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Abstract—An integral equation for the problem of smooth contact between a rigid indenter and
an orthotropic beam is formulated using an approximate Green's function for surface displacements
in the beam, which is obtained as the sum of half-plane solutions for surface displacements, and
beam theory deflections. The left and right Green’s functions for beam slope are approximated as
a single function with continuous derivatives using a least squares error procedure. A closed form
solution is obtained for the integral equation. Solutions are obtained for two cases: symmetric
indentation of simply supported orthotropic beams and indentation of cantilever beams. Closed
form expressions are derived for contact stresses and the contact force-contact length relation in
terms of a nondimensional beam parameter B and a nondimensional contact parameter §.

NOTATION
. . C mw D5l
B nondimensional beam parameter = 2D, P
b beam width
2¢ contact length
é cfl

D, D,  stiffness coefficients (functions of elastic constants)
E,E, Young’s modulus in 1 and 2 directions
g(x,&)  Green’s function

9 Green’s function for beam slope

gn Green’s function for half-plane boundary slope
Gia shear modulus

h beam thickness

! beam length

P contact force

P nondimensional contact force = (4PT)/(xD,b!?)
p contact stresses

j/ nondimensional contact stress = (pR)/(D,/)

p nondimensional contact stress = (rbcp)/(2P)
gn coefficients in the Chebyshev polynomial for 5
R indenter radius of curvature

T, Chebyshev polynomials of first kind

U, Chebyshev polynomials of second kind

X,y coordinate axes

x (x _'xc)[, <

x; x-coordinate of indenter center

X x-coordinate of contact center

)'c'i xi,"!

b x./!

B nondimensional contact parameter = 8.75 Bé*
A indenter y-displacement

Oro boundary slope of half-plane at x = 0
Via Poisson’s ratio

¢ dummy variable

E (é _xc)/ 4

1. INTRODUCTION

The problem of smooth indentation of beams of finite length by a rigid cylindrical indenter
has been studied by several authors. Keer and Ballarini (1983), Keer and Miller (1983) and
Keer and Schonberg (1986) approached the problem via a local-global technique. Their
methods of analysis superpose an infinite-layer solution, derived through the use of integral
transforms, on a pure-bending beam-theory solution. An integral equation is obtained for
327
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The integral equation for the symmetric contact problem is

b f p(O90s 9 dE= A=, M

where p(x) = —a,,(x,0) is the unknown contact stress beneath the indenter, 2¢ is the
contact length, g(x, &) is the Green’s function for surface displacements in a beam, R is the
indenter radius of curvature and A is the y-displacement of the indenter. It should be noted
that eqn (1) assumes that the indenter has a parabolic profile. If the indenter is circular,
eqn (1) is valid only for ¢/R « 1. The unknown displacement A can be eliminated by
differentiating eqn (1) with respect to x. Thus the integral equation takes the form

bJ Q) g (x, &) df = —x/R, @

where a prime denotes differentiation with respect to x. It was shown in Sankar (1987b)
that an approximate g(x, £) can be obtained by adding g,(x, £), the Green’s function for
surface displacements in an orthotropic half-plane, and g,(x, &), the Green’s function for
beam deflections. Thus eqn (2) can be written as

bﬁ P(O)Mgn(x, &) +gu(x, O] d¢ = —x/R, 3)

where gy, is given by (Sankar, 1987b):

2

D, @

gh(x, &) =

For the case of plane stress parallel to the x—y plane, D, = 2E,/(A;+,), where 1, and 4,
are the roots of the characteristic equation S;;A*— (28,4 S¢e)A2+S2, =0, S, = 1/E},
Saa = 1/E,, S¢s = 1/G 5, S12 = —v,/E|, E; and E, are the Young’s moduli in the 1 and 2
directions, G, is the shear modulus in the 1-2 plane and v, is the Poisson’s ratio. For the
case of plane strain, D, will be slightly different (Lekhnitskii, 1981).

The beam Green’s function for the slope is

95(x, &) = (P[D\b*)[2(E/1)* +6(¢/D(x/1)* = 3(x/1) + (¢/1) + 3 (x, D)), )

where D, = E, for plane stress and D, = E,/(1 —v3,) for plane strain. The function ¢(x, &)
is defined as

£\
qs(x:é) = _<'xTé'>n x<€:

and
¢ma=+@§%,x>c ©)

It may be noted that ¢ is an odd function of the argument (x— &), and can be expanded in
terms of odd powers of (x—¢&). We shall approximate ¢ by a single function of the type
¢ 1(x— &) +cy(x—&)>. The constants ¢, and ¢, depend upon the degree of accuracy and the
range of (x—¢) over which the approximation is sought. In the present study, the maximum
contact length is assumed to be given by 2¢ = 0.5/. We will therefore approximate ¢(x, &)
such that the error is a minimum over the range —0.5 < (x—¢)// < +0.5. Using the least
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1L (Y1 (A=)~ T, (0
{P}; -1 (t—s)

dt=U,_(s), n=0,1,2,...,and |s| <1,

where {P} denotes the Cauchy principal value and U,(s) are the Chebyshev polynomials
of the second kind defined by U_,(s) =0, Uy(s) =1, Uy(s) =2s, Us(s) = 4s>—1,
Us(s) = 8s®—4s and U,(s) = 16s*—12s2+1. The second term of the integral in eqn (11)
can be easily evaluated using the orthogonality condition

o - 0, n#m
f A—>""2T,(OT,(2) dt = w2, n=m+#0
-1

T, n=m=0.
Thus eqn (11) takes the form

2g,+49,%+q5(8%* —2) + g4 (165> —8%) + B{go(— 818%% + 1408* %> +210*%) v
+4:(8.58% —1148° %% —28.56%) +¢,(1056°%) + ¢5(—9.56%)} = —éx. (13)

By equating the coefficients of x°, ..., %° on both sides of eqn (13), we obtain four equations
(14)-(17) in the unknowns gy, ..., g4 ’

{2+B(@8.5¢*—28.5¢)}q, +(—9.5B¢* ~2)g; = 0 (14)
B(210&* —818%) g+ (4+105B&*) g, ~8g, = —& | (15)
(—114Be%) g, +8g5 = 0 (16)
104B&*gq,+16g, = 0. : (17)

The_ fifth equation (18) is obtained from the fact that the contact stresses vanish at the ends
of contact zone, i.e.

Jo+4q1+g2+gs+gs =0. _ (18)

The solution of eqns (14)—(18) is as follows:

go = &/(4+81B¢*—210B¢* —918.75B¢%), (19)

ql = q3 = 0’ A (20)

7 = (B—1qo, @1
and ,

g4 = — Bqo, 22)

where B is a nondimensional parameter defined as B = 8.75B¢*.

Contact stresses
The contact force is given by

+c .
P= bf p(x) dx,

and, using eqn (12), we obtain
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Fig. 4. Contact force—contact length relation in simply supported beams.

3. INDENTATION OF AN ORTHOTROPIC CANTILEVER BEAM

In this section we consider the case of a cantilever beam, as shown in Fig. 5. The
indenter location is given by x;. Initial contact will be a line contact at x = x;. As the load
is applied, ¢ will increase, and the center of contact defined by x. will move towards the
fixed end of the beam. Thus an additional unknown x, is introduced. However, the contact
stresses will be unsymmetric about the center of contact length, and so we have one more
equation which states that the contact stresses vanish at the left end of the contact region
too.

There is another important difference between symmetric and nonsymmetric cases.
The solution for y-displacements in the half-plane contains arbitrary terms for translation
and rotation, which means that the expression for the boundary slope of the half-plane will
contain an arbitrary constant. In the case of symmetric contact, the rolation term can be
assumed to be zero. In the case of the cantilever beam problem, this difficulty can be
overcome by subtracting g;,(0, £) from g4 (x, £) in the integral equation (3). This means that
we are measuring the boundary slope relative to the slope at x = 0. Thus eqn (3) will
become

b£ c_c pO[gh(x, &) —g1(0,8) +g4(x, )] d& = — (x—x)/R. @7
Xy
%

o

2c

y.2

Fig. 5. Indentation of an orthotropic cantilever beam.




wad arith dEeg L

B

Smooth indentation of orthotropic beams 335
10'15 T T ¢V .ITTIiT] T T T TTT1I1T] T TTTTTE
= B=1 B=0 A
- B =10 7
107F E
< a2 E
- B = 100
uf - i
103k =
2 = B = 1000 =
Qo
- 10 E_‘ —E
4 o 3
(o] - 4
5] - ki
105 <
10°8 | 11 rragtd ! 1y 1t 1 1t 1 ti
1073 102 107! 10°

. CONTACT LENGTH, cit
Fig. 7. Contact force—contact length relation in cantilever beams.

BEZ(15+21052)40+96B.E3q1 4 (4+105B6%) gp—8gs = — 32)
—96B& o —210B&g, +8g; = 0 C33)

140354qo+ 169, =0 ’ (34
40+41+92+43{"f"]4=0 (35)
Go—q1+9:—q3+q,=0. ‘ : (36)

Equations (33)—(36) can be used to solve for g,...,q4 in terms of go. The results are:
g1 = (—12B&) qo/(1+3B), g2 = (—1+B) g0, g5 = —¢1, and g4 = — 4.

Contact force—contact length relation
Substituting for q,, ..., ¢, in terms of g, in eqn (32), one can obtain a relation between
o and &. In terms of the nondimensional contact force P, the P-¢ relation takes the form
228 B%*¢¢
B 2} (37

n_ ~2 _ . ~2‘_ ££05.¢0
P=¢ /{1 A T

The B-¢ relations for various values of B are plotted in Fig. 7. B = 0 corresponds to the

half-plane. It is interesting to note that unlike the simply supported beam, as the contact
length increases, the load required for a given contact length is more than that in the
half-plane. This is because of the convex shape of the deformed beam. However, the
beam curvature effect is not as pronounced as in the case of a simply-supported beam
(see Fig. 4). ‘ ‘

Contact stresses

Substituting for g,,...,q4 in terms of g, in eqn (12), the nondimensional contact -

stresses can be written as

,3=</—‘1_x2[1~5(1_4)32)_21“%ﬂ (38)

The contact stress distribution is unsymmetric about the contact center. A sample contact
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%, = (—1+4+/1+192PB%)/(96PB). (39

In Fig. 9, solid circles represent the relation between P and %, obtained from eqn (39). It
may be seen that eqn (39) provides a simple method of finding X for a given contact force.

4. SUMMARY

The approximate Green’s function method described in this paper provides a closed
form solution for the problem of contact between a rigid indenter and an orthotropic beam.
The dimensionless beam parameter B and the contact parameter  seem to reflect the effects
of beam dimensions, degree of orthotropy of the beam material and contact length to beam
length ratio on the contact behavior of the beam. Equations (24) and (25) describe the
contact behavior of a simply supported orthotropic beam. In the case of cantilever beams,
eqn (39) provides a simple expression for determining the contact center, and eqns (37) and
(38) can be used to determine the contact length and the contact stresses. Extension of the
present method to other types of beam support is straightforward.
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