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BRIEF NOTES
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Fig. 1 Principle of superposition for calculating normal displacements

on the surface of 2 beam

1 Introduction

The problem of indentation of a beam supported at both
ends has been solved by Sankar and Sun (1983) and Keer and
Miller (1983). The basic principle in both methods was using
the elasticity solution to describe displacements and stresses in
the vicinity of contact, and using the beam-theory equations to
describe the global behavior. They differed in the numerical
technique of solving the contact problem, but reached essen-
tially the same conclusions. It may be noted that the basic in-
formation needed to solve a contact problem is the Green’s
function for surface displacements. Then, the problem may be
formulated in terms of an integral equation, which may be
solved numerically. Once the contact area and the contact
stresses beneath the indenter are found, the stress field in the
contacting bodies can be solved by using the equations of
elasticity.

In this paper an approximate Green’s function for normal
displacements on the surface of a beam is proposed. The in-
tegral equation for frictionless contact between a beam and a
rigid cylindrical indenter is formed in terms of the Green’s
function. The integral equation is solved by a least squares ap-
proximation procedure. A numerical example is given for the
problem of central indentation of a simply supported isotropic
beam by a smooth, rigid cylinder. The results for the contact
stresses beneath the indenter are compared with those given by
Keer and Miller (1983). -

2 An Approximate Green’s Function

Consider the problem of a simply supported beam of rec-
tangular cross section and unit width subjected to a concen-
trated force P as shown in Fig. 1(g). In the context of contact
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- Table 1 Comparison of displacement V,,, and deflections Vy
x/h (EU/Ph3)vy (EVPR3)vip (Vb Vho) Vhp
0.0 8.5333 8.4612 0.00853
0.1 8.2055 8.1347 0.00869
0.2 7.8624 7.7942 0.00875
0.3 7.5049 7.4401 0.00871
0.4 7.1339 7.0729 0.00862
0.5 6.7500 6.6932 0.00849
0.6 6.3541 6.3016 0.00833
0.7 5.9471 5.8989 0.00816
0.8 5.5296 5.4858 0.00798
0.9 5.1025 5.0630 0.00781
1.0 4.6667 4.6313 0.00764

problems our interest is in determining the surface
displacements v(x, 0) in the y direction. As described in
Timoshenko and Goodier (1970) the solution to the problem
in Fig. 1(a) can be obtained as the superposition of solutions
of systems shown in Figs. 1(») and 1(c). In the above reference.
such a superposition procedure has been used to calculate
stresses in a beam subjected to a concentrated force. We shall
extend the same method for determining the displacements as

oY)

where v, and v,, are the displacements of systems in Figs. 1()
and 1(c), respectively. ’

In Fig. 1() the force P acts on a half-plane. The expression
for surface displacements in a half-plane of unit thickness
under piane stress is given by (Timoshenko and Goodier,
1970) :

v, (x,0)= —(2P/%E) log x| +constant. )

v(x,0) = vy, (x,0) + v, (x,0),

It will be shown later that in contact problems we need only
relative displacements, and there is no need to evaluate the
constant term.

In Fig. 1(c) radial tensile stresses act on the sides of the rec-
tangular beam supported at the ends. The magnitude of these
radial stresses are equal to the magnitude of the compressive
stresses on face ABCD in the half-plane in Fig. 1(4).
Displacements v, (x, 0) for the problem shown in Fig. 1{c)
can be obtained from the beam theory. It will be further
shown that the displacement v, is approximately equal to the
deflection v, in a beam subjected to a concentrated force P as
shown in Fig. 1(d). - '

The bending moment about the centroid at any section of
the beam in Fig. I(c) can be easily computed if we note that
the radial tractions on face A BE are statically equivalent to the
radial pressure over the circular arc FG of an arbitrary radius r
in Fig. 1(b). The expression for this radial pressure distribu-
tion is given in Timoshenko and Goodier (1970) as

3)

where ¢ is measured in a counter-clockwise sense from the Vv
axis. The resultant of this radial pressure is equivalent to two
forces F, and F, (Fig. 1(c)) acting at O given by

F.=P(1+cos2¢)/2x

[o = (2P cosl) /xr,

and #
Fy =P{w—2¢—sin2¢)/2x,

where tang = x/h.
The bending moment M (x) at any section can be calculated as

M(x) =NP(s—x) —F,(h/2)+F,x, &)

where A = | — s/¢.
The displacement vy, is then obtained by integrating M(x)
twice as follows:
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Fig. 2 Central indentation of a simply supported beam-
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Fig. 3 Contact stress variation in a simply supported beam
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where X = x/h. .

In equation (6) E is the Young’s modulus, 7 is the moment
of inertia of beam-cross section, and s is the distance of force
P from the right support. The constants of integration ¢, and
€, can be determined from the conditions that displacements
arezeroatx = sandx = (s — §).

The displacements thus obtained were compared with the
deflection v, (x) of a beam subjected to a concentrated force
P calculated using the elementary beam formula. The agree-
ment was excellent for large #/4 ratios, and also when the load
was not very close to either support. The comparison for a
worst case (¢/h = 10 and s/¢ = 0.2) is given in Table 1. It may
be noted that the maximum difference in displacements occurs
near the point of application of the concentrated force, but it
is still less than 1 percent. An interpretation of this agreement
can be that the resultant of F, and F, in Fig. 1(c) pass very
close t6 the centroid at the section through £, and does not
contribute much to the bending moment, making M(x) ap-
proximately equal to AP(s — x), which is identical to the pro-
blem in Fig. 1(d). It should be remembered that Upp OF Uy IS
only part of the solution to which v, has to be added.

In conclusion, it has been shown that the transverse
displacements on the surface of a beam due to a concentrated
force can be calculated by superposing the displacements on
the surface of the half-plane and the beam-theory deflections.
The solution for a concentrated .force can then be used as a
Green’s function for computing displacements due to any
other type of loading on the beam.
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3 Central Indentation of a Simply Supported Beam

Consider a simply supported beam of length fand thickness
# (Fig. 2). The beam is assumed to be of unit width and is in a
state of plane stress parallel to the x - y plane. The beam is in-
dented by a rigid cylindrical indenter with a parabolic profile
given by y = —x?/2R. The contact is assumed to be smooth.
Our interest is in determining the contact stress distribution
plx) = — g, (x, 0) beneath the indenter.

We start with a known contact length 2¢ symmetrical about
the center of the beam. The contact length is divided into Ny,
number of divisions. The unknown contact stresses are as-
sumed to be uniform over each division, that is, over the Jth
division p(x) = p;. The p;’s are determined from the condi-
tion that the deformed shape of the beam in the contact region
should conform to the shape of the indenter. This is achieved
by choosing N, number of collocation points x;’s including
x| = ¢, and requiring that ‘

U(x,0) = v(x;,0)= (5 —=x2) /2R, i= 1N, ™

where x, is a reference point in the contact region. The left-
hand side of equation (7) can be found as a linear function of
p;’s using the superposition principle described in Section 2.
Thus, the system of equation (7) can be written in the form

YAy = (x—x})/2R, i=1,N,. ®)
J

The number N, has to be at least equal to Ny, but it was found
that the variation of contact stresses would be smooth if N, >
Ny, and the least squares solution procedure was used to solve
for the p;’s. In the numerical examples N, was equal to 25 and
Ny was equal to 20. The IMSL subroutine LLSQF was used in
a VAX-11/780 computer to solve the system of linear
equations. .

In order to compute Aj’s, the solution for relative normal
displacements on the boundary of the half-plane due to a
uniform load, say p over —~¢ < x < t, is needed. For the case
of plane stress the relative displacements can be expressed as
(Timoshenko and Goodier, 1970)

U, (x,0)~ v, (0,0) = (= 2pt/%E) [(1 — X)log | 1 — %[
+(1+x)logll + %1}, )]

‘where x = x/t.

The contact stress distribution shown in Fig. 3 corresponds
tothecase = 50.8 mm, # = 2.54 mm, R = 25.4 mm, and £
= 6.8971 GPa (10% psi). The results agree well with those
given in Sankar and Sun (1983). In Fig. 3 the symbols repre-
sent the results obtained by Keer and Miller (1983). Again, the
agreement is quite good. :

4 Summary

The normal displacements on the surface of a beam can be
obtained by superposing the beam-theory deflections and the
corresponding half-plane solutions. The restriction is that the
load should not be very close to a support. This method of
superposition simplifies the formulation of the problem of
contact between a beam and a rigid indenter. Although the
numerical example was concerned with the indentation of a
simply supported beam, this method can be easily extended to
other boundary conditions, and also to the case of asym-
metrical indentation, where the contact stresses may not be
symmetrical about the indenter. ’
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