the accommodation of stress gradients across the comparatively large geometry of a textile
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18 R. L. KARKKAINEN ET AL.

Table 4. Comparison of quadratic failure equation predictions with DMM results.
Test cases below include four populated load terms F;.

F1 F2 F3 F4 F5 FG
o 1.00 0.00 0.92 6.67E — 08 0.00 6.67E — 08
DMM 1.20E + 03 0.00E4+00 1.10E+03 8.00E — 05 0.00E+00 8.00E-—-05
Quadratic theory 1.12E+ 03 0.00E+00 1.02E+03 7.44E — 05 0.00E+00 7.44E-05
Ratio 0.93
o 1.00 1.83 0.00 6.67E — 08 0.00 6.67E — 08
DMM 1.20E+ 083 2.20E+03 0.00E+00 8.00E — 05 0.00E+00 . 8.00E—-05
Quadratic theory 1.24E+ 03 2.27E+03 0.00E+00 8.24E — 05 0.00E+00 8.24E-05
Ratio 1.03
o 1.00E+00 -0.87 0.00 391E-08 —1.40E—-08 0.00
DMM —2.30E+ 03 2.00E+03 0.00E4+00 —9.00E-05 3.23E—-05 0.00E +00
Quadratic theory —2.55E +03 2.22E+03 O0.00E+00 —9.99E—-05 3.59E—-05 0.00E+00
Ratio 1.11
o 1.00 0.40 0.00 1.80E-08 —646E-09 0.00
DMM —5.00E+03 —2.00E+03 0.00E4+00 —9.00E-—05 3.23E—05 0.00E+00
Quadratic theory —550E+03 —2.20E+03 0.00E+00 —9.90E—05 3.55E—-05 0.00E+00
Ratio 1.1
o 1.00 —-0.50 0.00 —161E-08 —8.08E—09 0.00
DMM —4.00E + 03 2.00E+03 0.00E+00 6.45E — 05 3.23E—-05 0.00E+00
Quadratic theory —3.72E +03 9.30E+02 1.53E+03 6.51E — 05 6.51E—-05 7.44E—-05
Ratio 0.93

Table 5. Comparison of quadratic failure equation predictions with DMM results.
Test cases below include five populated load terms F;.

F1 F2 F3 F4 F5 Fe
o 1.00 1.00 1.00 6.25E — 08 0.00 6.67E — 08
DMM 1.20E + 03 1.20E + 03 1.20E +03 7.50E — 05 0.00E + 00 8.00E — 05
Quadratic theory 1.04E + 03 1.04E+03 1.04E+03 6.53E — 05 0.00E + 00 6.96E — 05
Ratio 0.87
o 1.00 1.67 1.20 4.67E—-08 5.33E—-08 0.00
DMM 1.50E + 03 2.50E 403 1.80E +03 7.00E — 05 8.00E — 05 0.00E + 00
Quadratic theory 1.32E+03 2.20E+03 1.58E+03 6.16E — 05 7.04E—-05 0.00E + 00
Ratio 0.88
o 1.00 —-1.33 —-1.07 —4.67E - 08 3.33E-08 0.00
DMM —1.50E +03 2.00E 403 1.60E + 03 7.00E—-05 —5.00E-05 0.00E + 00
Quadratic theory —1.32E +03 1.76E + 03 1.41E+03 6.16E—05 —4.40E—-05 0.00E + 00
Ratio 0.88
o 1.00 1.33 1.00 —3.33E-08 2.67E—-08 0.00
DMM —1.50E+03 —2.00E+03 —1.50E-+03 5.00E—-05 —4.00E-05 0.00E + 00
Quadratic theory —1.32E+03 -1.76E+03 —1.32E+03 440E—-05 —3.52E-05 0.00E + 00
Ratio 0.88
o 1.00 —-0.45 0.45 2.27E-08 0.00 3.18E-08
DMM —2.20E+03 1.00E+03 —1.00E+03 —5.00E—05 0.00E+00 —7.00E-05

Quadratic theory —2.16E +03 9.80E+02 —9.80E+02 —4.90E-05 0.00E+00 —6.86E—05
Ratio 0.98
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Table 6. Comparison of quadratic failure equation predictions with DMM results.
Test cases below include fully populated load terms F;.

F1 F2 F3 F4 F5 FG

o 1.00 0.56 0.92 3.89E — 08 3.89E — 08 4.44E —08
DMM 1.80E + 03 1.00E + 03 1.65E+03 7.00E —05 7.00E — 05 8.00E — 05
Quadratic theory 1.55E + 03 8.60E + 02 1.42E+03 6.02E — 05 6.02E — 05 6.88E — 05
Ratio 0.86

o 1.00 1.00 0.52 1.33E-08 1.33E - 08 1.33E - 08
DMM 3.00E + 03 3.00E + 03 1.55E+03 4.00E — 05 4.00E — 05 4.00E — 05
Quadratic theory 2.61E+03 2.61E+03 1.35E+03 3.48E-05 3.48E — 05 3.48E — 05
Ratio 0.87

o 1.00 -0.73 —0.33 —1.33E-08 1.33E-08 1.33E - 08
DMM —3.00E + 03 2.20E+03 1.00E + 03 400E—05 —4.00E—05 —4.00E-05
Quadratic theory —2.85E 403 2.09E + 03 9.50E + 02 3.80E-05 —-3.80E—-05 —3.80E—05
Ratio 0.95

o 1.00 -0.67 0.67 —2.67TE—08 5.33E—-08 —3.33E-08
DMM —1.50E + 03 1.00E+03 —1.00E+03 4.00E—-05 —8.00E—05 5.00E — 05
Quadratic theory —1.44E +03 9.60E+02 —9.60E+02 3.84E-05 —7.68E—-05 4.80E - 05
Ratio 0.96

o 1.00 0.59 0.88 3.53E — 08 3.53E — 08 4.71E-08
DMM —1.70E+03 —-1.00E+03 —1.50E+03 —6.00E~05 —6.00E—05 —8.00E—05
Quadratic theory —1.45E+03 —-850E+02 —-128E+03 -510E—05 -5.10E—05 —6.80E—05
Ratio 0.85

RVE, micromechanical analysis had been performed in terms of classical laminate theory
force and moment resultants [NV], [M]. A parametric ellipse-fitting scheme which accurately
predicts trends in failure envelopes for a'given 3D failure space has been developed by
analysis of failure ellipse parameters. This method for predicting failure envelopes was
found to agree with DMM results to within a few percent. A second method involves
development of a 27-term quadratic stress gradient failure criterion to predict failure under
6D loading conditions. The quadratic failure criterion was found to agree with DMM
results within'an average deviation of 9.3%, but the method is more robust in terms of its
ability to predict failure from more complex loading cases.

NOMENCLATURE
&M =macroscopic level strain
«™ = macroscopic level curvature
o¢ =element level stress
a =RVE width
b =RVE depth

N; =force resultant in the i direction
N, =shear force resultant in the x—y plane
M; =moment resultant in the 7 direction
M, =torque resultant in the x—y plane

+  [Ver: 8.07r g/W] [30.8.2006-6:49pm] [1-22] [Page No. 19] FIRST PROOFS  K:/Journals/Inprocess/Sage/Jem/JCM 069905.30  (JCM)  Paper: JCM 063905

Keyword



20 R. L. KARKKAINEN ET AL.

&; =normal strain in the 7 direction
¥y =shear strain in the x—y plane
k; =curvature in the 7 direction
Ky, =twist in the x—y direction
[4] =in-plane stiffness matrix
[B] =strain-curvature coupling matrix
[D] =flexural stiffness matrix
z =distance from RVE midplane in the height direction
6 =ellipse major axis orientation angle
up =ellipse center point coordinate, abscissa
vo =ellipse center point coordinate, ordinate
a =cellipse major axis length
b =ellipse minor axis length
=failure coefficient
F; =load, in terms of force or moment resultant
D; =failure coefficient
a =load ratio
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